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Abstract
The problem of tax evasion is modelled as a zero-sum two-person gen-

eralized stochastic game with incomplete information. This model incor-
porates the classical statistical classification procedures used in classifying
a random observation from a mixed population. The model incorporates
the secrecy of the tax office and lack of information about the past his-
tory of the taxpayer. With full information, the model is closer to certain
structured classes of stochastic games that admit efficient algorithms for
optimal solutions.

1 Historical Introduction

Tax evasion as a topic for theoretical investigation was first suggested by J.A.
Mirrlees in a paper prepared for the International Economic Associations Work-
shop in Economic Theory, in Bergen, Norway in 1971 (Allingham and Sandmo
[2]). Independently Allingham and Sandmo [2],[1] and Srinivasan [45] consid-
ered static models which were almost identical but still different in terms of tax
function and taxpayer’s aim. The following is their model: Suppose the income
y of a taxpayer when reported results in a tax T (y). Let λ be a proportion by
which y is understated. Since the government can find it only when the return
is audited, the government does not know y, but only the reported (1− λ) y.
Let π be the chance for being audited (of course π can depend on y). Let P (λ)
be the penalty multiplier, i.e., P (λ)λy is the penalty on the undeclared income
λy. Let us assume that the individual chooses λ that minimizes his expected
income (or suitable expected utility function of income). If the taxpayer is risk
averse and if his expected payment on unreported income is less than what
he/she has to pay otherwise, he/she will declare less when π (y) = π. When the
probability of audit increases, the optimal proportion λ∗ by which income is
understated decreases. If the audit chances are independent of the income level,
then, richer income is underreported at greater λ’s. However, this will not be
the case when π depends on income levels. When the actual income varies, the
fraction declared increases or decreases according to the relative risk aversion in
the sense of Arrow [4] is an increasing or decreasing function of income. Alling-
ham and Sandmo [2] also considered a dynamic model for a constant tax rate
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with t periods. They assumed that by audit, the government could recover all
the dues up to that day from the remote past. They showed that the optimal
strategy for the taxpayer would be to choose a period T and evade until period
T and report fully after period T . This line of research presupposes that while
the government is ignorant of a taxpayer, the taxpayer is fully informed of their
audit chances! Based on a survey conducted in Belgium, Frank and Dekeyser-
Meulders [17] calculated certain tax discrepancy coefficients. They found that
wage earners and salaried persons gained the least by tax evasion and that cer-
tain types of evasions could not be caught even after an audit. Balbir Singh [6]
observed in Srinivasan’s model that with fixed chance π for audit, if π < 1/3,
taxpayers could even evade income tax completely. Kolm [21] pointed out that
their models never involved any auditing costs. Based on a survey, Monk [24]
suggested that greater resources should be allocated to auditing higher income
groups. Spicer and Lundstedt [44] pointed out that tax evasion was more than
just gambling. A psychological survey conducted by Spicer and Lundstedt [44]
(also see Spicer [42]) revealed the following phenomena.

(1) Evasion is less likely when sanctions against evasion are perceived to be
severe.

(2) Evasion is less likely when probability of detection is perceived to be high.
(3) Evasion is more likely when a taxpayer perceives that his terms of trade

with the government are inequitable compared to others.

Vogel, in a survey conducted in Sweden [47], observed that taxpayers were
vulnerable for tax evasion when their aspirations were not matched by the gov-
ernment’s services. They also observed that direct cash flow resulted in greater
tax evasion. Cross and Shaw [9] corroborated the same view on many profes-
sionals who were self-employed. Allingham, by a simple model, pointed out [1]
that progressive taxation need not be a solution for removing inequities.

The models by Reinganum and Wilde [34], [35] and Erard and Feinstein [13]
were clearly game theoretic and allowed strategic behavior by the Internal Rev-
enue Service (IRS) against taxpayers. Reinganum and Wilde [34] through a
simple model showed that an audit cut-off policy would be more desirable as
it would dominate any random audit policy. Erard and Feinstein [13] expanded
on the model of Reinganum and Wilde [34] and showed that unlike the model
of Allingham and Sandmo [2] where honest taxpayers had no influence on the
rest of the population indulging in tax evasion strategies, in their extended
[13] model, in equilibrium, honest taxpayers had indirect peer pressure on tax
evaders. Mookherjee and Png [25] develop a model and find sufficient conditions
for random audits to be optimal.

There is a small amount of recent empirical work on what determines tax
compliance (see [8], [11]). By partitioning the set of all taxpayers into three
distinct classes, called 1. honest, 2. susceptible, and 3. evading types, Davis,
Hecht and Perkins [10] study the problem via an explicit law of motion and its
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solution. For example, they assume that the rate of change of the population of
honest taxpayers with respect to time is a negative proportion of the product of
honest and evasive taxpayers. Justification for this assumption of their model is
based on the empirical observation by Vogel [47] and Spicer and Lundstedt [44]
that even honest people can become evaders in the future when their colleagues
are evaders. One can contrast this with the assertions of Erard and Feinstein
[13].

While many of these models are static, tax evasion and tax compliance are
dynamic phenomena. One of the earliest dynamic game models of tax evasion
was initiated by Greenberg [19]. See also Landsberger and Meiljison [22]. Green-
berg, who formulated the problem as a repeated game with absorbing states,
imposed some strong assumptions on the law of motion in order to achieve
an elegant characterization of the optimal strategies. These were all zero-sum
models.

The model proposed here is a generalized zero-sum stochastic game but with
incomplete information. For the case when past history and immediate payoffs
and transitions are common knowledge, these games reduce to tractable classes
admitting efficient algorithms for computing good strategies (see Parthasarathy
and Raghavan [28], Filar and Vrieze [15], Raghavan and Syed [30],[31]). The
model is capable of incorporating empirical evidences via the immediate payoffs
and transition probabilities.

