
Efficient Linear Discriminant Analysis Using

a Fast Quadratic Programming Algorithm

S. J. Perantonis and V. Virvilis

Institute of Informatics and Telecommunications,

National Center for Scientific Research “DEMOKRITOS”,

Athens, Greece

Abstract-An algorithm is proposed for perform-
ing linear discriminant analysis using a single-layered
feedforward network. The algorithm follows succes-
sive steepest descent directions with respect to the
perceptron cost function, taking care not to increase
the number of misclassified patterns. The algorithm
has no free parameters and therefore no heuristics are
involved in its application. Its efficiency in terms of
speed of convergence is demonstrated in a number of
pattern classification problems.

I. Introduction

In recent years, artificial neural networks have been
widely applied to pattern recognition problems. In
particular, feedforward networks have emerged as ef-
ficient tools for supervised discrimination of patterns
belonging to two or more categories. Although recent
research has mainly focused on multilayered networks,
the single layer feedforward network still deserves at-
tention for at least two reasons:

Firstly, the design of fast learning algorithms for
this type of network is important, because such algo-
rithms can form the basis of layer-by-layer learning
schemes for multilayer feedforward networks [1]. Sec-
ondly, many non-linearly separable problems can be
cast into linearly separable form by constructing high
order polynomial terms of the data. This type of lin-
earization is the main step for constructing high or-
der feed-forward networks that are widely studied and
used in many applications.

The most popular stochastic or gradient based al-
gorithms for training a single layered feedforward net-
work, e.g. the perceptron learning rule [2] and the
delta rule [3] can run into serious problems if their pa-
rameters (learning rate and momentum) are not cho-
sen correctly. Proper parameter selection usually relies
on heuristics. Even if parameters are chosen optimally,
in many problems with a highly non-uniform distribu-
tion of patterns in the input space learning can be
exceptionally slow. This difficulty arises especially in
solving non-linear problems which are linearized using
high order terms [4]. Indeed, Volper and Hamson have

highlighted this point, by showing that the perceptron
rule may need very high order polynomial times even
in apparently simple problems with just second-order
terms [5].

In this paper we propose a learning algorithm for a
single layer network, which is fast and requires no ad-
justment of parameters. Learning proceeds by taking
extra precautions to ensure that during training the
algorithm won’t increase the number of misclassified
patterns. The above requirement leads to a quadratic
programming problem, for which a fast method of so-
lution is proposed. The algorithm can find the solu-
tion to large scale linearly separable problems much
faster that the perceptron rule. Its fast convergence is
not hindered by inhomogeneities in the distribution of
training patterns.

II. Terminology and Background

We wish to distinguish between two linearly separable
classes of P patterns xp, each of dimension N . We
want to find a vector W such that

θ(W T Xp) = Tp, p = 1, . . . , P (1)

where Tp is the target for pattern p, equal to either
zero or one, and θ is the step function. The vector Xp

consists of the input pattern xp of dimension N plus
an extra component equal to one and W consists of
the weight vector w augmented by the threshold w0.

In the N+1 dimensional weight space, the vector W

is represented by a point. Each of the patterns Xp is
represented by a hyperplane which divides the weight
space into 2 subspaces. Hyperplanes corresponding
to different patterns dp segment RN+1 into several
convex regions (polytopes), whose common boundaries
are hyperplane segments. For a given W each pattern
hyperplane is classified as Bit Right (BR) if the quan-
tity Op = θ(W T Xp) is equal to Tp, and BitWrong
(BW) if Op is not equal to Tp.

