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1 Introduction

In recent years, extensive theoretical investigations and application dependent case
studies by many researchers have helped establish the role of artificial neural net-
works as robust and efficient information processors. These studies have shown that
artificial neural networks are useful for solving a multitude of classification, func-
tion approximation, control and optimization problems. In particular, multilayered
feedforward neural networks (MFNN) have attracted much attention because of their

universal approximation capabilities and successful training algorithms.

The experience with neural networks has shown that in many cases, these systems
must be viewed as one component of the overall system used for the solution of a
certain problem. In many cases, preprocessing and postprocessing work invariably
improves performance. In the preprocessing stage, it is important to select a set of
salient features spanning a space of the lowest possible dimension in order to discard

features that merely constitute noise and hence alleviate the curse of dimensionality



problem. This is particularly important in the case of real world data sets of high
dimensionality. To this end, many feature selection or feature extraction methods
have been proposed, that originate from the field of conventional statistics or neural
network research. These methods concentrate either on selecting from the original set
of features a smaller subset of salient features, or on combining the original features

in such a way as to produce a new reduced set of salient features.

A feature selection method particularly suited for feedforward networks has been
developed by Ruck [1], who defined a saliency metric that depends on the sensitivity
of the trained network outputs with respect to its inputs. The feedforward network
is preliminarily trained using all available features whose saliencies are subsequently
determined. Only the most salient features are then used in the final training pro-
cess, thus reducing feature space dimensionality. Recently, Ruck’s method has been
augmented by statistical techniques used to evaluate a saliency threshold in order to
determine the exact number of features that should be retained. A drawback of this
method is that it just selects features from the original set of available features, but
does not consider further dimensionality reduction by forming salient combinations

of the original features.

This drawback is not shared by the very popular and widely used feature extraction
method known as principal component analysis (PCA) [2] [3]. This well known tech-
nique in multivariate statistical analysis [4] produces a potentially small number of
salient linear combinations of the original features based on the maximization of the
variance of the training samples. Moreover, there are many convenient and fast neural
network implementations of this method that add to its attractiveness [5] [6] [7] [§]
[9]. However, this method does not take into account class membership information
available in supervised classification problems. Moreover, it is prone to failure if the

data are arranged into many isotropically distributed clusters [10].

In this paper, we propose a method for feature extraction based on the determination
of directions in the feature space along which the overall sensitivity of the feedforward
network’s output with respect to its input takes locally maximum values. Thus, we

formulate an extension of Ruck’s method to determine salient linear combinations of



the original features. The method thus bears considerable similarity to PCA, but
takes into account the supervised character of the learning task. It leads to a number
of salient features whose number can be smaller than the number of salient features
determined by Ruck’s method, thus further alleviating the curse of dimensionality
problem and leading to better generalization properties in a class of problems. The
usefulness of the method and its advantages are demonstrated in some synthetic and

real world supervised learning problems.

This paper is organized as follows: In section 2 we briefly review Ruck’s method and
its modifications for the determination of an optimal number of salient features. In
section 3 our method is derived and its relation to PCA and Ruck’s method is pointed
out. In section 4 the method is applied to a number of classification problems. Finally,

section 5 is an account of our conclusions and future prospects.

2 Feature selection using MFNNs

Consider an MFNN with one layer of input, M layers of hidden and one layer of output
units. The units in each layer receive input from all units in the previous layer. Inputs
to the first layer of the MFNN are denoted by z;,7 = 1,..., N where N is the total
number of features the network is called upon to process. Output units are denoted
by O§’”), where the superscript (m) labels a layer within the structure of the neural
network (m =1,2,..., M for the hidden layers, m = M + 1 for the output layer), and

1 labels a unit within a layer. The synaptic weights are denoted by wl(;nzlim,

where m,
i, denote respectively the layer and the unit toward which the synapse is directed and
im—1 denotes the unit in the previous layer from which the synapse emanates. Biases
will be treated as weights emanating from units with constant, pattern-independent

output equal to one. The logistic function f(s) = 1/(1 + exp(—s)) is used as the

activation function of hidden and output units.