Tax agencies like the IRS will show greater interest in the game theoretic
approach only when the suggested solutions are further refinements that are
closer to their current audit procedures developed in cooperation with their
electronic data processing (EDP) units. Even popular books by IRS agents and
supervisors (see Murphy [27], Monk [24] and informative articles by tax agency
directors (Pond [29], Smith [39]) agree on the power and usefulness of discrimi-
nant analysis. Our models here complement and refine the discriminant function
approach. We will still need the valuable and ingenious techniques of conduct-
ing sample surveys as in Frank and Dekeyser [17], Monk [24], Strumpel [46] to
gather information about psychological behavior patterns of taxpayers in form-
ing immediate payoffs. In this context the psychological studies in simulating
income tax evasion by Friedland, Maital, and Rutenberg [18] and Spicer and
Becker [43] will be very useful.

2 Secrecy and Lack of Information

An essential feature of taxation is the secrecy behind auditing procedures imple-
mented by the tax office and the lack of full information about any taxpayer
and his possible tax evasion strategies. These aspects have not been effectively
incorporated into the models of tax evasion considered thus far in public eco-
nomics literature. Often, in order to characterize equilibrium strategies and
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optimal strategies in closed form, model builders tend to make drastic assump-
tions. Our approach to modelling tax evasion is certainly not to look for closed
form solutions but to look for models that retain the notions of incomplete infor-
mation and secrecy of actions intrinsic to the tax evasion problem. At the same
time, these models are quite close to existing stochastic game models where
efficient solution techniques have already been developed. The notions of cap-
turing secrecy and asymmetry in information have both been part of substantial
research in the area of game theory known as games with incomplete informa-
tion. Existence theorems are much harder to obtain in many such games with
incomplete information. Here we propose a dynamic game theoretic approach
to the study of the tax compliance problem that incorporates the dual secrecy
inherent in the problems of tax evasion and auditing. The problem is viewed as
a multistage game between the IRS (player I) and a taxpayer in a socioeconomic
group (player II). The taxpayer adopts, either by choice or by ignorance of tax
laws, a strategy to evade taxes on certain selected taxable items. Based on the
particular socioeconomic group of the person, the IRS has a prior perception
about the taxpayer with respect to his methods and modes. This perception is
modified from year to year based on the tax returns and the dictates of the dis-
criminant function and the norms of the IRS. This is modelled as a stochastic
game with transition laws and states unknown to the taxpayer (player II) but
known to the IRS (player I).

3 Detecting Tax Evasion via Discriminant Analysis

Fisher, in his seminal paper on taxonomic problems [16], suggested an inge-
nious procedure to classify any observation drawn randomly from a mixture of
populations into one of them, based on the densities of the sub-populations.
For many practical applications see [26], [3], [32], [33]. The procedure is easily
adaptable to problems involving classifications in many other areas including
bankers lending credit facilities for small businesses, taxation, and credit card
approvals. Intuitively, we can describe this procedure for tax evasion problems
as follows.

Although the tax paying population is quite heterogeneous, people in each
professional group are relatively homogeneous. They tend to associate with
people in the same professional group and inherit similar socioeconomic patterns
of life. Thus, the population can be made more homogeneous by stratifying
according to profession. Having stratified the population into sub-populations,
such as executives, doctors, lawyers, salesmen etc., the next problem is to further
divide each sub-population into two types, namely those filing legally correct
and honest returns and those filing legally incorrect or manipulated tax returns.
Apparently, in the early 1940s nearly 25% of the tax returns belonged to the
second type [27]. While deductions in income tax returns accounted for less
than 12% in 1947, a decade later the same deductions were almost 15% of the



A Stochastic Game Model of Tax Evasion 401

reported gross income [27]. Apparently, tax loopholes and manipulations were
used in the process.

The classification of all members of a professionally homogeneous group into
the above two distinct types is much more complex. This could only be achieved
when persons in the profession were targeted earlier with a foolproof audit. As a
first step one needs norms for auditing, so that tax items violating these norms
conspicuously can be considered as candidates for auditing. Only expert tax
inspectors can be relied upon to come to grips with this initial data classification
problem.

Assume that there is data available from the past for this classification. Our
hunch is that the IRS will know from past data the chance that a random tax
return from a specified professional group is legally correct and honest. Need-
less to say, this chance will vary from profession to profession. It is known that
many self-employed professionals and especially those who deal exclusively with
cash transactions are often involved in tax evasions. Given all tax returns, the
main statistical approach is to partition data into two disjoint sets where data
in one set is classified as honest and requires no prima facie reason for audit-
ing and the data from the complement is classified as incorrect or dishonest
reports that need auditing. There are two costs associated with any such clas-
sification. If an honest return is audited, the cost of auditing time is wasted on
the return. If a manipulated return is not audited, then the cost is the loss in
taxes properly due. We have to convert all costs into money for proper compar-
isons. Now any tax return x is simply a vector whose coordinates correspond
to tax items such as 1) married or single, 2) gross income, 3) dividend or inter-
est income, 4) employee business expense, 5) real estate taxes paid, etc. Thus,
in general x = (x1, x2, . . . , xp) is a vector of observations. Some are qualitative
and some quantitative. For simplicity, we will assume all are quantitative. Then
the past data collected from the two sub-populations adjusted for inflation will
give mean values and variances and covariances for each sub-population. Let
f1(x) and f2(x) be the densities that represent the populations. If the popula-
tions are normal, f1 and f2 are uniquely determined by the mean vectors µ1

and µ2 and variance covariance matrices Σ1 and Σ2. Thus, an optimal proce-
dure is one that minimizes expected costs of misclassification. For example, if
population 1 corresponds to the honest and correct tax returns, then c12 = cost
of classifying 1 into 2 for auditing = audit costs. Now a tax audit procedure has
to decide which observations x have to be audited. Let (R, Rc) be a partition
of all observations into don’t audit, audit classifications. Then given the prior
ξ = (ξ1, ξ2) and R the expected cost is simply

c12ξ1

∫
Rc

f1(x) dx + c21ξ2

∫
R

f2(x) dx.

