
Efficient Perceptron Learning Using
Constrained Steepest Descent

Stavros J. Perantonis and Vassilis Virvilis

Institute of Informatics and Telecommunications, National Research Center
“Demokritos”, 153 10 Agia Paraskevi, Athens, Greece

Requests for reprints should be sent to Dr. Stavros J. Perantonis, In-
stitute of Informatics and Telecommunications, National Research Center
“Demokritos”, 153 10 Agia Paraskevi, Athens, Greece; E-mail: sper@iit.demokritos.gr

Running Title: Efficient Perceptron Learning

1

Efficient Perceptron Learning Using
Constrained Steepest Descent

Abstract — An algorithm is proposed for training the single-layered per-

ceptron. The algorithm follows successive steepest descent directions with

respect to the perceptron cost function, taking care not to increase the num-

ber of misclassified patterns. The problem of finding these directions is stated

as a quadratic programming task, to which a fast and effective solution is

proposed. The resulting algorithm has no free parameters and therefore no

heuristics are involved in its application. It is proved that the algorithm al-

ways converges in a finite number of steps. For linearly separable problems,

it always finds a hyperplane that completely separates patterns belonging

to different categories. Termination of the algorithm without separating all

given patterns means that the presented set of patterns is indeed linearly

inseparable. Thus the algorithm provides a natural criterion for linear sepa-

rability. Compared to other state of the art algorithms, the proposed method

exhibits substantially improved speed, as demonstrated in a number of de-

manding benchmark classification tasks.

Keywords — Perceptron, learning algorithm, quadratic programming,
feasible directions.

2

1 INTRODUCTION

The resurgence of interest in neural network research in the past decade has
led to the development of numerous types of architectures and learning algo-
rithms. In particular, feedforward networks have emerged as efficient tools
for supervised classification and function approximation tasks. Although re-
cent research has mainly focused on multilayered networks, the single layer
perceptron still deserves attention for at least two reasons: Firstly, the design
of fast perceptron learning algorithms is important, because such algorithms
can form the basis of layer-by-layer learning schemes for multilayer feedfor-
ward networks that have received much attention in recent years (Ergenziger
& Thompsen, 1995; Hunt & Deller, 1995; Wittner & Denker, 1997). Sec-
ondly, many non-linearly separable problems can be cast into linearly sepa-
rable form by constructing high order polynomial terms of the data. This
type of linearization is the main step for constructing high order feed-forward
networks that are widely studied and used in many applications.

The most popular stochastic or gradient based algorithms for training
the single layered perceptron, e.g. the perceptron learning rule (Rosenblatt,
1962) and the delta rule (Widrow & Hoff, 1988; Rumelhart et al., 1986)
can run into serious problems if their parameters (learning rate and momen-
tum) are not chosen correctly. Proper parameter selection usually relies on
heuristics. Even if parameters are chosen optimally, in many problems with
a highly non-uniform distribution of patterns in the input space learning can
be exceptionally slow. This difficulty arises especially in solving non-linear
problems which are linearized using high order terms (Telfer & Casasent,
1993). The linearization step not only results in an increase in the input
space dimensionality, but also creates a non-homogeneous input space, that
many algorithms find difficult to negotiate. Indeed, Volper and Hamson have
highlighted this point, by showing that the perceptron rule may need very
high order polynomial times even in apparently simple problems with just
second-order terms (Volper & Hampson, 1990). The same difficulty arises in
the case of layer-by-layer learning in feedforward networks, because in the
course of learning many hidden units outputs are forced in the saturation re-
gion, so that the space of hidden layer outputs (output layer inputs) quickly
becomes highly inhomogeneous. An extra difficulty with layer by layer learn-
ing in feedforward network comes from the fact that in intermediate stages of
learning the internal pattern representations may not be linearly separable.
It is then very important to have a natural termination criterion for the out-
put layer learning algorithm so that inseparability can be detected efficiently
(Grossman et al., 1989; Takahashi et al., 1993). This cannot be done using
the perceptron rule or the delta rule.

3

In this paper we propose a novel learning algorithm for a single layer
perceptron, which is fast and requires no adjustment of parameters. Learn-
ing proceeds by iteratively lowering the value of the perceptron cost function
(Barnard & Casasent, 1989; Barnard, 1991) under the constraint that already
correctly classified patterns are not to be affected. The perceptron cost func-
tion derivative serves as a guide for finding weight vectors with lower cost.
The weight vector is found by a line search in the input space, which is ter-
minated when further advancement leads to misclassification of a previously
correctly classified pattern. The proper direction for the line search is that of
the steepest descent with respect to the perceptron cost function, with addi-
tional constraints ensuring that the weight update vector does not intersect
hyperplanes corresponding to already correctly classified patterns. The prob-
lem of finding the appropriate search direction can be stated as a quadratic
programming task, to which a fast and effective solution is proposed.

It is proved in the paper that the resulting algorithm always converges
in a finite number of steps. For linearly separable problems, it always finds
a hyperplane that completely separates patterns belonging to different cate-
gories. In the case of non-linearly separable problems, the algorithm detects
the inseparability in a finite number of steps and terminates, having usually
found a good separation hyperplane. Thus, it provides a natural criterion for
linear separability or inseparability. Experimental results show that the pro-
posed algorithm finds the solution to large scale linearly separable problems
much faster than the perceptron rule. Its fast convergence is not hindered
by inhomogeneities in the distribution of training patterns. Moreover, it ex-
hibits a decisive learning speed advantage over other algorithms involving no
adjustable parameters.

The paper is organized as follows: In section 2, basic terminology is estab-
lished and background information is introduced concerning characteristics
of the perceptron weight space and cost functions. The design and control
flow of or algorithm algorithm is discussed in section 3. In section 4 a study
of the convergence properties of the algorithm is presented. In section 5, the
problem of finding optimal search directions for the implementation of the
algorithm is discussed in detail. In section 6 simulation results are presented
for various classification problems. Finally, conclusions are drawn in section
7.

4

2 TERMINOLOGY AND BACKGROUND

2.1 Weight Space

Let us assume that we wish to distinguish between two linearly separable
classes of P patterns xp, each of dimension N , by employing a single layer
perceptron with a hard limiter activation function. We want to find a vector
W such that

θ(W T Xp) = Tp, p = 1, . . . , P (1)

where Tp is the target for pattern p, equal to either zero or one, and θ is the
step function. The vector Xp consists of the input pattern xp of dimension
N plus an extra component equal to one and W consists of the weight vector
w augmented by the threshold w0.

In the N + 1 dimensional weight space, the vector W is represented by
a point. Each of the patterns Xp is represented by a hyperplane which
passes through the origin and divides the weight space into 2 subspaces. Hy-
perplanes corresponding to different patterns dp segment RN+1 into several
convex polytopes, whose common boundaries are hyperplane segments. For
a given W each pattern hyperplane is classified as Bit Right (BR) if the
quantity Op = θ(W T Xp) is equal to Tp, and Bit Wrong (BW) if Op is not
equal to Tp.

