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1. Abstract

A novel neural network based method for feature
extraction is proposed. The method achieves dimen-
sionality reduction of input vectors used for supervised
learning problems. Combinations of the original
features are formed that maximize the sensitivity of
the network’s outputs with respect to variations of
its inputs. The method exhibits some similarity to
Principal Component Analysis, but also takes into
account supervised character of the learning task. It
is applied to classification problems leading to efficient
dimensionality reduction and increased generalization
ability.

2. Introduction

Methods for dimensionality reduction concentrate
either on selecting from the original set of features
a smaller subset of salient features, or on combining

the original features in such a way as to extract a
small number of salient features. Application of such
methods to data analysis or pattern recognition prob-
lems has distinct advantages in terms of generalization
properties and processing speed. In this respect,
feature extraction methods are probably preferable
to feature selection techniques because they usually
result in feature vectors of lower dimensionality. Many
classification or function approximation algorithms
exhibit greatly improved speed of convergence and
generalization properties when called upon to operate
using training sets of reduced dimensionality.

Ruck [1] has developed a feature selection method
based on the application of multilayer feedforward net-
works (MFNN). According to this method, a saliency
metric is defined that depends on the sensitivity
of the trained network outputs with respect to its
inputs. The MFNN is preliminarily trained using all
available features whose saliencies are subsequently

determined. The most salient features are then
selected for further processing. An advantage of the
method is that it forms salient features taking into
account information about the classification or func-
tion approximation problem itself. Indeed, the feature
selection process is closely related to a pretraining
procedure whereby the desired targets are utilized.
A drawback of this method is that it just selects
features from the original set of available features, but
does not consider further dimensionality reduction
by forming salient combinations of the original features.

The objective of this paper is to present an extension
of Ruck’s method that still takes into account the
supervised character of the learning task, but also is
capable of performing feature extraction by proposing
salient combinations of the original features. The
proposed salient features are linear combinations of
the original features. These combinations are selected
to maximize the sensitivity of the network outputs
to small variations of the inputs. The method bears
similarities to Principal Component Analysis (PCA)
[2][3][4], with the important difference that the eigen-
value problem is formulated using a matrix depending
on the weights of the pretrained neural network instead
of the covariance matrix of the inputs.

The method is tested in classification problems. Once
features are extracted, each problem is solved using
two different learning paradigms (MFNNs and nearest
neighbor classifiers). Results are compared to those
obtained by other feature selection/extraction methods
(Ruck’s method, PCA, t-test method). Two types of
benefits arise from our simulation results. Firstly, an
increase in generalization ability is observed. Secondly,
in comparison with other methods, the dimension of
the extracted feature vector is usually greatly reduced.
This can offer an increase in processing speed, par-
ticularly in conjunction with supervised classification
methods (e.g. k-nn) whereby the effectiveness of



fast method variants is heavily dependent on the
dimensionality of the input vector.

3. Proposed Method

Consider a MFNN with one layer of input, M layers of
hidden and one layer of output units. The units in each
layer receive input from all units in the previous layer.
Inputs to the first layer of the MFNN are denoted by
xi, i = 1, . . . , N where N is the total number of features
the network is called upon to process. Output units

are denoted by O
(m)
i , where the superscript (m) labels

a layer within the structure of the neural network
(m = 1, 2, . . . , M for the hidden layers, m = M + 1 for
the output layer), and i labels a unit within a layer.

The synaptic weights are denoted by w
(m)
im−1im

, where
m, im denote respectively the layer and the unit toward
which the synapse is directed and im−1 denotes the unit
in the previous layer from which the synapse emanates.
Biases will be treated as weights emanating from units
with constant, pattern-independent output equal to
one. The logistic function f(s) = 1/(1 + exp(−s)) is
used as the activation function of hidden and output
units.