We could rewrite the same as

c12ξ1 +
∫

R

(c21ξ2f2 − c12ξ1f1) dx.
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Thus, when the integrand is less than zero on R the expected cost is minimized,
which is the same as saying that the optimal classification procedure R

∗ satisfies

R
∗ =
{

x :
c21ξ2

c12ξ1
≤ f1(x)

f2(x)

}
.

Equivalently, by taking logs, the procedure R
∗ reduces to

R
∗ =
{

x : log
f1(x)
f2(x)

≥ c

}
,

where c is known since c21, c12, ξ1, ξ2 are known.
If Σ1 = Σ2, log(f1/f2) to within some constant factor reduces to �(x) =

(µ1 − µ2)
T Σ−1x. This is the famous linear discriminant function of Fisher ([3],

[33]). The function �(x) is simply a linear combination of the xi’s for some
suitable weights wi’s. We have the following intuitive interpretation of the dis-
criminant function.

Each tax item i with reported xi is given a weight wi. The return is
not audited if

∑
wixi > c, otherwise an audit is suggested.

Of course, what is mathematically easily said is quite hard to implement. Even
statistical problems with cost coefficients, prior distributions, etc., are quite
difficult to compute exactly.

For example, when certain professions are hard hit by federal regulations, the
changes in the pattern of expenditures may not come through immediately. Say
that doctors and hospitals are being pressured to charge only a fixed amount
for a certain diagnostic treatment, then clearly the income of the profession is
much affected. The life style cannot be changed and the temptation to get away
from tax payments increases. One needs to study such complex phenomena with
suitable models. As the priors (ξ1, ξ2) will also change, we need to find suitable
models to analyze them.

4 A Need for Further Game Theoretic Refinement of
the Discriminant Function Approach

In the discriminant function approach, though the individual returns are clas-
sified into one of two sub-populations within each professional category, the
dynamics of tax evasion from tax year to tax year and the strategic audit manip-
ulations to curb the evasions are not at all captured by such a purely statisti-
cal model. Straightforward discriminant analysis ignores the strategic manipu-
lations of individual taxpayers, a key element in tax returns.

As a further refinement of the statistical discriminant function approach we
propose to formulate various game theoretic models of multistage games that
conceptually capture the essence of tax games between the IRS and individual
returns.

Before modelling in full generality, we will introduce the notion of a zero-sum
two-person stochastic game with two states and two actions for each player.
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A Stochastic Game with Two States and Two Actions Consider two
players playing one of the games A or B. In both games players secretly select
one of the numbers 1 or 2. Depending on their choices an immediate reward is
received by player I from player II. Their choices and the current game they
play determine which game will be played next time. The following is a simple
example of such a game:

A
5/A 0/B
0/B 3/A

B
4/B 0/A
2/A 1/B

Let player I secretly select one of the rows and II secretly select one of the
columns. If in A row 1 and column 2 are chosen, player I receives nothing and
the game moves to playing B next round. If in B row 2, column 1 are their
choices the game moves to A after a reward of 2 to player I from player II. The
payoff accrues and future payoffs are discounted at a fixed discount rate β. The
aim of player I is to maximize the total discounted payoff. The aim of player II
is to minimize the same. If xn is the payoff on the nth day,

∑∞
n=0 βnxn is the

total payoff where 0 < β < 1.
Shapley [38] proved the remarkable theorem that these games can be intelli-

gently played by locally randomizing the selection of rows in each matrix inde-
pendant of the history of the play leading to the given game. For example if
β = .8, the game value starting in A is approximately 6.79; in B it is approxi-
mately 5.43. A good strategy for I is to choose row 1 in matrix A with a chance
0.223 and to choose row 1 all the time in matrix B. Player II should choose
column 1 in A with chance 0.223 and column 2 all the time in matrix B.

5 A Simple Model of a Tax Return-Audit Game

Consider the population of professional engineers employed by engineering
firms. Suppose that from past auditing the IRS has a hunch that 10% of them
manipulate returns, while 90% are honest. Given a tax return x, the IRS can
compute the discriminant function which could decide whether to audit or not.
However, the IRS may have an initial perception on a return, which may cause
the agency to audit, even though the discriminant function may indicate the
opposite. Namely, besides the two actions available to the IRS, the perception
of the IRS is a variable which could vary from year to year depending on the
years past. This year’s data may not reveal it. Last year’s perception alone could
give some clue. Thus, the perception of the IRS can be thought of as states
of the game which, for example, can also vary between the two states: honest
and manipulating. Only an audit can make perceptional changes. Even if the
discriminant function favors auditing, it cannot be immediately implemented
for want of staff. One may have to manage with existing staff, which means
limiting thee auditing facility. In such a case, strategic selection of auditing
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may be the only alternative. Thus, we can think of a tax return as a game with
the following interpretation.

- Players: I - IRS, II - individual or firm filing tax return
- Pure strategies:

For player I: 1. audit 2. don’t audit
For player II: 1. honest return 2. cheat

- States:
A. IRS perceives a return as honest
B. IRS perceives a return as manipulating.

- Law of motion or transition probabilities:
If a return is not audited, then the perception of the IRS is the same as
it was the previous year. If an audit finds someone guilty of manipulation,
the perception changes from honest to manipulating. This is our stochastic
game. The other situations are given below as in our mathematical example
of a stochastic game. The perception of the IRS in states A and B is given
below:

state A = (honest)
Honest Manipulate

Audit
Don’t audit

[
a1/A b1/B
c1/A d1/A

]

State B = (manipulating)
Honest Manipulate

Audit
Don’t audit

[
a2/.5A b2/B
c2/B d2/B

]
For example, in state B, the IRS could perceive a taxpayer as being sus-
ceptible for manipulations even if the current audit finds no tax evasion on
the items audited. As a measure of deterrence, the IRS continues to view
any past tax violators with a 50:50 suspicion even after a current audit
finds them honest.