A useful observation is that the vector dp = (2Tp − 1)Xp always points
towards the side of the pattern hyperplane that corresponds to the correct
classification of pattern Xp. Thus, patterns classified as BR are characterized
by a positive value of the the quantity Zp = W T dp. To see this, suppose
first that W T Xp > 0. In this case Tp must be equal to 1 because Xp is
classified as BR. Therefore 2Tp − 1 = 1 > 0 and Zp is positive. On the other
hand, if W T Xp < 0, Tp must be equal to zero. Therefore 2Tp − 1 < 0 and
Zp is positive. Similarly, we see that patterns classified as BW by W are
characterized by a negative value of Zp. In the sequel, we shall characterize
patterns by the vectors dp instead of the original vectors Xp. In terms of
these vectors, the original perceptron problem of eqn (1) becomes:

θ(W T dp) = 1, p = 1, . . . , P (2)

2.2 Degeneracies

For reasons that will become apparent in subsequent sections, we shall con-
sider non-degenerate cases, in which any N+1 equations of the form W T dp =
0 have only one solution, namely the origin W = 0. In other words, the ma-
trix with elements dip has rank N + 1. If degeneracies are present in the

5

original training set, they can be lifted e.g. by adding random numbers of
small magnitude to the training vector components (Strang, 1988). Note
that even under these conditions, the origin is still common to all pattern
hyperplanes. Again, to lift this last degeneracy, various methods can be
followed. A popular technique (Bobrowski & Niemiro, 1984) is to solve the
problem always keeping w0 equal to a constant. In the space of the remaining
N variables, any N + 1 pattern hyperplanes have no common points. This
method has the disadvantage that the two cases w0 > 0 and w0 < 0 need
to be considered separately in two independent learning passes. A second
technique that will be adopted here involves solving

θ(W T dp − εp) = 1, p = 1, 2, . . . P (3)

instead of eqn (2), where εp are positive random numbers. Any solution of
eqn (3) is obviously also a solution of eqn (2). Following this amendment,
our remarks about BR and BW patterns have to be modified accordingly:

• If pattern dp is classified as BR by W , then W T dp − εp > 0.

• If pattern dp is classified as BW by W , the W T dp − εp < 0.

2.3 Cost Functions

There are two cost functions related to our problem:

• The perceptron cost function is defined by

E =
P

∑

p=1

(Tp − Op)W
T Xp = −

∑

p=BW

W T dp (4)

where the second sum runs over all patterns that are classified as BW
by W . According to the last remark in section 2.1, this cost function
is positive. It is also piecewise linear in RN+1 and has constant gradient
∆W in each polytope given by

−∆W =
P

∑

p=1

(Tp − Op)Xp = −
∑

p=BW

dp (5)

Performing gradient descent using this cost function gives the offline
(batch) version of Rosenblatt’s perceptron learning rule.

6

• The squared error cost function

ESE =
P

∑

p=1

(

θ(W T dp) − 1
)2

(6)

counts the number of BW for a certain W and obviously takes on a
constant value for each polytope.

3 TRAINING STRATEGY

We initialize the training procedure with the weight vector W in the interior
of a certain polytope. Our primary aim is to reach the minimum of cost
function ESE. Therefore, we devise a strategy that will gradually move W to
polytopes of lower ESE. Our strategy involves updating W along successive
search directions, each characterized by a vector P . To determine these
search directions, we shall use information related to the gradient ∆W of
the perceptron cost function E. The plausibility of this dual strategy (using
gradient information of one cost function in order to keep decreasing the
other) will be established in the next section, where its convergence properties
will be studied in detail.

For the first epoch, we choose the vector P = ∆W and we update W

according to:
W new = W + nP (7)

where n is the learning rate. This is reminiscent of the perceptron learning
rule, where n remains constant throughout learning. In our case, the rule of
calculation of n is constructed by the requirement to cross over as many BW
patterns as possible, without crossing over any BR. In this way, maximum
decrease of ESE can be achieved.

Noting that the classification decision for a pattern dp changes at the
point where W T

newdp − εp = 0, i.e. np = −(W T dp − εp)/(P T dp), we consider
the following cases:

1. Suppose that at least one pattern can be found along our search direc-
tion which is classified as BR by W . Let nR be the smallest (positive)
np corresponding to such a BR pattern.

(a) If BW patterns exist with smaller np than nR, let nW be the largest
among the np of these BW patterns. Maximum decrease in ESE

will be achieved if n is chosen so that nW < n < nR. In practice,
we always chose n = (nW +nR)/2. This procedure of moving over

7

all BW patterns without crossing any BR pattern will be called
“Fast Moving”. This type of movement is illustrated in Figure 1.

(b) On the other hand, if no BW patterns exist with smaller np that
nR, we cannot decrease ESE by following the gradient direction. In
this case, the first pattern encountered in the ∆W direction is a
BR pattern. The best we can do is keep ESE constant by moving
close to the BR pattern. This pattern is added to an internal
“list of active patterns” (i.e., patterns dp for which the equation
W T dp − εp = 0 holds) so that the next move will be parallel to
the hyperplane of the specified pattern. This procedure of moving
to zero distance from a BR pattern will be called “Moving Near”,
and is also illustrated in Figure 1.

At this point, note the usefulness of lifting degeneracies, as ex-
plained in section 2.2. If more that N + 1 pattern hyperplanes
were allowed to have common points, our search directions could
intersect two or more pattern hyperplanes with the same value of
n, rendering problematical the “Moving Near” weight update.

2. If no BR pattern can be found along our search direction, then:

(a) If BW patterns can be found, we only have to cross over all BW
patterns to solve the problem (last Fast Moving update). Thus n
must be chosen larger than all np.

(b) If neither BR nor BW patterns can be found, then P = 0 and the
algorithm terminates.

The first epoch of the algorithm has now been completed. Weight updat-
ing in subsequent epochs is performed as follows:

1. If in the previous epoch the weight vector was updated using the “Mov-
ing Near” process, the weight vector still resides in the same polytope
as before. Obviously, ESE is the same as in the previous epoch. In this
case, we update the weight vector using a new search direction, in the
hope that it will lead us to a BW pattern hyperplane, so that the “Fast
Moving” procedure can be used in the present epoch.

To select the search direction P , we use the perceptron cost function
E. We wish to update W so that the new vector W new remains in
the current polytope and E(W new) < E(W). In fact, if we wish E to
decrease locally at the fastest possible rate, we can choose the search
direction of steepest descent that has common points with the current

8

polytope (steepest feasible search direction). If there are currently K
active patterns, this search direction is the feasible search direction
(P T dp ≥ 0) which forms the smallest possible angle φ with the gradient
∆W of E. A method for finding this direction will be studied in detail
in section 5. At this point, it suffices to say that in general this search
direction will be parallel to some of the pattern hyperplanes, so that
after finding it, we have to update the list of active patterns. Once
the appropriate search direction, characterized by vector P has been
found, W is updated using eqn (7) with n determined as in cases 1 or
2 above.