Ruck and collaborators have proposed a method for arranging input features for
training the MFNN in descending order of saliency [1]. The method amounts to

“pretraining” the MFNN to learn a specific supervised learning task using all avail-
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able features and computing a saliency metric .S; related to each individual feature.
Pretraining may be repeated a number of times, e.g. with different initial weights or
different partitions of the training set. Ruck’s saliency metric for an input feature is
designed to express the sensitivity of the pretrained network’s output to perturbing
this feature, simultaneously leaving all other features unaffected. Its formal definition

is as follows:
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where the first sum denotes inclusion of information from all pretraining sessions and

input patterns and the partial derivative is readily calculated using the formula:
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In effect, the saliency of a feature is a sum over the possible input vectors of a norm
of the output vector derivative with respect to this feature. Ruck has employed the

I-norm (absolute value).

Once the saliency metrics have been evaluated, the MFNN is trained again, this time
using only features with saliencies exceeding a certain saliency threshold. An interest-
ing method for determining the most appropriate threshold is the “noise injection”
method proposed by Belue and Bauer [11]. According to this technique, an addi-
tional noise feature is added during the pretraining phase as an extra MFNN input,
formed using random samples from a uniform (0, 1) distribution. The MFNN is sub-
sequently trained a number of times with different starting conditions. Assuming that
the average saliency of the noise feature is normally distributed, features are declared
adequately salient if their average saliency falls outside an upper one-sided confidence
interval for the mean value of the saliency of the noise feature. Finally, the MFNN is

retrained using only adequately salient features.



3 Supervised PCA method

The Ruck metric employs the 1-norm of the output vector derivative with respect to
input features. However, the order of the norm does not seem to be important for
selecting salient features. Indeed, a similar saliency metric proposed by Tarr [12] is
more closely related to the 2-norm of this derivative. For the purposes of this work,

it is most convenient to adopt the 2-norm.

Considering the vector space V spanned by all possible feature vectors x, we can
speak of S; as the saliency along the direction labeled by j. Let us now consider an
arbitrary direction in V), defined by a unit vector @. Given a vector x, let us denote
by x4 its projection along the direction 4, i.e. x5 = @ - 4. Then the saliency along

the direction 4 is defined by:

(M+1) 2
Si= Y% (808—) g

We seek to find those directions @, for which the corresponding saliency Sy is extremal,
subject to the constraint @ - @ = 1. We shall show that this problem reduces to the
eigenvalue problem of a real symmetric matrix, just as in the PCA formalism. Indeed,

by employing the well known property of the directional derivative:
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we readily obtain the following expression for the saliency S,:
Sa = Z Ry, (5)
jk

where
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is a symmetric matrix. It is now required to maximize expression (5) with respect to

U, subject to the constraint Y, uxur = 1. On introducing a Lagrange multiplier g



to take account of the constraint, we form the expression
Si =" Ry, + p(1 — > i) (7)
7k k

Constrained extrema of S; occur when 05}, /0u; = 0, so that
> Rjptiy = piij. (8)
k

It follows that the constrained extrema occur when w is an eigenvector of R. Sub-
stituting (7) into (5) and taking account of the constraint, we readily conclude that
Sa = W, so that maximum saliency is equal to the maximum eigenvalue of R and is

found when w is the eigenvector of R corresponding to its maximum eigenvalue.

As a result of the above discussion, the following feature extraction method is pro-
posed: The MFNN is “pretrained” using all available features, preferably a number
of times using different initial weights. Once pretraining is completed, elements of
the matrix R are computed using (6). Given a saliency threshold Sy, let there exist
K eigenvalues of R larger than Sy. The eigenvectors 4", r =1,... K of R corre-
sponding to these eigenvalues are evaluated and the K salient features extracted by
our method are given by  -@", r = 1,... K. Finally, the MFNN is trained using
only the newly computed K salient features. Following Belue and Bauer, it is possi-
ble to evaluate Sy by including an extra noise input feature in the pretraining stage.
The saliency of the extra feature for each pretraining session is evaluated using (1)
(2-norm employed) and the saliency threshold Sy can be obtained, assuming that
the average saliency of the noise feature is normally distributed, as the infimum of an

upper one-sided confidence interval for the mean saliency of the noise feature.