- Rewards:
In parlor games the immediate rewards are well defined simply by the rules
of the game. In modelling real problems as games the most thorny issue
is to define meaningful payoffs. In the case of tax returns, the actual tax
collected with or without audit can be taken to be the immediate payoff
corresponding to independent choices by the tax office and taxpayer. This
immediate payoff can be defined as the expected tax paid when not audited
and the expected tax collected with suitable fines imposed when audited
finds someone guilty or not guilty less audit costs.

First one needs to estimate the prior perception probabilities. The IRS will
have on k random persons, data x1, x2, . . . , xk on tax item i and y1, y2, . . . , yk
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on tax item j where i and j are independent deduction items and where the k
persons were audited for the first time. Let ξ1, ξ2, . . . , ξk and η1, η2, . . . , ηk be
the revised amount for the same two items after audit. Let x̄, ȳ, ξ̄, and η̄ be the
averages.

1
k

[
|i : xi − x̄ > 0, yi − ȳ > 0| −

∣∣i : ξi − ξ̄ < 0 or ηi − η̄ < 0
∣∣]

is a rough overestimate of the proportion of people who would have manipulated.
The credibility is maintained until an audit proves otherwise. The threat of

audit should always be on any person to discourage any future manipulation.
This is incorporated in the first row first column entry in matrix B. The game
is played as an ordinary stochastic game with discounted payoff. The above
model, though completely in line with a model of an ordinary stochastic game,
misses an important ingredient of our tax return problem.

Suppose a tax officer has two file cabinets to store all tax returns. Depending
on the current perception of the tax officer that a taxpayer is honest or cheating,
he stores honest ones in cabinet A and the rest in cabinet B. Thus the actual
cabinet in which one’s current tax return is saved will be known only to the tax
officer. A taxpayer can assume that his file is in file cabinet A when he has never
been audited. If a taxpayer was, after an audit, found cheating some time in
the past, even if he is found honest by later audits, the taxpayer cannot be sure
where his file will be stored by the officer. Thus, the taxpayer is often ignorant
of the current state (perception of the officer) of the stochastic game. Similarly,
if the taxpayer cheats, the tax office will not know this without auditing. Thus
the tax office is in general not fully informed about the past actions of the
taxpayer. Full information about the current state and past actions, namely
the partial history of the game is not fully known to both players. Currently,
all the standard existence theorems for zero-sum stochastic games assume full
information about past history of actions for both players. See [41].

6 Generalized Stochastic Game

A population Π is partitioned into n sub-populations π1, π2, . . . , πn. Player II
selects secretly a sub-population πj and chooses a random observation x from
πj . Only the observation x is revealed to player I. Independent of the observation
revealed, player I has a fixed prior distribution ξ = (ξ1, ξ2, . . . , ξn) on the sub-
population selected by player II. Initially player I selects secretly a Pi according
to ξ. Given the data x from πj unknown to player I, based on the observation
x revealed he computes a set Ai = i(x), a finite set of actions available in
Pi. Now he chooses secretly an action a ∈ i(x) and receives from player II an
immediate reward r (x, i, a) and the game moves to Pk from Pi with chance
q (k/i, x, a). Player II secretly chooses a new j and a random x′ from π′

j and
the x′ is revealed to player I. He computes possible actions Ak = k (x′) and
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selects an action a′ ∈ k (x′). Again he receives a reward r (x′, k, a′) and so on.
The payoff accrues each time and the future payoffs are discounted at a fixed
discount rate β, 0 < β < 1. The aim of player I is to maximize the expected
discount reward. The aim of player II is to minimize the same.

It will be convenient to motivate our above generalized stochastic game both
from the point of view of statistical decision theory (Wald [49], Blackwell and
Girshick [7], Ferguson [14] and multistage game theory (Filar and Vrieze [15]).
First we will set up the correspondence between our generalized stochastic game
and tax return-audit game. This is shown in Table 1.

Let A be the maximal finite set of all possible actions for all possible tax
returns. Suppose that the set A has � elements {a1, a2, . . . , a�}. For each x
one can associate a probability distribution

{
φs

1(x), φs
2(x), . . . , φs

�(x)
}

on the

exhaustive action space A = {a1, a2, . . . , a�} , where
�∑

i=1

φs
i (x) = 1. Here s is

the current perception of the IRS. Thus, we can associate a stationary strategy{
φs

1, φ
s
2, . . . , φs

�

}
on the action space A for each x and current perception s. Let

ψ1, ψ2, . . . , ψN be a probability distribution on {π1, π2, . . . , πN}. We are now
ready to state some open problems.

Problem 6.1. Does the generalized β-discounted stochastic game admit a
stationary optimal strategy for player I assuming the following conditions (1)–
(4)?

(1) The partition π = (π1, π2, . . . , πN ) is the same for both players.
(2) q (k/x, i, ai) is known to both players.
(3) The discriminant function i(x) and the associated norm violation resulting

in possible audit action set Ai = i(x) is known to player II, for each data x.
(4) The perception s of player I about player II is also known to player II.

Problem 6.2. When the data x comes from continuous densities correspond-
ing to π1, π2, . . . , πn and when the conditions of Problem 6.1 are satisfied, can
one replace the stationary strategies {φs

1(x), φs
2(x), . . . , φs

r(x)} by a pure strat-
egy? That is, given data x do we have a single action for each perception
Ps which is equivalent to {φs

1(x), φs
2(x), . . . , φs

r(x)} in the sense of equivalent
rewards?

In this context we want to recall the theorem of Dvoretsky, Wald, and Wolfowitz
[12] in statistical decision theory.

Theorem 6.1. Let Ω be a finite set of parameters representing states of
nature. Let A be a finite subset of R

n representing actions of a statistician. Let
f� for each � be a continuous density function. Let D be the space of deci-
sions where each d ∈ D is a map d : X → A where X is the sample space. Let
L (�, a) be a bounded measurable loss function. Then any randomized decision
φ : x → {φ1(x), φ2(x), . . . , φk(x)}, where φi(x) = the chance action i is taken
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Table 1: Correspondence between the two games.