2. On the other hand, if the previous epoch weight update was performed
using the “Fast Moving” procedure, the weight vector now resides in a
new polytope of lower ESE than in the previous epoch. We must now
use the new E, corresponding to the new polytope to find the steepest
feasible search direction. Once again, W is updated according to eqn
(7) with n determined as in cases 1 or 2 above.

Termination and convergence properties of the algorithm are discussed in
detail in the next section.

We note that our algorithm provides a natural way of performing steepest
descent in the perceptron weight space. In this sense it is related to the
algorithm proposed by Bobrowski and Niemiro (Bobrowski & Niemiro, 1984;
Bobrowski, 1991), whose algorithm is designed to chose steepest polytope
edges, rather than steepest feasible directions. We shall refer to this method
as the BN method.

9

4 PROOF OF CONVERGENCE

The purpose of this section is to prove the following statements:

1. The proposed algorithm always terminates in a finite number of steps
(epochs).

2. Upon termination, the proposed algorithm correctly classifies all the
patterns in linearly separable problems.

An immediate corollary of the above statements is the following: If, upon
termination, which always occurs in a finite number of steps, there are still
misclassified patterns, the pattern classification problem presented to the
network is not linearly separable. Thus, the proposed algorithm can detect
linear inseparability in a finite number of steps.

4.1 Finiteness

The following Lemma introduces an ordering of subsequent points reached
by the algorithm inside a polytope, in terms of the angles formed by the
subsequent search directions and ∆W . This ordering is then used to prove
the main theorem.

Lemma 1: Let A and B be points in a certain polytope, which are reached by
the algorithm in two subsequent epochs. If φA and φB are the angles formed
by the steepest feasible directions PA and PB at A and B respectively, then
φA < φB.

Proof: Let us assume, for the sake of the argument, that φB < φA (equality
of the angles is not an option, because they would correspond to the same
feasible direction at A). Consider the vector P where P = PA + PB and
let φC be the angle formed by P and ∆W . Since φB < φA, we have
cos φB > cos φA. The following consecutive relations hold:

cos φC =
P T∆W

|P | |∆W |
=

PA
T∆W + PB

T∆W

|PA + PB| |∆W |
=

|PA| cos φA + |PB| cos φB

|PA + PB|
>

(|PA| + |PB|) cos φA

|PA + PB|
> cos φA (8)

with the last relation following from the triangular inequality |PA|+ |PB| >
|PA + PB|. Thus, φC < φA. Since the polytope is convex and PA , PB

are feasible directions at consecutive points A and B, P is also feasible at

10

A. From eqn (8) it follows that P is feasible at A and steeper than PA

. This contradicts the original hypothesis, according to which PA is the
steepest feasible direction at A. The contradiction originated from the false
assumption that φB < φA, which means that the statement φB > φA is true.

Theorem 1: The algorithm will always terminate in a finite number of
epochs.

Proof: The number of successive polytopes negotiated by the algorithm is at
most equal to the initial number of wrong bits, which is obviously bounded
by the total number of patterns P . Therefore, to prove the theorem, it
suffices to show that a finite number of epochs is spent by the algorithm in
a certain polytope. The angle φ formed by the steepest feasible direction
at a certain point of a polytope and ∆W , is determined by the number of
active patterns at this point. Since there are at most P pattern hyperplanes
forming the boundary of the polytope, there is a finite number of active
constraint combinations and, consequently, a finite number of possible values
of φ. Moreover, according to Lemma 1, the sequence of successive φ is strictly
increasing, so that each of the possible values of φ can be attained by the
algorithm at most once. Thus the number of epochs spent in a polytope is
bounded by the finite number of possible values of φ.

4.2 Linearly Separable Problems

To prove that the algorithm will always find a solution to linearly separable
problems, we must ensure that it can always escape from polytopes cor-
responding to incorrect classification of some patterns. In particular, it is
important to show that it cannot terminate at points corresponding to min-
ima of E in polytopes with non-zero ESE. This is ensured by the important
Lemma 3, which states that for linearly separable problems the minimum of
the cost function E in a certain polytope R occurs at points belonging to at
least one BW pattern hyperplane. In turn, the idea of the proof in Lemma 3
is to show that for every point in the interior of R, there exists a point with
lower E, which lies on the boundary of R and belongs to a BW pattern, so
Lemma 3 is preceded by Lemma 2, which shows how to construct such a
point.

Lemma 2: Consider a set of patterns {dp} that are linearly separable, so
that the system of inequalities (3) has at least one solution W s. Moreover,
consider a weight vector W belonging to the interior of a polytope R char-
acterized by a positive number of wrong bits. Then, there exists a pattern

11

dB belonging to the boundary of R classified as BW by W and a vector W B

that satisfies

W T
BdB = εB and W B = W s + tB(W − W s) with 0 < tB < 1 (9)

Proof: Let us consider the straight line (t) passing through W and W s,
which is parametrized by

W t = W s + t(W − W s). (10)

Figure 2 illustrates the geometry involved in the simple two-dimensional case.
It is essentially required to show that the line segment with end points at W

and W s cannot be intersected by BR hyperplanes. It is only intersected by
BW pattern hyperplanes and the pattern dB mentioned in the Lemma is the
BW pattern which is intersected first, as we move from W to W s.

Indeed, given a pattern dp classified as BW by W , its point of inter-
section with line (t) is characterized by a weight vector W p satisfying:

W T
p dp = εp = W T

s dp + tp(W − W s)
T dp (11)

i.e.
tp(W s − W)T dp = W T

s dp − εp (12)

Since W s is a solution of eqn (3), all patterns dp are classified as BR by W s,
and therefore W T

s dp − εp > 0. Since dp is classified as BW by W , then
W T dp − εp < 0, so that

(W s − W)T dp > W T
s dp − εp > 0 (13)

Therefore we can express tp as

tp =
W T

s dp − εp

(W s − W)T dp

, (14)

and obviously it follows from relation (13) that 0 < tp < 1.
On the other hand, if dp is classified as BR by W , then W T dp− εp > 0

and it follows from eqn (14) that

tp

{

< 0, if (W s − W)T dp < 0
> 1, if (W s − W)T dp > 0

(15)

Let us now consider the pattern dB with the largest tp satisfying 0 <
tp < 1. According to our analysis, this pattern is classified as BW by W

12

and its intersection W B with the straight line (ξ) can be written in the
form required by relations (9). There remains to prove that W B lies on the
boundary of R. Since W T

BdB = εB, it suffices to prove that all other patterns
except dB are classified by W B in the same way they are classified by W .
Given a pattern dq 6= dB, we have

W T
Bdq = W T

s dq + tB(W − W s)
T dq (16)

If pattern dq is classified as BW, then 0 < tq < tB and (W − Ws)
T dq < 0,

so that:
W T

Bdq < W T
s dq + tq(W − W s)

T dq (17)

Substituting tq from eqn (14) we find that W T
Bdq < εq, so that dq is classified

as BW by W B.
Similarly, if dq is classified as BR by W , we must examine two cases,

according to relations (15). Thus, if (W s − W)T dq < 0, then tq < 0 < tB.
If, on the other hand, (W s − W)T dq > 0, then 0 < tB < 1 < tq. In both
cases, we can use eqn (16) to write:

W T
Bdq > W T

s dq + tq(W − W s)
T dq. (18)

Substituting from eqn (14) we find that W T
Bdq > εq. Thus, in both cases dq

is classified as BR by W B and the proof is completed.