Instead of Xp, it is useful to describe the patterns
using the vectors dp = (2Tp − 1)Xp, which always
point towards the side of the pattern hyperplane that
corresponds to correct classification. Thus, patterns

classified as BR (BW) are characterized by a positive
(negative) value of the the quantity W T dp. The orig-
inal perceptron problem (1) now becomes:

θ(W T dp) = 1, p = 1, . . . , P (2)

There are two cost functions related to our problem:

• The perceptron cost function [4] is defined by

E =
P

∑

p=1

(Tp − Op)W
T Xp = −

∑

p=BW

W T dp (3)

where the second sum runs over all patterns that
are classified as BW by W . This cost function is
piecewise linear in RN+1 and has constant gradi-
ent ∆W in each polytope given by

−∆W =
P

∑

p=1

(Tp − Op)Xp = −
∑

p=BW

dp (4)

Performing gradient descent using this cost func-
tion gives the offline (batch) version of Rosen-
blatt’s perceptron learning rule.

• The squared error cost function

ESE =

P
∑

p=1

(

θ(W T dp) − 1
)2

(5)

counts the number of BW for a certain W and
takes on a constant value for each polytope.

III. Training strategy

We initialize the training procedure with the weight
vector W in the interior of a certain polytope RI . Our
aim is to reach a minimum of the number of BW. Our
strategy involves updating W along successive search
directions, each characterized by a vector P . To de-
termine these directions, we shall use information re-
lated to the gradient ∆W of E. In particular, at each
epoch, the search direction is the direction of steepest
descent with respect to the vector ∆W , subject to the
constraints that no BR patterns are crossed over. For
the first epoch, we choose the vector P = ∆W and
we update W according to:

W new = W + nP (6)

where n is the learning rate. This is reminiscent of
the perceptron learning rule, where n remains con-
stant throughout learning. In our case, the rule of
calculation of n is constructed by the requirement to
cross over as many BW patterns as possible, without
crossing over any BR. In this way, maximum decrease
of ESE can be achieved.

Noting that the classification decision for a pattern
dp changes at the point where W T

newdp = 0, i.e. np =

−(W T dp)/(P T dp), we consider the following cases:

1. Suppose that at least one pattern can be found
along our search direction which is classified as
BR by W . Let nR be the smallest (positive) np

corresponding to such a BR pattern.

(a) If BW patterns exist with smaller np than
nR, let nW be the largest among the np of
these BW patterns. Maximum decrease in
ESE will be achieved if n is chosen so that
nW < n < nR. In practice, we always chose
n = (nW +nR)/2. This procedure of moving
over all BW patterns without crossing any
BR pattern will be called “Fast Moving”.

(b) On the other hand, if no BW patterns exist
with smaller np that nR, we cannot decrease
ESE by following the gradient direction. In
this case, the first pattern encountered in the
∆W direction is a BR pattern. The best we
can do is keep ESE constant by moving close
to the BR pattern. This pattern is added to
an internal “list of active patterns” so that
the next move will be parallel to the hyper-
plane of the specified pattern. This proce-
dure of moving practically to zero distance
from a BR pattern will be called “Moving
Near”.

2. If no BR pattern can be found along our search
direction, then:

(a) If BW patterns can be found, we only have
to cross over all BW patterns to solve the
problem (last Fast Moving update). Thus n
must be chosen larger than all np.

(b) If neither BR nor BW patterns can be found,
then P = 0 and the algorithm terminates.

The first epoch of the algorithm has now been com-
pleted. Weight updating in subsequent epochs is per-
formed as follows:

1. If in the previous epoch the weight vector was
updated using the “Moving Near” process, the
weight vector still resides in the same polytope
R as before. Obviously, ESE is the same as in
the previous epoch. In this case, we update the
weight vector using a new search direction, in the
hope that it will lead us to a BW pattern hyper-
plane, so that the “Fast Moving” procedure can
be used in the present epoch. To select the search
direction, we use E again.

We update W so that the new vector W new re-
mains in R so that and E decreases locally at
the fastest possible rate. We therefore choose the
search direction of steepest descent that has com-
mon points with R. Finding this direction is a
difficult problem that will be studied in detail in

section IV.. At this point, it suffices to say that
in general this search direction will be parallel
to some of the pattern hyperplanes, so that af-
ter finding it, we have to update the list of active
patterns. Once the appropriate search direction,
characterized by vector P has been found, W is
updated using (6) with n determined as in cases
1 or 2 above.