Player I IRS

Player II Individual taxpayer
sub-populations
π1, π2, . . . , πn

Those within the professional group who manip-
ulate a specific set of tax items in the tax return.

P1, P2, . . . , Pn In the eyes of IRS possible sets of items that are
being manipulated by various types of persons in
the profession. (Partition according to perception
based on past data.)

Ai For perception Pi, the set of actions available to
IRS. (For example, if IRS suspects on, say, items
1) moving expenses and 2) charitable contribu-
tions. They may choose to audit on item 1, 2,
both or none. These are 4 possible actions.)

x = (x1, x2, . . ., xp) A vector of items filled in the tax return with
some of the xi’s as qualitative variables such as
marital status, filing status, etc.

i(x) With each tax data vector x, a set Ai of audit
actions that are needed to correct the norm viola-
tions, as found in the data via discriminant anal-
ysis. Whereas the perception of the IRS is based
on past tax returns by the taxpayer, the actions
at the current time are dictated by the current
discriminant function. Thus the importance of
the discriminant function lies in not just classify-
ing the observation, but also suggesting possible
audit actions, based on the current data.

q (k/x, i, a) The chance that the tax return x, with an initial
perception Pi and an action a ∈ Ai = i(x) by
IRS, changes the perception of the IRS from Pi

to the new perception Pk.
r (x, i, a) The actual tax collected when the return reports

data x, when the perception by IRS is Pi and
when action a is taken by the IRS.

β Discount factor accounting for inflation rate, etc.
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when x is observed, can be equivalently replaced by a pure decision d : x → A
in the sense that the expected risk r (�, d) = r (�, φ) for all � ∈ Ω.

Our Problem 6.2 is to extend this theorem in the context of our generalized
stochastic games.

7 Stochastic Games with Incomplete Information

From the point of view of our actual tax return-audit problem we need to handle
the more difficult problem of lack of information from either side.1 For example,
the perception Pi of the IRS is rarely known to player II, the taxpayer. Also
the law of motion q (k/s, x, ai) is unknown to the taxpayer. Actually, the the-
ory of stochastic games with incomplete information has few computable solu-
tions. The theory of structured stochastic games has many existence theorems
and efficient algorithms to compute value and optimal or equilibrium strate-
gies ([28],[48],[15],[30],[31]), and for structured repeated games (a very special
class of stochastic games) with incomplete information of a special type, one
has some existence theorems. However, there are very few computational tools.
See [23], [40], [41], [36], and [37] (this volume) in recent years. The researches in
the area of stochastic games with incomplete information that are close to our
model are the ones by Melolidakis [23] and Rosenberg, Solon, and Vieille [36].
We could call our tax return-audit problem a statistical extension of stochastic
games with incomplete information. In the next section, we will briefly discuss
the notation of stochastic games with lack of information and show what our
generalized stochastic game is with reference to this setup.

8 Games with Lack of Information on One Side

Games with incomplete information were pioneered by Harsanyi [20], and later
formulated in some precise mathematical models for certain special kinds of
information lags by Aumann and Maschler [5]. For more recent developments on
stochastic games with incomplete information, see Sorin [41]. For our tax model
what we will need is a certain subclass of games called stochastic games with lack
of information on one side (SGLIOS) in the sense of [23], an adaptation of the
Aumann–Maschler model for discounted and undiscounted stochastic games.

SGLIOS Model: A stochastic game with lack of information on one side con-
sists of:

(i) A set of m × n matrices S =
{
A1, A2, . . . , AN

}
called the “states” of the

game. We identify As with state s.
1 This critical aspect of the problem was first pointed out to the author by Professor
Ritzburger, of the Institute of Advanced Study, Vienna, Austria.
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(ii) A prior distribution ξ0 =
(
ξ0
1 , . . . , ξ0

N

)
on S.

(iii) A law of motion q (t/s, i, j) where the game moves to state t from state
s, when row i and column j are chosen secretly by the players in state s

resulting in an immediate payoff (As)ij = a
(s)
ij .

(iv) Player I alone knows the true state. Each time the choices i, j are revealed
to both players after the choices are made.

(v) The immediate payoff a
(s)
ij is kept secret from player II, though player I

knows the same.
(vi) The payoff is evaluated by discounting each time with a discount factor β

(0 < β < 1).

The following is the main theorem.

Theorem 8.1 (Melolidakis). Let Γ be a β-discounted stochastic game of the
above type SGLIOS. We can associate an ordinary stochastic game, Γ∗ where
player I has a pure optimal stationary strategy f∗ (ξ) and player II has a sta-
tionary optimal strategy g∗ (ξ). Here the game Γ∗ is played as follows. Let player
I, as in SGLIOS, use his usual information in selecting his behavioral strategy.
Unlike in Γ, here player II is informed of the posterior distribution at each stage
based on the state of the game, the actions of the player, and the law of motion.
One of the main observations of Melolidakis is that the value v (Γ) = v (Γ∗) ,
for player I loses nothing by revealing the posterior.

As player I knows all about the law of motion, prior, state of the game, etc.,
one can consider the following stochastic game.
Game Γ∗∗: Let the action space of I be {f(s) : s ∈ S} where f(s) is a mixed
strategy on the rows of As. Let the action space of II be the set {1, 2, . . . , N}.
Let the state space be all probability vectors in R

N . Let the law of motion Q
be q (./ξ, f, j) where the new prior at t is the posterior given f, j, To clearly
understand the new prior, as the posterior given the actions of the players in
the original game, we evaluate the posterior probability of the game to be in
state s, given the actions i, j of the two players. This is η (s/f, j, ξ) where for i
fixed the entry is

η (t/i, j, ξ) =
∑

s

q (t/s, i, j) fi(s)ξ(s)/
∑

s

fi(s)ξ(s).

r (ξ, f, j) =
∑

s

∑
i

ξ(s)fi(s)r (s, i, j) .