Lemma 3: Consider a set of linearly separable patterns and a polytope R
corresponding to ESE 6= 0. Then, the minimum of E in R occurs at points
belonging to at least one BW pattern hyperplane.

Proof: Given a vector W belonging to the interior of R, we construct the
corresponding vector W B given by Lemma 2. From eqn (9), taking the inner
product with any of the vectors dp, we obtain:

−W T
Bdp = (tB − 1)(W T

s dp) + tB(−W T dp) (19)

Since W s is a solution of the linearly separable problem, all patterns are
classified as BR by W s and therefore W T

s dp > 0. Also, tB −1 < 0 according
to Lemma 2, so that:

−W T
Bdp < tB(−W T dp) (20)

Summing over patterns classified as BW by W and using eqn (4) we conclude
that:

E(W B) = tBE(W) < E(W) (21)

because 0 < tB < 1. From the last equation and from Lemma 2, it follows
that for every weight vector W in the interior of R there exists a vector

13

with a lower value of E that belongs to the boundary of R and satisfies
W T

Bdp = εp for at least one pattern dp classified as BW by vectors in R.
Obviously, the minimum of E in R is to be found among all vectors W B,
and the proof is completed.

Theorem: Upon termination, the proposed algorithm correctly classifies all
the patterns in linearly separable problems.

Proof: Let us consider a polytope corresponding to a positive number of
BW patterns. At points of the polytope not corresponding to the minimum
of E, there are always available feasible directions and the algorithm cannot
terminate, even if it cannot follow a “Fast Moving” trajectory. On the other
hand, let us consider a point corresponding to the minimum of E. The algo-
rithm cannot terminate at this point either. Indeed, according to Lemma 3,
at least one of the pattern hyperplanes that surround this point corresponds
to a BW pattern and the algorithm will follow a “Fast Moving” trajectory
passing through the point and continue in another polytope. It follows that
the algorithm can only terminate in the polytope where all patterns are cor-
rectly classified.

5 FINDING THE SEARCH DIRECTION

5.1 General Remarks

As illustrated in the previous section, our algorithm decomposes the original
classification problem into a series of successive subproblems, whereby the
steepest feasible search direction must be found. In this section we show
that the problem of finding the steepest feasible search direction can be for-
mulated as a quadratic programming problem. An interesting question is
whether we can compute these successive feasible directions (a task requir-
ing the successive application of a quadratic programming algorithm) with
complexity that outperforms related methods that can be used for training
the perceptron. An immediate adversary is the BN method, whereby steep-
est polytope edges, rather than steepest feasible directions, are used and
therefore no quadratic programming task needs to be solved. In this section,
we propose a method for solving the quadratic programming task. In sec-
tion 6 it is demonstrated that using the algorithm proposed in section 3 in
conjunction with this method, it is possible to solve classification problems
much faster than other well known perceptron training algorithms (including
the perceptron rule and the BN algorithm).

14

5.2 Mathematical Formulation of the Problem

Let us assume that W ∈ <N+1 resides at the intersection of K ≤ N + 1
hyperplanes with normal vectors dp . Without loss of generality, we may
reorder the patterns, so that the K active patterns are numbered from 1 to
K: p ∈ Nk = {1 . . .K}, K ≤ N + 1. We wish to find a direction P which is
feasible in the current polytope (P T dp ≥ 0) and forms the smallest possible
angle φ with the gradient ∆W of E. Note that in 3 dimensions, this problem
has a simple mechanical equivalent, namely the problem of finding the path
followed by a particle falling under the influence of gravity starting from the
intersection of K ≤ 3 planes.

To find the steepest feasible direction, it is easy to see that we must
solve the following quadratic programming problem:

Minimize F =
1

2
|∆W − P |2 (22)

subject to P T dp ≥ 0, p = 1 . . .K

Indeed, given any feasible direction, minimum Euclidean distance be-
tween a vector along this direction and ∆W is achieved if P is the projection
of ∆W . Therefore, solution of the program (22) should be sought among
projections of ∆W . It follows that P T∆W = |P |2. Using this relation, and

taking into account that cos φ = ∆W
T

P
|∆W | |P |

we obtain F = 1

2
|∆W |2 sin2 φ,

so that minimization of F also means minimization of φ.
The program (22) is a special form of the generic quadratic programming

problem, for which various solutions have been proposed in the past (Pang,
1983; Rao, 1984; Bazaraa et al., 1993 and references cited therein). Note
that in program (22) the number of constraints is always less or equal to the
dimensionality N + 1 of the input plus bias space and the objective function
F is a hyperspherical quadratic form (there are no terms involving products
of the form PiPj with i 6= j). For this type of problem, the new approach
proposed in this paper is a feasible directions method based on preliminary
(a priori) knowledge about the solution of the problem. Suppose, for the sake
of the argument, that we have been able to determine the active constraints
(P T di = 0, i ∈ M ⊆ Nk) for the solution of the program (22). Let L ≤ K
be the number of active constraints. Among all vectors belonging to the
space S defined by P T di = 0, i ∈ M, the vector whose distance from ∆W

is minimum is the projection of ∆W upon S. Reordering the patterns, so
that the L active constraints are numbered from 1 to L, the projection can
be readily obtained using the well known Gramm-Smidt procedure (see, e.g.,

15

Strang, 1988):

P = ∆W −
L

∑

i=1

∆W T ui

|ui|2
ui with ui = di −

i−1
∑

j=1

di
T uj

|uj|2
uj (23)

The final solution can be found by an exhaustive search among the projec-
tions of ∆W on the spaces S obtained for all possible subsets of Nk. From
these projections, non-feasible ones are eliminated. From the rest, the pro-
jection that yields the minimum value of F is the final solution. However,
this procedure takes exponential time with K and is unacceptable. Still, the
fact that P is a projection is useful information, and will play an important
role in forming an efficient algorithm for solving program (22).

5.3 Transformation to Orthogonal Constraints

To facilitate solution of the program (22), we firstly transform it to an equiv-
alent problem with mutually orthogonal constraint hyperplanes. The reason
for this transformation is that given an initial non-feasible search direction,
we can easily form a feasible search direction by simply eliminating non-
feasible components.