Consider the vector space V spanned by all possible fea-
ture vectors x. Given a particular direction defined by
a unit vector û belonging to V , a saliency metric will be
introduced which is designed to express the sensitivity
of the network’s output to small perturbations of the
input vectors along this direction. Given a vector x, let
us denote by xû its projection along the direction û, i.e.
xû = x · û. Then the saliency along the direction û is
defined by:

Sû =
∑

{x}

∑

i

(
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i

∂xû

)2
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The first sum in the above expression is formed using
different randomly chosen input vectors. We seek
to find those directions û, for which the correspond-
ing saliency Sû is extremal, subject to the constraint
û · û = 1. We shall show that this problem reduces
to the eigenvalue problem of a real symmetric matrix.
Indeed, by employing the well known property of the
directional derivative:
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we readily obtain the following expression for the
saliency Su:

Sû =
∑

j,k

Rjkûjûk (3)

where
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is a symmetric matrix whose elements are readily cal-
culated using the formula:
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It is now required to maximize expression (3) with
respect to ûk, subject to the constraint

∑

k ûkûk = 1.
On introducing a Lagrange multiplier µ to take account
of the constraint, we form the expression

S′
û =

∑

j,k

Rjkûjûk + µ(1 −

∑

k

ûkûk). (6)

Constrained extrema of Sû occur when ∂S′
û/∂ûj = 0,

so that
∑

k

Rjkûk = µûj . (7)

It follows that the constrained extrema occur when û

is an eigenvector of R. Substituting (6) into (3) and
taking account of the constraint, we readily conclude
that Sû = µ, so that maximum saliency is equal to
the maximum eigenvalue of R and is found when û is
the eigenvector of R corresponding to its maximum
eigenvalue.

As a result of the above discussion, the following
feature extraction method is proposed: The MFNN is
“pretrained” using all available features, preferably a
number of times using different initial weights. Once
pretraining is completed, elements of the matrix R are
computed using (4) and (5). If more than one training
sessions are involved, the first sum in equation (4)
includes information from all training sessions. Given a
saliency threshold SN , let there exist K eigenvalues of
R larger than SN . The eigenvectors ûr, r = 1, . . .K
of R corresponding to these eigenvalues are evaluated
and the K salient features extracted by our method
are given by x · û

r, r = 1, . . .K. The newly computed
salient features can then be used to train either a
MFNN or any other supervised learning paradigm.

4. Relation to Other Methods

The feature selection method of Ruck and collaborators
[1] is based on pretraining a MFNN to solve a specific
learning task and arranging input features in descend-
ing order of saliency using the following saliency metric:
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where the first sum denotes inclusion of information
from all pretraining sessions and input patterns.
Clearly, Ruck’s metric is similar to the metric proposed
in this work, but involves only the partial derivative
of the outputs with respect to each input and not to
input combinations. Hence, only directional derivatives
with respect to the basis vector directions of space
V are involved. Also, the Ruck metric employs the
1-norm of the output vector derivative with respect
to input features, whereas our metric employs the
2-norm. However, the order of the norm does not seem
to be important for selecting salient features. Indeed,
a similar saliency metric proposed by Tarr [5] is more
closely related to the 2-norm of this derivative.

The relation of our method to PCA is also evident.
PCA amounts to solving a constrained optimiza-
tion problem similar to the one introduced by the
Lagrangian of (6). However, in PCA, the matrix R is
the covariance matrix of the input patterns. Clearly,
our method retains the advantage of forming salient
linear combinations of the original features, but also
incorporates in the saliency metric information about
the desired targets of the supervised learning problem.

5. Simulations

We use synthetic and real world examples to eval-
uate our method. An interesting synthetic example
is the rotated XOR (R-XOR) problem. Consider
P two-dimensional vectors (x1, x2) uniformly sam-
pled from the square defined by −1 < x1 < 1 and
−1 < x2 < 1. In the usual XOR problem, there
are two classes. Vectors whose components obey
x1x2 > 0 belong to Class 1, while vectors obeying
x1x2 < 0 belong to Class 2. We add six distractor
features (x3, x4, x5, x6, x7 and x8), all randomly sam-
pled between -1 and 1, and rotate each vector in the
eight dimensional space defined by the xi, i = 1, . . . , 8
by an arbitrary rotation operator A. The “rotated
XOR problem” is defined as follows: A rotated vector
y = Ax belongs to Class 1, if x1x2 > 0 and to Class
2 if x1x2 < 0. Note that in the rotated XOR problem
all features yi, i = 1, . . . , 8 play a role in the final
classification result, but only two linear combinations
of these features are salient. A sample of 200 vectors
was used to implement the rotated XOR problem.
We also give results concerning supervised learning
examples from the University of California-Irvine
machine learning repository [6], namely the BUPA
Liver Disorders set and the Ionosphere set [7]. Both
tasks are classification problems with two classes.