4 Simulations

In order to demonstrate the efficiency of the proposed method, we use one synthetic

and three real world examples:

Synthetic Example: Rotated XOR problem. Consider P two-dimensional

vectors (z1,xs) uniformly sampled from the square defined by —1 < z; < 1 and
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—1 < 25 < 1. In the usual XOR problem, there are two classes. Vectors whose
components obey zixy > 0 belong to Class 1, while vectors obeying 1z < 0 belong
to Class 2. We added six distractor features (x3, x4, x5, 26, 27 and xg), all randomly
sampled between -1 and 1, and rotated each vector in the eight dimensional space
defined by the z;,7 = 1,...,8 by an arbitrary rotation operator A. The “rotated
XOR problem” is defined as follows: A rotated vector y = Ax belongs to Class 1,
if x129 > 0 and to Class 2 if 129 < 0. The problem is illustrated in figure 1, where
just one distractor variable x3 is shown for visualization purposes. Note that in the
rotated XOR problem all features y;,7 = 1,...,8 play a role in the final classification
result, but only two linear combinations of these features are salient. A sample of 200

vectors was used to implement the rotated XOR problem.
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Figure 1: Rotated XOR problem with one extra noisy feature added. Sample data

from the two classes are denoted by circles and crosses respectively.

Real World Examples: We give results concerning four supervised learning exam-

ples from the University of California-Irvine machine learning repository [13], namely



1. the “Tonosphere” data set [14]. Here the task is to distinguish between two sets
of radar returns from the ionosphere. This set comprises 351 patterns with 33

features for each pattern.

2. the “BUPA Liver Disorders” set. The task is to distinguish between two cat-
egories of patients with possible liver disorders on the basis of 6 attributes
originating from blood test results and daily alcohol consumption figures. The

set comprises 345 patterns with 6 features for each pattern.

3. the “Pima Indians Diabetes” data set [15]. It comprises 768 patterns taken
from patients who may show signs of diabetes. Each sample is described by 8

attributes.

4. The “Sonar Targets” dataset [16]. The task is to distinguish between sonar
returns from a metal cylinder and sonar returns from a cylindrically shaped

rock. The set comprises 208 patterns with 60 features for each pattern.

For purposes of comparison, apart from the method proposed in this work, we also
give results from the application of the following feature selection or feature extraction

methods:

1. Ruck’s method
2. Tarr’s method

3. A method based on Student’s t-test for the difference of means of the two
categories [17], whereby the significance of each original feature is assessed by
finding its t-score and the most significant features are those that correspond

to highest t-scores.

4. Principal Component Analysis

For all MFNN pretraining sessions, the original input features were normalized to lie
in the interval between zero and one. To assess generalization ability, each dataset was

partitioned into a training set consisting of 80 % of the available input vectors and a



test set consisting of the remaining 20% of the data. Thirty different partitions were
chosen at random. Generalization ability results are given as averages over the 30
test sets. Note that for all feature extraction/selection methods, salient features were
evaluated separately for each of the 30 training sets. This method was preferred to
evaluating salient features using the whole dataset, because this would use information
from the test sets for evaluating salient features and would lead to biased results

concerning generalization ability.

All pretraining sessions (where relevant) and all final training sessions were performed
using an efficient variation of the backpropagation algorithm based on the adaptive
use of momentum acceleration [18]. The values 6P = 0.3 and £ = 0.5 were used
for the gain 6P and the momentum regulator & respectively for all problems. For all
benchmarks, training was carried on for at most 400 epochs or until the mean squared
error dropped below the value 2 - 1073, Networks with one hidden layer were used
for all problems. For the rotated XOR problem, the hidden layer had 4 units. For all

other problems 10 hidden units were used.

In order to compute saliencies, 10 pretraining sessions with different randomly chosen
initial weights were performed for each of the 30 training sets. To evaluate the saliency
matrix elements Rjj, different ways of forming the first sum of (6) were considered,
including the use of random input vectors from the unit hypercube or the use of the
specific input vectors of the training set. Different methods gave comparable results.
Here we report results with the first summation of (6) formed using the input vectors
in each training set for all 10 pretraining sessions. To determine the number of salient
features, we tried using as a guide the method of Belue and Bauer. This was found
to work reasonably well in conjunction with the methods of Tarr, Ruck and the t-test
method. In these cases, the number of salient features determined by the method
of Belue and Bauer using the mean saliency of the noise feature plus one standard
deviation as a threshold was comparable to the optimal number of features for which
maximum classification ability in the test set was obtained. For the proposed method,
however, we found that the technique of Belue and Bauer tended to overestimate

the optimal number of salient features, so that the mean value plus 4-6 standard
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Proposed | Ruck | Tarr | t-test | PCA | Original features p-value

Rotated XOR | 88.32(3.40) | 82.40 | 82.67 | 82.60 | 82.27 |  82.27(3.21) | 1.66-10~°