The K vectors dp define a subspace in <K where the solution should
be searched for. Let us decompose the vectors ∆W and P into components
respectively parallel and perpendicular to <K.

∆W = ∆W⊥ + ∆W ‖ and P = ∆W⊥ + Q (24)

The influence of the constraints is limited to the Q part of the final
solution P . Using the relations ∆W T

⊥∆W ‖ = 0 and ∆W T
⊥Q = 0, we

can rewrite the first line of eqn (22) as F = 1

2
|∆W ‖ − Q|2. Note that

Q and ∆W ‖ are vectors with N + 1 components but are lying in the <K

subspace. It is therefore possible to write them as linear combinations of K
linear independent vectors of this subspace.

In the <K subspace, the intersection of any K − 1 pattern hyperplanes
is a straight line. In all, there are K such straight lines. It is convenient to
use the K direction vectors vp of these lines as the (generally orthogonal)
basis for the <K subspace. Each of the vp vectors is the projection of dp

on the intersection of all other normal vectors and is formed following the

Gramm-Smidt technique, so that
vi

T dj

vi
Tvi

= δij. Now we can write Q and

∆W ‖ as:

Q =
K

∑

i=1

qi

vi

|vi|2
, qj = P T dj ≥ 0 (25)

16

∆W ‖ =
K

∑

i=1

ai

vi

|vi|2
, aj = ∆W T dj (26)

In the same spirit, any N + 1 dimensional vector X belonging to the
<K subspace can be transformed to yield a K-dimensional vector x and vice
versa, using the relations:

X = Vx ⇒ x = DX (27)

where V is a (N + 1) × K matrix with the vector vi
|vi|

2 in the i-th column

and D is a K × (N + 1) matrix with the vector di in the i-th row.
We can now proceed to rewrite F and the constraints using the new

vectors:

F =
1

2
(a − q)TR(a − q), q ≥ 0 (28)

where R is symmetric and equal to VTV.
It follows that the original problem has been transformed from mini-

mizing a hyperspherical quadratic form (22) subject to non orthogonal con-
straints to minimizing a hyperelliptical quadratic form subject to orthogonal
constraints.

5.4 Double Search Technique

In order to solve program (22), we shall employ an iterative algorithm based
on minimization of F along successive search directions. Given an initial
position vector q in the feasible region and a feasible search direction ∆q,
we can find the position where F attains its minimum value in the feasible
region along this search direction. The unconstrained minimum resides at
q′ = q + ηg∆q where ηg is found by linear minimization across the search
direction:

ηg = −
∇Fq

T∆q

|∆Q|2
, where ∆Q = V ∆q (29)

and the gradient ∇Fq of F is given by:

∇Fq = −R(a − q) = V T (P − ∆W) (30)

Note that ∇Fq can be calculated in terms of vectors in the original N + 1
dimensional space.

The position vector characterized by ηg may of course lie outside the
feasible region. In this case, we have to take into account the constraints
qi ≥ 0, i ∈ Nk. The position of lowest F along our search direction, that lies

17

on the boundary of the feasible region, is given by q′ = q + ηc∆q, where ηc

is the minimum among all positive ηi = −qi/∆qi:

ηc = min{ηi = −
qi

∆qi

: ηi > 0 and i ∈ Nk} (31)

In all cases, the new point q + η∆q that yields the lowest value of F is
characterized by η = min{ηc, ηg}.

Of course, if our initial position q satisfies qi = 0 for some i ∈ Nk, a given
search direction ∆qA may not be feasible. However, the orthogonality of the
constraints allows us to find a new feasible search direction by starting from
∆qA and removing (setting to zero) non-feasible components. Formally, the
appropriate search direction is given by a vector ∆q, with components:

∆qi =

{

0, if qi = 0 and ∆qA
i < 0

∆qA
i , otherwise

(32)

The proposed algorithm uses two search directions exploiting advantages
from both. The first is the gradient search direction

∆qA = −∇Fq (33)

which always leads to lower values of the cost function. However, it is well
known that always following this direction may lead to zig-zag paths and
slow down convergence. The second direction, which we shall call projection

search direction, points to the projection ∆W GS of ∆W on the zero space
of the currently active constraints:

∆qA = D(∆W GS − P) (34)

If the active constraints of the solution of program (22) had already been
found, this would locate the solution in just one step. However, if only this
direction is followed, the algorithm may terminate before the minimum has
been found.

To find the solution in a small number of steps, both gradient and
projection information must be combined in the same iterative algorithm.
In each iteration the proposed Double Search Algorithm tests both gradient
and projection search directions, and selects the one leading to the lower final
value of F . Iterations of the Double Search algorithm will be called “internal
epochs”, to distinguish them from the epochs of the main algorithm discussed
in section 5. The algorithm avoids zig-zag paths, and our experience shows
that it locates the exact solution in a few iterations as demonstrated in the
experimental section.

18

There follows a full description of the algorithm:

Initialization: Set Q = 0 (Equivalently q = 0). Initialize the list of
currently active constraints to contain all i ∈ Nk.
Internal epoch update: At each epoch of the algorithm follow the following
steps:

1. Perform the following operations using the gradient search direction
∆qA given by eqn (33):

(a) Calculate the feasible direction ∆q using eqn (32).

(b) Calculate ηg using eqn (29) and ηc using eqn (31). Find η =
min(ηc, ηg).

(c) Calculate the cost function change ∆F between points q + η∆q

and q.

2. Repeat steps a-c above for the projection search direction given by
eqn (34).

3. Compare the two resulting ∆F for the gradient and projection search
directions. Find the more negative ∆F of the two and note the corre-
sponding value of η.

4. Using the search direction ∆q that led to the most negative ∆F and the
corresponding value of η, update q as q′ = q + η∆q.

5. Update the list of currently active constraints.

Termination: The algorithm terminates when no further move is possible,
i.e. when ∆qi = 0 for all i.

In Figure 3 we show the steps followed by the algorithm in a simple two-
dimensional problem, illustrating how zig-zag paths are avoided and rapid
convergence is achieved.

In short, our algorithm achieves a decrease in error at each iteration
and avoids zig-zagging by employing the projection search direction when
needed. We have not been able to provide a formal proof of convergence in
a finite number of steps. However, in our simulations, the exact minimum,
that satisfies the Kuhn-Tucker conditions, has always been found in a finite
number of steps in more that 9000 quadratic programming problems whose
solution was required in the various benchmarks. Thus, the existence of a
rigorous proof is not ruled out and is left for future work.

19

6 SIMULATIONS

6.1 Classification Benchmarks

The following classification problems are studied:

1. Linearly separable problem with random distribution of points: Points
are randomly distributed in a N dimensional cube and a randomly
chosen hyperplane forms the decision region between two classes. Three
problems with different values of P and N are considered.