Here (As)ij = r (s, i, j). This is the stochastic game induced by SGLIOS. An
important observation is that the value of this stochastic game coincides with
the value of the original stochastic game.
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9 Similarities and Differences between the SGLIOS
and Our Tax Return-Audit Game

In our tax return game player I (the IRS) knows about the actual state (the
perception). The prior is also known to the IRS (based on past data). Instead
of a finite set of actions for player II, the selection involves a partition and the
selection of a random observation from a partitioned sub-population. While the
actual actions are revealed in SGLIOS, here only the data x and action i, corre-
sponding to the audit decision by the IRS, are known to each other. Whereas the
actual payoff is unknown to player I but the law of motion q (t/s, i, j) is known
in SGLIOS, here the actual payoff is known but the law of motion q (t/s, x, j)
corresponding to data x, action j and change of perception to t from s is kept
secret by the IRS. Intuitively the change of perception of the IRS about a tax-
payer is kept secret even though the audit resulting in tax payments is known
to both sides.

10 Some Thoughts on Norms for Audits and Some
Questions on Revealing Audit Policies

In a penetrating paper on deriving norms for income tax audits, Pond [29]
makes the following remarks: “There are always some, who through inadver-
tence or design, minimize their tax liability. Deductions offer one of the greatest
avenues for minimizing tax liability and it is evident that to be most success-
ful with the available staff, the audit program should concentrate on taxpayers
whose deductions are excessive in relation to others in a comparable income
classification. The first step in deriving the norms is to determine a frequency
distribution for each deduction “and” calculate the ratio of net income to gross
income! The carefully chosen tax returns for closer audit saves audit time with-
out losing tax arrears. Such carefully chosen returns represent 5/6 of the total
on all the cases. Since the audit agency was handling only 2/3 of all cases on
a nonselected basis and therefore only was producing 4/6 of the potential, the
application of norm method has an imputed gain of 25%.”

In a sense many statistically heuristic procedures are already perhaps adopted
by the IRS! As part of the deduction of Pond’s paper the first question raised
was whether it was possible for a taxpayer to become familiar with the selection
criteria and thus become able to evade taxes and be sure of escaping detection.
Two factors were seen mitigating against this: 1) The norms are kept secret, and
2) they are constantly being reevaluated. There was no general agreement on
how the norms were to be evaluated. Fault was found with putting emphasis on
assessment/cost ratio; the failure to audit in such cases might reduce voluntary
compliance within those groups.

In our opinion, the verbal language above and the discussions pertaining to
the problem of tax are in the spirit of multistage games. Thus a proper analysis



A Stochastic Game Model of Tax Evasion 411

of the problem via models of stochastic games is only desirable from both the
theoretical and practical points of view. Perhaps solutions to such models might
reveal answers to unanswered questions like the following.

Problem 10.1. Can the norms for auditing tax returns be made public?

An answer to Problem 10.1, though volatile, might still be valuable to look into
for suitable models. With reference to our formulated model, this is the same
as the following mathematical interpretation.

Problem 10.2. In our game with incomplete information if the state (IRS’s
perception) alone is kept secret, but not the actual law of motion of the game
and the discriminant function and the partition P1, P2, . . . , PM by the IRS, will
the value of the stochastic game change?

We could conceptually understand Problem 10.1 by modelling the game as the
following single controller stochastic game with incomplete information.

11 A Single Controller Game with Incomplete Information

Players I and II know that a population Π is a mixture of sub-populations
Π1,Π2, . . . ,Πn with densities f1(x), f2(x), . . . , fn(x), respectively. Player II
chooses secretly a j ∈ {1, 2, . . . , n} and then selects a random observation
x from Πj . The choice j is not revealed to player I. However, the randomly
selected observation x from density fj is revealed to player I. Player I has prior
ξ1, ξ2, . . . , ξn on his perceptions about the current choice of player II. We call
player I’s current perception the state of the game. The perception of player I
remains unchanged and stays at state s with probability l−φ(s), unknown to
player II (here 0 ≤ φ(s) ≤ 1). With probability φ(s) the perception of player I
changes to a new state k taking into account the posterior dictated by the data
x. Based on x, he selects an action i ∈ {1, 2, . . . , n} with probability ψi(x). In
the case i 	= j, player I receives a reward ci(s) from player II. In the case i = j
he receives an amount uj(x) from player II. The play continues with the pos-
terior as the new prior. The payoff accrues at a fixed discount rate β. The aim
of player I is to maximize the total discounted reward. The aim of player II is
to minimize the same.

We could convert the above model into the following single controller stochas-
tic game with incomplete information. We need to define immediate rewards
and transition probabilities.

Let q (k/s, ψ, j) = expected transition probability of the perception of player
I to move from perception s to perception k given the strategies ψ and j by
players I and II, respectively. Since the transition depends only on the posterior
and the preassigned norms for remaining in status quo or following the decision
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based on the data, we get

q (k/s, ψ, j) =

⎧⎨⎩ φ(s) ·
∫ [ ξkfk(x)∑

t ξtft(x)

]
· fj(x) dx, k 	= s

[1− φ(s)] + φ(s) ·
∫ [ ξsfs(x)∑

t ξtft(x)

]
· fj(x) dx, k = s.

Notice that ξkfk(x)/[
∑

t ξtft(x)] is the posterior probability given the data and
q gives the expected transition probability.

An important observation is that this transition probability q (k/s, ψ, j)
depends only on the action of player II. Since φ(s) is unknown to player II, the
actual law of motion is unknown to player II, although he controls the law of
motion! The expected immediate reward r (s, i, j) to player I can be written as

r (s, ψ, j) =
∫

Ω

⎛⎝∑
i�=j

ψi(x)ci(s)

⎞⎠ fj(x)dx +
∫

Ω

ψj(x)uj(x)fj(x)dx.

Thus, our problem reduces to an ordinary one player control game if the per-
ceptions of player I, uj , ci, ξi, etc., are common knowledge. Even if ci’s and φ’s
are known to player II, as long as the actual perception of player I about player
II is kept secret, the game will still be a single controller stochastic game with
lack of information on the law of motion for player II.