2. On the other hand, if the previous epoch weight
update was performed using the “Fast Moving”
procedure, the weight vector now resides in a new
polytope RN of lower ESE than in the previous
epoch. We must now use the new E, correspond-
ing to the polytope RN to find the direction of
steepest descent that has common points with
RN . Once again, W is updated according to (6)
with n determined as in cases 1 or 2 above.

The algorithm will terminate when P = 0, which
can happen in the following situations:

1. if ESE = 0, in which case the classification prob-
lem was linearly separable and our algorithm has
reached a solution.

2. if the minimum of the cost function E has been
reached in a certain polytope following the “Mov-
ing Near” procedure. In this case, no further
move is possible, since the algorithm has no way
of crossing over a BW pattern, thus further low-
ering ESE .

Importantly, it can be proved that for linearly sepa-
rable problems the process described above will always
separate the patterns in a finite number of epochs.
Moreover, for non-linearly separable problems, the al-
gorithm will always terminate in a finite number of
steps as in case 2 above, having done its best to min-
imize the number of BW. Thus, termination of the
procedure when there are still BW patterns left means
that the given classes of patterns were non-linearly sep-
arable, so that the procedure can be used as a test of
linear separability. For brevity reasons, the proofs of
these important statements are omitted and will be
given elsewhere.

We note in passing that Bobrowski and Niemiro [6]
have proposed a similar algorithm that follows search
directions related to polytope edges in order to mini-
mize E. This was a successful algorithm that, in our
opinion, has attracted less attention than it deserved
in the literature.

IV. Steepest descent direction

A. Mathematical Formulation of the problem

Let us assume that W ∈ RN+1 resides at the inter-
section of K ≤ N hyperplanes with normal vectors
dp . Without loss of generality, we may reorder the

patterns, so that the K active patterns are numbered
from 1 to K: p ∈ Nk = {1 . . .K}, K ≤ N + 1. We
wish to find a vector W + P that belongs to the fea-
sible region (W T dp ≥ 0) and lies in the direction of
steepest descent for our original cost function E given
by (3).

To find this direction, it is easy to see that we must
solve the following quadratic programming problem:

Minimize F =
1

2
||∆W − P ||2 (7)

subject to P T dp ≥ 0 ∀p = 1 . . .K

Suppose, for the sake of the argument, that we have
been able to determine the list of active constraints
(P T di = 0, i ∈ M ⊆ Nk) for the solution of the pro-
gram defined by (7). Let L ≤ K be the number of
active constraints. Among all vectors belonging to the
space S defined by P T di = 0, i ∈ M, the vector
whose distance from ∆W is minimum is the projec-
tion of ∆W upon S and can be readily obtained us-
ing the well known Gramm-Smidt procedure. This is
useful information, and will play an important role in
forming an efficient algorithm for solving (7). Before
proceeding to describe the algorithm, it is necessary to
simplify (7) by converting it to an equivalent problem
with mutually orthogonal constraint hyperplanes.

B. Transformation to a problem with

orthogonal constraints

The K vectors dp define a subspace in <K where the
solution should be searched for. Let us decompose
the vectors ∆W and P into components respectively
parallel and perpendicular to <K .

∆W = ∆W⊥ + ∆W ‖ and P = ∆W⊥ + Q (8)

The influence of the constraints is limited to the
Q part of the final solution P . Using the relations
∆W T

⊥∆W ‖ = 0 and ∆W T
⊥Q = 0, we can rewrite

(7) as F = 1

2
||∆W ‖ − Q||2. Note that Q and ∆W ‖

are vectors with N +1 components but are lying in the
<K subspace. It is therefore possible to write them as
linear combinations of K linear independent vectors of
this subspace.