2. Elliptical discrimination problem: In this problem, it is required to
discriminate between points lying inside and outside a hyperellipse em-
bedded in M -dimensional space, whose points are characterized by the
equation

∑M
i=1(xi − ci)

2/a2
i = 1. Obviously, the problem can be made

linearly separable, if second order terms in xi are used. Thus input
vectors of dimensionality N = 2M are formed by xi and yi = x2

i

(i = 1, 2, . . . , M). This task is closely related to Casasent type net-
works (Block, 1988; Telfer & Casasent, 1993). The special case of a
hypersphere has been studied by Volper and Hamson who have shown
that the perceptron rule requires O(P 3N8) weight adaptations (Volper
& Hampson, 1990). Again, three such problems with different values
of P and N are considered.

3. Sonar target recognition problem: This is the well known problem of
distinguishing between the reflected sonar signals from two kinds of
submarine objects: rocks and metal cylinders. We use the original
data set studied by Gorman and Sejnowski (1988a, 1988b), that con-
sists of 208 input vectors, each with 60 components. In this problem,
Gorman and Sejnowski reported only 85% success for the single layered
perceptron, rising to 100% only after introducing 12 hidden units into
their network architecture.

4. Ionospheric data: This is a task regarding the classification of radar
returns from the ionosphere (Sigillito et al., 1989). It consists of 350
input vectors, each with 34 components.

5. Invariant character recognition using 3rd order correlations: From a
number of character images digitized on a 25x25 pixel screen, 32 fea-
tures approximately invariant in scaling and rotation are extracted us-
ing third order correlations according to the method of Perantonis and
Lisboa (1992). Two benchmark tasks are included in the simulations.
The first task (OCR1) involves a small set consisting of 160 character

20

images to be classified in 32 character categories, for which a network
with 32 inputs and 32 outputs is used. The data set for this task is
linearly separable. The second task (OCR2) involves 240 character im-
ages corresponding to 12 letters of the alphabet. Each of the characters
is transformed using 3 different scaling and 5 different rotation factors,
so that a data set of 240x15=3240 patterns is formed. A network with
32 inputs and 12 outputs is used to discriminate between character
classes. The corresponding problem is not entirely linearly separable.
In similar experiments described in (Perantonis and Lisboa, 1992) it
was reported that single layered perceptrons had difficulties in solving
this kind of problem, and consequently a hidden layer of nodes was em-
ployed to improve classification accuracy. Here we examine the problem
again under the light of our analysis of the perceptron presented in this
paper.

6.2 Learning Speed

In order to assess the learning speed of the algorithm proposed in this paper,
we compare it with two other algorithms used to train the single layered
perceptron with hard limiter activation function. These are the BN method
of following polytope edges for lowering the perceptron cost function at each
epoch and Rosenblatt’s perceptron rule. If the requirement for a hard limiter
activation function is relaxed, improved methods based on gradient informa-
tion can also be used. One of the most successful of these methods is conju-
gate gradient (CG) (Johansson, Dowla, & Goodman, 1992). For the sake of
completeness, we have also used the Polak-Ribiére variant of this method to
solve our benchmarks.

Results regarding speed of convergence are presented in Tables 1 and 2.
In Table 1, the performance of each algorithm is shown in terms of the total
CPU time, with the corresponding number of epochs shown in parentheses.
The percentage of correctly classified patterns achieved upon termination of
the algorithm is shown in Table 2.

All results are averages over ten trials starting from different initial
weights selected from a random uniform distribution between -0.5 and 0.5.
The algorithm proposed in this paper and the BN algorithm are executed
until normal termination, whereby no further weight update is possible. The
termination criterion for the perceptron rule and the CG method is one hour
of execution. All simulations were performed using a locally developed neural
network simulator (billnet) on a Pentium computer at 133 MHz.

Compared to the perceptron rule, our method exhibits a definitive ad-
vantage in terms of learning speed (see Table 1). The advantage is already

21

apparent in the small scale benchmarks, but becomes more pronounced in
medium and large scale problems. Figure 4 shows a typical learning session
for our algorithm for the sonar data problem. In Figure 4a, the number
of wrong bits is plotted against the number of epochs. The corresponding
curve for the perceptron rule is also plotted for comparison. In Figure 4b,
the number of active patterns K is plotted against the number of epochs for
our algorithm. Note that at the beginning of learning the number of wrong
bits drops at a relatively slow rate (in comparison with the perceptron rule).
As learning progresses, building up of the active patterns list helps locate
more efficient search directions, and convergence is achieved in a few epochs,
while the perceptron rule is still far from the solution and its learning curve
is almost flat.

Moreover, note that our algorithm has correctly classified all patterns in
the linearly separable problems, while the perceptron rule has not been able
to separate the patterns in the larger scale synthetic benchmarks (uniform
linearly separable and elliptically separable problem) in the allocated time.
For the sonar data problem, our algorithm has completely separated the two
classes. Thus, the sonar data problem is linearly separable, a fact that, to
the best of our knowledge, has not been pointed out in the literature. 1 Note
that the perceptron rule required more than 100,000 epochs to separate the
patterns for the sonar data problem.

There is also a definitive learning speed advantage over the BN algo-
rithm, as is also evident in Table 1. This advantage originates from two
sources:

• Firstly, from the ability of our algorithm to find better search direc-
tions, since it is not limited by weight updates performed along poly-
tope edges, but rather finds the true feasible steepest descent direction.
In most problems, this allows our algorithm to reach termination in a
smaller number of epochs than the BN technique, as is evident in Ta-
ble 1.

• Secondly, the fact that the BN method follows only edges after the first
N +1 epochs means that the number of active patterns soon saturates
at the value N + 1. In our case, the number K of active patterns
remains lower than N + 1. A related issue is the behaviour, in terms
of complexity, of the double search algorithm employed to solve the
problem of determining the direction of steepest descent at each epoch.

1While the manuscript of this paper was under review, it came to the authors’ attention
that Torres Moreno & Gordon (1998) had come to the same conclusion using a different
classification method.

22

In our benchmarks, we observed that the average number of internal
epochs required by the double search algorithm was much lower than
the current number of active patterns K. This means that the average
time spent on determining iteratively the steepest descent direction
is less than the time needed to calculate the basis vectors vi, which
is of the order NK3. Therefore, the total time spent by the double
search algorithm is less than 2NK3. Thus our method has a definitive
advantage over the BN technique, which needs time of order N 4 to
determine the edges.

Figure 5 displays the maximum and average number of internal epochs
required by the double search algorithm, plotted against the number of ac-
tive patterns for the direction of steepest descent found by the algorithm.
Cumulative data from all benchmarks are shown, so that values of K up to
50 dimensions are included. Note the definitely sublinear trend of the plots.
The average number of epochs is always much smaller than K (even the max-
imum number of epochs is lower in most cases). An interesting conclusion
drawn from Figure 5 is that the ratio of the average CPU time required by
the quadratic search algorithm to the average time spent to calculate the
basis vectors vi is generally small (and decreases with increasing K). There-
fore, no significant improvement to the learning speed would be possible if
a more efficient algorithm were used to solve eqn (28) instead of the double
search method.