Thus we are led to the following problem.

Problem 11.1. Let Γ be a single controller stochastic game with reward
r (s, ψ, j) , transition probabilities q (k/s, j), and discount factor β, 0 < β < 1.
A prior distribution ξ on the states is chosen. Though the prior is known to
both players, the actual state is known only to player I.

The law of motion q (k/s, j) will be known to player I if action j of II is
known. Even if φ(s) is revealed to player II, only the law of motion will be
known to player II, but the true state s of the game will still be unknown to
player II. The reward r (s, ψ, j) is unknown to player I as he does not know j,
the choice of player II. If ci(s) is independent of s, the reward in each state is
r (ψ, j), which depends only on the actions of players I and II. Even in this case
the immediate payoff is unknown to either player as each one’s choice remains
secret in each round. A final case is when player II chooses a fixed j once and
for all and all he does from one round to the next is choose an independent
observation from the same density fj . This is the closest to the single control
games considered by Rosenberg, Solon, and Vieille [36]. In this case we are led to
the one player control game with known reward, but unknown law of motion for
the controlling player. The main problem is to find whether such games admit
value and, given the data, to solve for the value and good strategies if any.

This game captures the spirit of tax return-audit in the following sense. The
perceptions about a taxpayer by the IRS as honest, moderate, cheats on moving
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expenses, etc., have to be solely based on the data x the taxpayer submits and
the action he chooses to get x. Thus, his own actions essentially contribute
towards any changes in the perception of the IRS. The threat to keep him
obedient to tax laws needs the secrecy of the perception (state). The norms
governing the status of an audited taxpayer are captured by the function φ(s).
We will briefly summarize the research findings of some earlier models that are
found in the literature on public finance.

Generalized stochastic games: We have already described these games earlier.
To focus just on the mathematical formulation of these games, we need only to
modify our preceding formulation on stochastic games.

Generalized stochastic game: Players I and II play the following game. The
game has a finite number of states 1, 2, . . . , S. In each state player I has m
actions and player II has n actions. Player II selects an action j in state s. This
is revealed to a referee. The referee picks a random observation x according to
the density function fj(x) and reveals x to player I. Not knowing j, but knowing
x, player I selects an action i among his m actions. Then he receives an amount
r (s, i, x), and the game moves to a state k with chance q (k/s, i, j), and so on.
The payoff as before is the total discounted payoff. Here a stationary strategy
for player II is the same as before. However, a stationary strategy for player I is
of the type φs

i (x) where φs
i (x) = the chance action i is selected in state s when

observation x is given. It is a pure stationary strategy if φs
i (x) = 0 or 1 for each

x, s. The law of motion is common knowledge and the reward is known to both
players.

Our problem is to check whether the game has optimal stationary strategies:
Also, we are interested in the situation where the optimal stationary strategies
are replaceable by pure stationary optimals. We have already discussed the
special subclasses of such single controller games with incomplete information
as a model of our tax problem.

12 A Model of Tax Evasion as a Stochastic Game with
Incomplete Information on the States

Consider a population of taxpayers all belonging to a single professional cate-
gory. A tax return is simply a p-vector X = (X1, X2, . . . , Xp) with X1 as the
adjusted gross income and Xp as the tax due, as reported by the taxpayers in
their tax returns. Based on their past tax returns and past audit actions by
the IRS, the current tax returns are stratified and stored in S distinct file cabi-
nets 1, 2, . . . , S. In the perception of the IRS, based on most recent audits, the
returns stored in file cabinet j > i are viewed as higher-order tax violations
than those in file cabinet i. We will assume that, by an audit, the tax office can
always find out the true values (Y1, Y2, . . . , Yp) for a taxpayer’s tax return. If a
taxpayer resorted to, say, the kth level of tax violation, then his reported tax
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return will be taken to be a vector function of the true values defined by

Xt = φk
t (Y1, Y2, . . . , Yp), t = 1 . . . , p.

Let f1(x), f2(x), . . . , fS(x) be the joint density functions corresponding to
the reported tax dues of the population of tax returns in file cabinets 1, . . . , S.
We will often use the random variables (X1, Xp) with marginal joint densities
gj(x1, xp), j = 1, . . . , S. In general the tax office maintains secrecy of the loca-
tions of individual files, and information about the marginal densities and joint
densities of the returns stored in various file cabinets. When the IRS decides to
audit a tax return from file cabinet k, the taxpayer will be notified about the
current location k from where the return was chosen for audit.

Since the number of auditors is fixed, the tax office has to allocate the avail-
able auditing time A efficiently. An intuitive policy would be to rearrange the
files in each file cabinet i from the smallest to the largest values of R where

R =
Adjusted Gross income

Tax due
=

X1

Xp

and target the upper end among them, namely those for whom R > ρ for some
ρ chosen secretly by the tax office. Obviously, there should be many deductions
of various kinds to arrive at a relatively small tax, and the auditing hours will
be longer on such tax returns. Just because R is large one cannot immediately
conclude that the person is a cheater. The deductions could be genuine and the
person could be honest. It could have been a bad year for the taxpayer with
large hospital bills beyond insurance coverage. However, this ratio R is more
likely to exceed the given value ρ in a population of higher-order tax violators
than in a population of lower-order tax violators and in particular for honest
taxpayers. Therefore, for any random tax return Xj from file cabinet j, let Rj

denote the above-mentioned R value. Then for any random tax return Xi from
file cabinet i, P (Rj > ρ) ≥ P (Ri > ρ) if j > i.

A strategy for the tax office is to choose a threshold value ρ and to target for
audit all tax returns with R > ρ. Thus by the stochastic ordering assumption, a
greater proportion of tax returns from file cabinet j will be targeted than from
file cabinet i < j. For simplicity let us suppose the audit time to audit a tax
return with value R is cR. Let hi(r) be the density of the reported value of R
for the tax returns in the file cabinet i. Thus the expected audit time for file
cabinet i is given by

c

∫ ∞

ρ

rhi(r)dr = qi.