We shall form the basis of the RK subspace by the
vertices vp by which the hypercorner is formed. Each
of the vp vectors is the projection of dp on the intersec-
tion of all other normal vectors and is formed follow-

ing the Gramm-Smidt technique, so that
vi

Tdj

vi
T vi

= δij .
Now we can write Q and ∆W ‖ as:

Q =

K
∑

i=1

qi

vi

||vi||2
, qj = P T dj ≥ 0 (9)

∆W ‖ =

K
∑

i=1

ai

vi

||vi||2
, aj = ∆W T dj (10)

In the same spirit, any N + 1 dimensional vector X

can be transformed to yield a K-dimensional vector x

and vice versa, using the relations:

X = Vx ⇒ x = DX (11)

where V is a (N +1)×K matrix with the vector vi
||vi||2

in the ith column and D is a K × (N +1) matrix with
the vector di in the ith row.

We can now proceed to rewrite F and the con-
straints using the new vectors:

F =
1

2
(a − q)T R(a − q), q ≥ 0 (12)

where R is symmetric and equal to VT V.
It follows that the original problem has been trans-

formed from minimizing a hyperspherical quadratic
form (7) subject to non orthogonal constraints to min-
imizing a hyperelliptical quadratic form subject to or-
thogonal constraints.

C. Double Search Technique

In order to solve (7), we shall reside on an iterative
algorithm based on minimization of F along successive
search directions.

Given an initial position vector q in the feasible re-
gion and a search direction ∆q, we can find the posi-
tion where F attains its minimum value in the feasible
space along this search direction. The unconstrained
minimum resides at q′ = q + ηg∆q where ηg is found
by linear minimization across the search direction:

ηg = −
∇Fq

T ∆q

||∆Q||2
, where ∆Q = V ∆q (13)

and the gradient ∇Fq of F is given by:

∇Fq = −R(a− q) = V T (P −∆W) (14)

Note that ∇Fq can be calculated in terms of vectors
in the original N + 1 dimensional space.

The position vector characterized by ηg may of
course lie outside the feasible region. In this case, we
have to take into account the constraints qi ≥ 0, i ∈
Nk. The position of lowest F along our search direc-
tion, that lies on the boundary of the feasible region,
is given by q′ = q + ηc∆q, where ηc is the minimum
among all positive ηi = −qi/∆qi:

ηc = min{ηi = −
qi

∆qi

: ηi > 0 and i ∈ Nk} (15)

In all cases, the new point q + η∆q that yields the
lowest value of F is characterized by η = min{ηc, ηg}.

Of course, if our initial position q satisfies qi = 0 for
some i ∈ Nk, a given search direction ∆qA may not
be feasible. However, the orthogonality of the con-
straints allows us to find a new feasible search direc-
tion by starting from ∆qA and removing (setting to

zero) those components that lead outside the feasible
region. Formally, the appropriate search direction is
given by a vector ∆q, with components:

∆qi =

{

0, if qi = 0 and ∆qA
i < 0

∆qA
i , otherwise

(16)

The proposed algorithm uses two search directions
exploiting advantages from both. The first is the gra-

dient search direction

∆qA = −∇Fq (17)

which always leads to lower values of the cost function.
However, always following this direction may lead to
zig-zag paths and slow down convergence. The second
direction, which we shall call projection search direc-

tion, points to the projection ∆W GS of ∆W on the
zero space of the currently active constraints:

∆qA = D(∆W GS − P) (18)

If the active constraints of the solution of (7) had al-
ready been found, this would locate the solution in
just one step. However, following only this direction
we have no guarantee that the algorithm will not ter-
minate before the minimum has been found.

To guarantee convergence and find the solution in
a small number of steps, both gradient and projection
information must be combined in the same algorithm.
In each internal epoch the proposed Double Search
Algorithm tests both gradient and projection search
directions, and selects the one leading to the lower final
value of F . The algorithm avoids zig-zag paths, and
our experience shows that it locates the exact solution
in a few iterations.