Finally, our method has a learning speed advantage over the CG method.
Lower average training times were recorded using our method for all prob-
lems, with the exception of the P=20000 N=40 ellipse benchmark whereby
a slightly larger training time was required by our method. Note, moreover,
that the CG algorithm was unable to separate the patterns corresponding to
the two real world linearly separable datasets (sonar data and OCR1 prob-
lem) in the allocated time limit of one hour of CPU time.

6.3 Detection of Linear Inseparability

The OCR2 and ionospheric data classification problems are not linearly sep-
arable, as confirmed by the fact that our algorithm reaches termination with
a non-zero number of wrong bits. Of course, our method and the BN method
exit upon termination having detected inseparability, while for the percep-
tron rule and the CG algorithm there is no natural termination criterion.
In both linearly inseparable problems, a better solution than that obtained
using the perceptron rule is reached in much less CPU time. Indeed, upon
termination, our algorithm has correctly classified 99.72% of the patterns in

23

the OCR2 problem, which compares favorably with 97.47% obtained by the
perceptron rule. We note that this level of performance is the same as that
obtained by a network with one hidden layer and 20 hidden nodes using the
back-propagation rule. Similarly, in the ionospheric data problem our algo-
rithm has correctly classified 96.35% of the data, which is to be compared
with 92.22% obtained by the perceptron rule. From Table 2 it is also evident
that the performance of our algorithm upon termination is also better than
the performance of the BN algorithm, possibly as a result of the better search
directions followed by our algorithm during learning. The solution found by
the CG algorithm is considerably worse than that of our method in the iono-
spheric data problem, and slightly better in the OCR2 problem. In short,
in linearly inseparable problems our method has the combined advantages
of a natural termination criterion for promptly detecting inseparability hav-
ing at the same time reached good solutions (in terms of wrong bits) upon
termination.

6.4 Generalization Ability

We have also conducted experiments concerning the generalization ability
of our method and the other two learning algorithms (perceptron rule and
BN method) that utilize the same perceptron architecture (step activation
function). To assess generalization ability, each dataset was partitioned into
a training set consisting of 80 % of the available input vectors and a test set
consisting of the remaining 20% of the data. Ten different partitions were
chosen at random and for each partition 10 different restarts of the algorithms
were performed with different initial weights selected from a random uniform
distribution between -0.5 and 0.5. The same termination criteria as before
were used. Generalization ability results are given in Table 3 as average
percentages of correctly classified bits in the test sets of the resulting 100
training sessions per benchmark and algorithm. In four of the benchmarks
our method exhibits better generalization ability than the other methods,
while in the remaining six its generalization ability is second best. Hence,
we observe that generalization ability is not compromised by the improved
speed offered by our method.

7 CONCLUSIONS

In this paper, we have introduced an efficient learning algorithm for the sin-
gle layered perceptron. The algorithm proceeds by lowering the perceptron
cost function following the direction of steepest descent, taking at the same

24

time care not to increase the number of wrongly classified patterns. In this
way the perceptron training task is decomposed in a succession of small scale
quadratic programming problems whose solution determines the appropri-
ately constrained direction of steepest descent.

The main contributions of the paper are:

• the proof that this strategy terminates in a finite number of epochs
regardless of the nature of the problem (linearly separable or not) and
thus provides a natural criterion for linear separability

• the proof that our algorithm always leads to the desired solution in
linearly separable classification problems

• the experimental demonstration (in linearly and non-linearly separa-
ble classification problems) that by using an efficient quadratic pro-
gramming algorithm (double search method) for finding the steepest
descent directions it is possible to train the single layered perceptron
much faster than other perceptron training schemes.

Related issues currently under investigation include:

• a more detailed study of the complexity of our method. Our simulation
results are compatible with the hypothesis that the algorithm converges
to the solution of linearly separable problems in polynomial time, and it
would be very important if this could be proved. Techniques for further
lowering the complexity of the double search technique are currently
under investigation, as is a comparison with other quadratic program-
ming methods

• the extension of our method to multilayered perceptrons with hard
limiter formal neuron activations. In this type of networks it is dif-
ficult to implement gradient descent based techniques, because of the
non-differentiability of the activation functions. However, our method
provides a natural way to perform gradient descent in single layered net-
works, and the scheme can be extended to two-layered networks using
a layer-by-layer optimization methodology. In particular, it is possible
to break down the problem of training a multilayered perceptron to
perform classification tasks by introducing suitable single layered per-
ceptron cost functions for the output and hidden layers and applying
the methodology of this paper to each of these cost functions. In this
way, a family of algorithms for training the multilayered perceptron
can be developed, which ensure that the number of wrong bits never
increases during learning and do not suffer from the slow training speed

25

of the back propagation algorithm. Results from this line of research
will be presented in a forthcoming paper.

26

REFERENCES

Barnard, E., & Casasent, D. (1989). A comparison between criterion func-
tions for linear classifiers, with an application to neural nets. IEEE Trans-

actions on Systems, Man, and Cybernetics, 19, 1030-1041.
Barnard, E. (1991). Performance and generalization of the classification fig-
ure of merit criterion function. IEEE Transactions on Neural Networks, 2,
322-325.
Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear Program-

ming Theory and Algorithms. New York: John Wiley and Sons.
Block, H. D. (1988). The perceptron: A model for brain functioning. Reviews

of Modern Physics, 34, 123-135, 1962. Reprinted in J. A. Anderson & E.
Rosenfeld (Eds.) Neurocomputing: Foundations of Research. Cambridge:
MIT Press, 1988.
Bobrowski, L. (1991). Design of piecewise linear classifiers from formal neu-
rons by a basis exchange technique. Pattern Recognition, 24, 863-870.
Bobrowski, L., & Niemiro, W. (1984). A method of synthesis of linear dis-
criminant function in the case of nonseparability. Pattern Recognition, 17,
205-210.
Ergenziger, S., & Thompsen, E. (1995). An accelerated learning algorithm
for multilayer perceptrons: optimization layer by layer. IEEE Transactions

on Neural Networks, 6(1), 31-42.
Gorman, R. P., & Sejnowski, T. J. (1988a). Analysis of hidden units in a
layered network trained to classify sonar targets. Neural Networks, 1, 75-89.
Gorman, R. P., & Sejnowski, T. J. (1988b). Learned classification of sonar
targets using a massively parallel network. IEEE Transactions on Acoustics,

Speech and Signal Processing, 36, 1135-1140.
Grossman, T., Meir, R., & Domany, E. (1989). Learning by choice of internal
representations. Advances in Neural Information Processing Systems, 1, 73-
80.
Hunt, S. D., & Deller, J. R. (1995). Selective training of feedforward artificial
neural networks using matrix perturbation theory. Neural Networks, 8, 931-
944.
Johansson, E. M., Dowla, F. U., & Goodman, D. M. (1992). Backpropagation
learning for multilayer feedforward networks using the conjugate gradient
method. International Journal of Neural Systems, 2(4), 291-301.
Pang, J.-S. (1983). Methods for quadratic programming: a survey. Comput-

ers and Chemical Engineering, 7, 583-594.
Perantonis, S. J., & Lisboa, P. J. G. (1992). Invariant pattern recognition
using higher-order networks and moment classifiers. IEEE Transactions on

Neural Networks, 3(2), 241-251.