This will also immediately fix the total audit time for all file cabinets as∑
i

c

∫ ∞

ρ

rhi(r)dr =
∑

i

qi.
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Let ui(xp) denote the density of the random variable Xp representing the tax
amount on any random tax return from file cabinet i.

If by an audit the IRS comes to know that a taxpayer has indulged in a tax
violation of order k > i, then the IRS classifies the current and future returns
of the taxpayer in file cabinet k. If the audit reveals that the tax violation is
of order k < i, the IRS classifies the current return and future returns of this
taxpayer in file cabinet k. The following is the intuition for such a transition. If a
person’s return, either based on prior allocation or on recent audit was found to
be a tax violation of a certain order, when audited currently is found to be one
of a higher order, he/she deserves to be watched with immediate reclassification
with necessary caution. The persons who are found from current audit to be
improved with lower levels of violation are recognized for their acceptance of
law and order with a slight bit of reservation. When a tax return is not audited
the IRS loses tax on a taxpayer when he/she becomes a tax evader of a higher
order. However when a tax return from a taxpayer who has considerably toned
down from his/her original level of tax evasion is audited, the tax office incurs
higher cost due to unnecessarily prolonged auditing. The transition probability
based on the preceding intuitive principles can be defined as follows.

Let the transition probability be q(j/s, k, ρ) where s is the current location
(file cabinet) of the return from where the return with data X was picked for
audit using ρ strategy and found to be of violation level k. In case k ≥ s the
file is immediately transferred to file cabinet k with probability one. Suppose
that the audit reveals a violation level k < s; then with a small probability α
it is kept in the same file cabinet and with probability 1 − α it is moved to
file cabinet k. Thus if a tax return X from file cabinet s is audited and if the
taxpayer has chosen a tax violation level k currently, then the tax return moves
to state j with transition probabilities given by

q(j/s, k, ρ) = 1 if j = k and k ≥ s

= α if j = s and k < s

= 1− α if j = k and k < s.

Suppose that the audit strategy ρ is chosen by the IRS. If a taxpayer has
never been audited, then he can assume that his tax return is located in file
cabinets 1, 2, . . . , S with respective priors ξ1, ξ2, ξS . The priors are known to
all taxpayers. If a taxpayer was audited in the past, based on the most recent
audit he can evaluate the posterior probabilities for the current location of his
tax return.

The revenue for the IRS from a taxpayer will depend on the following:
• Was he ever audited and if so what was the violation level of the most

recent audit?
• Is he currently being audited?
• What is the current level of violation of the taxpayer?
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Suppose that the taxpayer chooses currently a level j = j(X) for tax violation.
Including the current year suppose he has never been audited. Since his return
could be from file cabinet i with stationary prior probability ξi it would have
escaped the current audit if the calculated R value X1/Xp < ρ. When it is
not audited, he pays only Xp. Since he has chosen level j, the tax return can
be thought of as a random observation from file cabinet j with density f j(x)
and with R < ρ. Thus the conditional expected payoff to the tax office given
that the tax return was in file cabinet i, and the current choice was j by the
taxpayer, and it escaped audit currently is given by∫ ∫

{(x1,xp):x1<xpρ}
xpg

j(x1, xp)dx1dxp.

Thus the expected income to the IRS from such a never-audited tax return is
given by ∑

j

ξj

∫ ∫
{(x1,xp):x1<xpρ}

xpg
j(x1, xp)dx1dxp.

Suppose that audit costs are w dollars per hour. The IRS charges a suitable
penalty for tax violations depending on the level of tax violation when audited.
Let each dollar due be multiplied by a penalty factor θk for tax returns audited
from file cabinet i found to be a tax violation of level k. If the IRS charges a
penalty proportional to the difference between the true tax due and reported
tax amount Xp specified in the tax return, then the net expected income to the
IRS from an audited tax return from file cabinet i with violation level k > i
is r(i, k) = θk(µ1 − µk) + µk − cw

∫∞
ρ

rgi(r)dr. Here gi(r) is the density of the
statistic R from file cabinet i and µi = expected tax from file cabinet i for
all files that escaped audit. Also θk > θk−1 · · · > θ1 = 1. In the case k < i,
and if the taxpayer is audited then the tax office finds that the taxpayer is
relatively reformed and the expected income to the tax office is θi(µ1 − µi) +
µi − cw

∫∞
ρ

rgi(r)dr. The expected income to the tax office with the ρ strategy
when the taxpayer in file cabinet i wants to choose tax violation level k is given
by

Pi(R < ρ)θi(µ1 − µi) + µi − cw

∫ ∞

ρ

rgi(r)dr

+ Pi(R > ρ)θk(µ1 − µk) + µk − cw

∫ ∞

ρ

rgi(r)dr.

If the tax form for a taxpayer has p items to fill in with numerical values, any
subset S among those items can be misrepresented by the taxpayer by deviating
from the true value. Suppose that the tax office can identify the deviated items
by audit; then the set of such deviators will constitute a sub-population with
a density function fS . In our model we assume that their tax returns are to be
stored in a file cabinet labelled S. When a tax office calls a taxpayer for audit,
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and spells out where they have doubts on the tax return, they essentially reveal
the label of the file cabinet from which this return is chosen for audit on the
labelled items. Given the information that a taxpayer’s file was stored in file
cabinet S, after the most recent audit, a simple class of pure strategies for the
taxpayer who wants to act like a random person from file cabinet A can be
generated by any scale vector a = (a1, a2, . . . , ap) that is used to fudge the true
data X and report it as Y = (Y1, . . . , Yp) where Yi = aiXi, i = 1, . . . , p and
A = {i : ai 	= 1}. Similarly, a simple pure strategy for the tax office is a choice
of ρ that selects in the first round all tax data whose R value exceed ρ. If there
are too many selected this way, a suitable stratified random sampling scheme
can be used to select the size that is manageable with existing audit resources.
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