Apart from the method proposed in this work, we

R-XOR BUPA IONO

Proposed 91.3 (3) 72.4 (2) 95.4 (4)
Tarr 84.6 (7) 69.4 (5) 92.8 (8)
Ruck 86.2 (7) 70.4 (4) 93.5 (12)
PCA 86.1 (7) 69.6 (5) 95.4 (18)
Original 87.3 (8) 70.5 (6) 94.5 (33)

Table 1: Generalization ability (average classification
accuracy in the test sets) achieved using a feedforward
network to which the results of various feature extrac-
tion/selection methods are given as input. The number
of salient features used to achieve each result are given
in parentheses.

also give results from the application of other feature
selection or feature extraction methods, namely Ruck’s
method, Tarr’s method and PCA. The salient fea-
tures determined by each feature extraction/selection
method are given as inputs to two types of classifier,
namely a MFNN and a nearest neighbor classifier.

To assess generalization ability, each dataset was
partitioned into a training set consisting of 75 % of
the available input vectors and a test set consisting
of the remaining 25% of the data. Five different
partitions were chosen at random. Generalization
ability results are given as averages over the 5 test
sets. All pretraining sessions (where relevant) and final
training sessions for MFNN were performed using an
efficient variation of the backpropagation algorithm
based on the adaptive use of momentum acceleration
[8]. The values δP = 0.3 and ξ = 0.5 were used for the
gain δP and the momentum regulator ξ respectively for
all problems. For all benchmarks, training was carried
on for at most 200 epochs or until the mean squared
error dropped below the value 2 · 10−3. Networks with
one hidden layer were used for all problems. For the
rotated XOR problem, the hidden layer had 4 units.
For all other problems 10 hidden units were used. In
order to compute saliencies for the proposed method,
5 pretraining sessions with different randomly chosen
initial weights were performed for each of the 5 training
sets.

The results of our simulations are summarized in
Tables 1 and 2. In Table 1, generalization abil-
ity results are presented for MFNNs trained using
the salient features found by each feature selec-
tion/extraction method. The number of features used
in conjunction with each method are also given in
parentheses. The quoted number of features is that
for which maximum generalization ability is obtained
(subject to the constraint that some feature selection



R-XOR BUPA IONO

Proposed 92.5 70.9 94.3
Tarr 67.5 59.3 90.3
Ruck 67.5 65.1 91.4
PCA 70.0 63.4 93.7
Original 65.0 61.6 93.1

Table 2: Generalization ability (average classification
accuracy in the test sets) achieved using a nearest
neighbor classifier to which the results of various fea-
ture extraction/selection methods are given as input.
The same salient features are used as in the previous
table.

is performed, i.e. at least one of the original features is
eliminated). In Table 2, generalization ability results
are presented for nearest neighbor classifiers using the
same salient features.

In the three benchmarks, an increase in generalization
ability is observed with respect to the original set
of features. This is true for both the MFNN and
nearest neighbor classifiers. Naturally, best results
were obtained in the synthetic rotated XOR problem,
where it is known that the salient features are indeed
linear combinations of a subset of the original features.
Moreover, as is evident from Table 1, our method
has succeeded in extracting a relatively low number
of significant features in all three benchmarks. This
characteristic is clearly not shared by any of the other
methods. This characteristic of the method may prove
important for processing speed efficiency in applica-
tions where large training sets and original feature
space dimensionalities are involved. In such applica-
tions, even in the testing phase, some types of classifiers
become prohibitively slow. A notable example is the
nearest neighbor classifier. Most fast implementations
of this classifier work well and provide acceleration only
when the feature space dimensionality is low (usually
less than 15 dimensions) [9]. We are currently working
on the application of the method to a large scale OCR
problem. Preliminary results show that significant
acceleration (one to two orders of magnitude) is
observed using the Nene-Nayar variant of the nearest
neighbor classifier [10] applied to the salient features
determined by the proposed feature extraction method.

6. Conclusion

In this paper, a new method was proposed for feature
extraction and dimensionality reduction. The method
is based on pretraining an MFNN and extracting salient
linear combinations of the original features depending

on the sensitivity of outputs to variations of the original
features. The method was tested in conjunction with
MFNN and nearest neighbor classifiers in synthetic and
real world benchmarks and was shown to lead to sig-
nificant dimensionality reduction and increased gener-
alization ability. The effects of the application of the
method on processing speed were also discussed.
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