27

Rao, S. S. (1984). Optimization Theory and Applications. Wiley Eastern.
Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan.
Rumelhart, D. E., Hinton J. E., & Williams, R. J. (1986).Learning internal
representations by error propagation. In D. E. Rumelhart & J. L. McLelland
(Eds.), Parallel Distributed Processing: Explorations in the Microstructures

of Cognition, 1, Foundations. Cambridge, MA: MIT Press, 318-362.
Strang, G. (1988). Linear Algebra and its Applications. Harcourt Brace
Jovanovich.
Takahashi, H., Tomita, E., & Kawabata, T. (1993). Separability of inter-
nal representations in multilayer perceptrons with application to learning.
Neural Networks, 6, 689-703.
Telfer, B. A., & Casasent, D. P. (1993). Minimum-cost associative processor
for piecewise-hyperspherical classification. Neural Networks, 6, 1117-1130.
Torres Moreno, J. M. & Gordon, M. B. (1998). Characterization of the sonar
signals benchmark. Neural Processing Letters, 7, 1-4.
Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989).
Classification of radar returns from the ionosphere using neural networks.
Johns Hopkins APL Technical Digest, 10, 262-266.
Volper, D. J., & Hampson, S.E. (1990). Quadratic function nodes: Use,
structure and training. Neural Networks, 3, 93-107.
Widrow, B., & Hoff, M. E. (1988). Adaptive switching circuits. In 1960 IRE

WESCON Convention Record, New York, 1960, vol. 4, 96-104. Reprinted
in J. A. Anderson & E. Rosenfeld (Eds.), Neurocomputing: Foundations of

Research. Cambridge: MIT Press, 1988.
Wittner, B. S., & Denker, J. S. (1997). Strategies for teaching layered
networks classification tasks. In Neural Information Processing Systems

(pp. 850-859) Denver.

28

Table Captions

Table 1 : Average CPU time (in secs) and number of epochs (given in
parentheses) required by the proposed method, the BN algorithm, the per-
ceptron rule and the CG algorithm for various classification problems. All
problem data sets but the last two (ionospheric data and OCR2) are linearly
separable.
Table 2 : Average classification performance (percentage of correctly classi-
fied bits) achieved by the proposed algorithm, the BN method, the perceptron
rule and the CG algorithm for various classification problems.
Table 3 : Average generalization ability (percentage of correctly classified
bits in the test set) achieved by the proposed algorithm, the BN method and
the perceptron rule.

29

Figure Captions

Figure 1: An arrangement of hyperplanes (lines) in 2-dimensional space
is shown, corresponding to a classification problem. In each polytope the
number of BW is displayed. Starting from point I, our algorithm finds the
solution in one step following a “Fast Moving” weight update. If started from
point II, the algorithm finds the solution in two steps, performing a “Moving
Near” update up to point IIa followed by a “Fast Moving” update.
Figure 2: Geometry involved in the proof of Lemma 2. The line segment
with end-points at the current weight vector W and the solution weight
vector W s intersects the current polytope at a BW hyperplane.
Figure 3: Solution of a quadratic programming problem with mutually
orthogonal constraint hyperplanes using the double search method. This
method finds the minimum at point S in two steps (solid curve), while gra-
dient descent displays an oscillatory behaviour (dotted curve).
Figure 4: (a) Number of wrong bits versus number of epochs for our method
(solid curve) and the perceptron rule (dotted curve) in the sonar data clas-
sification problem. (b) Number of active patterns versus number of epochs
for our algorithm.
Figure 5: Plot of the number of internal epochs required for convergence
of the double search algorithm as a function of the number of active pat-
terns. Both the maximum (dotted curve) and average number of epochs
(solid curve) are shown.

30

Table 1

Proposed BN Perceptron CG

Uniform

P=100 N=2 0.006 (4.6) 0.015 (6.5) 0.435 (581) 0.326 (12.6)
P=1000 N=4 0.243(16.4) 0.527 (32.0) 1.379 (157) 4.466 (18.5)
P=20000 N=10 33.0 (76.9) 108.6 (205) 3600 (14439) 184.1 (208)

Ellipse

P=100 N=4 0.023 (13.4) 0.031 (19.5) 0.059 (63.1) 0.227 (9.0)
P=10000 N=20 74.3 (214.0) 259.4 (567) 2661.4 (14749) 328.2 (104.5)
P=20000 N=40 647.6 (488.7) 4554 (2162) 3600 (6082) 582.9 (77.8)

Sonar 117.8 (223.8) 405.9 (190.5) 1174.9 (146047) 3600 (123549)
OCR1 4.75 (16.0) 5.65 (17.9) 42.38 (94.4) 3600 (2855)
Ionosphere 22.1 (155.5) 31.8 (142.8) 3600 (430735) 3600 (101658)
OCR2 308.3 (294.4) 1337.7 (533.9) 3600 (4554) 3600 (589.3)

31

Table 2

Proposed BN Perceptron CG

Uniform

P=100 N=2 100 100 100 100
P=1000 N=4 100 100 100 100
P=20000 N=10 100 100 99.91 100

Ellipse

P=100 N=4 100 100 100 100
P=10000 N=20 100 100 99.90 100
P=20000 N=40 100 100 99.72 100

Sonar 100 100 100 94.13
OCR1 100 100 100 97.51
Ionosphere 96.35 94.87 92.22 97.07
OCR2 99.72 99.64 97.47 94.36

32

Table 3

Proposed BN Perceptron

Uniform

P=100 N=2 97.13 96.93 96.27
P=1000 N=4 99.90 99.94 99.89
P=20000 N=10 99.96 99.95 99.85

Ellipse

P=100 N=4 96.93 96.53 97.60
P=10000 N=20 99.82 99.85 99.80
P=20000 N=40 99.77 87.47 99.57

Sonar 75.00 74.03 76.61
OCR1 98.40 97.99 99.44
Ionosphere 86.77 86.87 85.75
OCR2 99.20 99.11 98.94

33

��

��

1

I

2

3

II
IIa

3

2

DW

d2
1

3

22

1

d1

2

0

Figure 1:

Table 1:

Table 2:

Table 3:

34

��

�������
�

��

BR

W
t=1

BR

BR

t=0

Ws

BW

BW

BWt
WB

B

Figure 2:

35

q1

q2

s

Figure 3:

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

B
W

Epochs

Figure 4:

36

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

A
ct

iv
e

C
on

st
ra

in
s

Epochs

Figure 5:

37