There follows a full description of the algorithm:
Initialization: Set Q =0 (Equivalently q =0). Ini-
tialize the list of currently active constraints to contain
all i ∈ Nk.
Epoch update: At each epoch of the algorithm
follow the following steps:

1. Perform the following operations using the gradi-
ent search direction ∆qA given by (17):

(a) Calculate the feasible direction ∆q using
(16).

(b) Calculate ηg using (13) and ηc using (15).
Find η = min(ηc, ηg).

(c) Calculate the cost function change ∆F be-
tween points q + η∆q and q.

2. Repeat steps a-c above for the projection search
direction given by (18).

3. Compare the two resulting ∆F for the gradient
and projection search directions. Find the more
negative ∆F of the two and note the correspond-
ing value of η.

4. Using the search direction ∆q that led to the most
negative ∆F and the corresponding value of η,
update q as q′ = q + η∆q.

5. Update the list of currently active constraints.

Termination: The algorithm terminates when no
further move is possible. That means ∆qi = 0 or
∆qi < 0 and qi = 0.

V. Simulations

The following pattern classification problems are stud-
ied:

1. Linearly separable problem with uniform distri-

bution of points: Points are randomly distributed
in a N dimensional cube and a randomly chosen
hyperplane forms the decision region between two
classes. Three problems with different values of P
and N are considered.

2. Elliptical discrimination problem: It is re-
quired to discriminate between points lying in-
side and outside a hyperellipse embedded in M -
dimensional space, whose points are characterized
by

∑M

i=1
(xi − ci)

2/a2
i = 1. The problem is made

linearly separable by forming input vectors con-
sisting of xi and yi = x2

i (i = 1, 2, . . . , M). Again,
three such problems with different values of P and
N are considered.

3. Sonar target recognition problem: This is the well
known problem of distinguishing between the re-
flected sonar signals from two kinds of subma-
rine objects: rocks and metal cylinders. We use
the original data set studied by Gorman and Se-
jnowski [7], that consists of 208 input vectors,
each with 60 components.

Three algorithms are used to solve all benchmark
tasks, namely the algorithm proposed in this paper
(section III.), Bobrowski and Niemiro’s (BN) [6] sug-
gestion of following polytope edges for lowering the
perceptron cost function at each epoch, and, finally,
Rosenblatt’s perceptron rule.

Results regarding speed of convergence are pre-
sented in Tables 1 and 2. The performance of each
algorithm is presented in terms of average number of
epochs and average CPU time over ten trials starting
from different randomly selected initial weights. The
algorithm proposed in this paper and BN algorithm
are executed until normal termination. The termina-
tion criterion for perceptron was one hour of execution.
All simulations were performed using a locally devel-
oped neural network simulator (BillNet) on a Pentium
computer at 133 MHz.

Compared to the perceptron rule and the BN
method, our algorithm exhibits an advantage in terms
of learning speed, which is less pronounced in the small

0
20
40
60
80

100
120

0 50 100 150 200 250

B
W

Epochs

(a)

0
5

10
15
20
25
30
35
40
45
50

0 50 100 150 200 250

A
ct

iv
e

C
on

st
ra

in
s

Epochs

(b)

Figure 1: (a) MSE versus number of epochs for our
method (solid curve) and the perceptron rule (dotted
curve). (b) Number of active constraints versus num-
ber of epochs for our algorithm.

Proposed BN Perceptron

Uniform

P=100 N=2 0.019 0.022 0.8192
P=1000 N=4 0.334 0.539 2.127
P=10000 N=20 43.38 133.70 3600 (∗)

Ellipse

P=100 N=4 0.054 0.056 0.067
P=10000 N=20 99.36 361.23 2750.13
P=20000 N=40 1047.03 9066.63 3600 (∗)

Sonar 235.21 777.14 1574.48

Table 1: CPU time in seconds. Asterisks denote that
the corresponding algorithm failed to solve the prob-
lem in the allocated CPU time.

scale benchmarks, but becomes definitive in medium
and large scale problems. Note that the perceptron
rule was not able to solve the large scale ”uniform” and
”ellipse” problems in the allocated time of one hour.
For the sonar data problem, our algorithm has man-
aged to separate the data completely in 215 epochs.
Thus this problem is linearly separable, a fact that
eluded Gorman and Sejnowski, who report only 85%
success rate using a single layered perceptron. This is
not surprising, since the perceptron rule needs more
than 100,000 epochs to solve the problem.