Ionosphere 93.14(2.21) | 91.37 | 93.28 | 92.71 | 92.27 91.68(2.63) 0.013
BUPA 71.13(5.70) | 69.32 | 69.32 | 69.32 | 69.32 |  69.32(5.44) 0.110
PIMA indians | 75.30(2.56) | 73.57 | 73.57 | 73.57 | 75.22 73.57(2.23) 0.004
Sonar 79.20(3.93) | 79.02 | 79.02 | 79.35 | 83.44 79.02(5.83) 0.445

Table 1: Generalization ability (average classification accuracy in the test sets)
achieved by various feature extraction/selection methods in five benchmark prob-
lems. For training with all original features and for the method proposed in this
paper, the standard deviation of the classification accuracy in the test set is also
provided (in parenteses). The p-value shown in the last column is a measure of
whether there is a significant increase in the accuracy of the network trained with
features selected with the proposed method over the accuracy obtained by training
with all available features. Low p-values show a statistically significant increase in

generalization ability:.

deviations had to be used as a saliency threshold. More work is needed to explain

this interesting observation.

The results of our simulations are summarized in Tables 1 and 2. Generalization abil-
ity results are presented in Table 1 in the form of average percentages of successfully
classified patterns in the test sets. For networks trained using all original features
and for the proposed method, standard deviations are also quoted in parentheses,
on the basis of which the p-value of the last column is calculated. The p-value is

computed by the t-test hypothesis testing method for comparing the means of two
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Proposed | Ruck | Tarr | t-test | PCA | Original features
Rotated XOR 3 7 7 7 8 8
Tonosphere 4 10 8 12 18 33
BUPA 1 6 6 6 6 6
PIMA indians 3 8 8 8 6 8
Sonar 18 60 60 30 20 60

Table 2: Number of salient features selected or extracted by different methods in five

benchmark problems

normal distributions. It represents the probability that the statistical means of the
generalization ability distributions using all features and the features extracted with
our method are the same. In Table 2, the optimal number of features selected or

extracted by the various methods is shown.

In all benchmarks, with the exception of the sonar data problem, the hypothesis that
our method gives improved generalization ability over the method of using all original
features can be accepted with adequate statistical significance. In three benchmarks
(Rotated XOR, BUPA Liver Disorders, PIMA Indians) our method exhibited the
best generalization ability of all methods, while in the Ionosphere benchmark it came
a close second behind the method of Tarr. Naturally, best results were obtained in
the synthetic rotated XOR problem, where it is known that the salient features are

indeed linear combinations of a subset of the original features.

We note that the sonar data problem is linearly separable [19] [20], so that in prin-
ciple only one linear combination of input features is adequate for the data to be
completely separated. Indeed, the most salient feature extracted by our method had

a great saliency difference from all other features. The eigenvalue of the most salient
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feature amounted to 85% of the sum of the eigenvalues for all features, whereas the
corresponding figure for the second most salient feature was 2.5 %. Even with one fea-
ture, there was no significant decrease in generalization ability (78.80 % was achieved
with only the most salient feature), although maximum generalization ability was

achieved with 18 features (79.20 %).

In all five benchmark cases our method has succeeded in extracting a relatively low
number of significant features. As it is evident from Table 2, this characteristic is not
shared by any of the other methods, since for all other methods there were always
cases where the number of selected or extracted salient features was equal to the
original number of features, so that reducing the number of input features led to a

decrease in generalization ability.

5 Conclusion

In this paper, a new method was proposed for the extraction of features from a set
of patterns used for supervised learning purposes. Following a pretraining stage of a
MFNN with the original features, linear combinations of these features are extracted,
which locally maximize the response of the network’s outputs to small perturbations
of the inputs. The proposed method exhibits some similarity to the method of princi-
pal components analysis, but also takes into account the supervised character of the
learning process. The method was applied to a number of synthetic and real world
supervised learning problems and generally provided a significant increase in general-
ization ability with considerable reduction in the number of required input features.
Results were also compared with other feature selection or feature extraction meth-
ods. Future work includes testing of the method on a larger pool of benchmarks in
order to further test its consistency in producing good generalization performances.
The extension of the method to other types of paradigms used for supervised learning
(e.g. radial basis functions and nearest neighbor classifiers) may also lead to gains in

dimensiolality reduction and generalization ability.
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