Figure 1 shows a typical learning session for our al-
gorithm. In figure 1a, the squared error ESE is plot-
ted against the number of epochs for the sonar data
problem. The corresponding curve for the perceptron
rule is also plotted for comparison. In figure 1b, the
number of active patterns K is plotted against the
number of epochs for our algorithm. Note that at
the beginning of learning ESE drops at a relatively
slow rate (in comparison with the perceptron rule).

Proposed BN Perceptron

Uniform

P=100 N=2 8.7 9.6 925.1
P=1000 N=4 20.6 33.2 246.7
P=10000 N=20 83.5 216.5 13179 (∗)

Ellipse

P=100 N=4 18.2 22.5 57.8
P=10000 N=20 206.6 553.21 12504.6
P=20000 N=40 496.7 1998.1 4683.3 (∗)

Sonar 215.3 182.3 145639

Table 2: Number of epochs needed to solve the classi-
fication tasks of Table 1.

As learning progresses, building up of the active pat-
terns list helps locate more efficient search directions,
and convergence is achieved in a few epochs, while the
perceptron rule is still far from the solution and its
learning curve is almost flat. The advantage in terms
of CPU time compared to the BN method (as shown
in Table 2) mainly comes from the fact that the BN
method follows only edges after the first N + 1 epochs
and therefore the number of active constraints soon
saturates at the value N + 1. In our case, the number
of active constraints remains lower than N +1, leading
to lower computational complexity.

VI. Conclusions

In this paper, an algorithm for fast training of the sin-
gle layered feedforward network was proposed. Our
algorithm is based on constrained optimization meth-
ods that utilize the gradient of the perceptron cost
function and the position of pattern hyperplanes in
weight space, so that the number of misclassified pat-
terns never increases during training. Key features
of the algorithm are the absence of free parameters
and a natural termination criterion. Simulation re-
sults in pattern classification problems demonstrate
the advantages of our method over other perceptron
learning rules. We consider our method as a basis for
future development of layer-by-layer training methods
for multilayered feedforward networks with hard lim-
iter activation functions.

References

[1] S. D. Hunt and J. R. Deller, “Selective training
of feedforward artificial neural networks using ma-
trix perturbation theory,” Neural Networks, vol. 8,
pp. 931-944, 1995.

[2] F. Rosenblatt, Principles of Neurodynamics. New
York: Spartan, 1962.

[3] D. E. Rumelhart, J. E. Hinton and R. J. Williams,
“Learning internal representations by error prop-
agation,” in Parallel Distributed Processing: Ex-

plorations in the Microstructures of Cognition,

D. E. Rumelhart and J. L. McLelland, Eds. Cam-
bridge, MA: MIT Press, ch. 8, 1986, pp. 318-362.

[4] B. A. Telfer and D. P. Casasent, “Minimum-cost
associative processor for piecewise-hyperspherical
classification,” Neural Networks, vol. 6, pp. 1117-
1130, 1993.

[5] D. J. Volper and S. E. Hampson, “Quadratic func-
tion nodes: Use, structure and training,” Neural

Networks, vol. 3, pp. 93-107, 1990.

[6] L. Bobrowski and W. Niemiro, “A method of syn-
thesis of linear discriminant function in the case
of nonseparability,” Pattern Recognition, vol. 17,
pp. 205-210, 1984.

[7] R. P. Gorman and T. J. Sejnowski, “Analysis of
hidden units in a layered network trained to classify
sonar targets,” Neural Networks, vol. 1, pp. 75-89,
1988.

