
Behaviour Recognition using the Event Calculus

Alexander Artikis and George Paliouras

Abstract We present a system for recognising human behaviour given a symbolic
representation of surveillance videos. The input of our system is a set of time-
stamped short-term behaviours, that is, behaviours taking place in a short period
of time — walking, running, standing still, etc — detected on video frames. The
output of our system is a set of recognised long-term behaviours — fighting, meet-
ing, leaving an object, collapsing, walking, etc — which are pre-defined temporal
combinations of short-term behaviours. The definition of a long-term behaviour, in-
cluding the temporal constraints on the short-term behaviours that, if satisfied, lead
to the recognition of the long-term behaviour, is expressed in the Event Calculus.
We present experimental results concerning videos with several humans and objects,
temporally overlapping and repetitive behaviours.

1 Introduction

We address the problem of human behaviour recognition by separating low-level
recognition, detecting activities that take place in a short period of time — ‘short-
term behaviours’ — from high-level recognition, recognising ‘long-term behaviours’,
that is, pre-defined temporal combinations of short-term behaviours. In this paper
we present our work on high-level recognition. We evaluate our approach using an
existing set of short-term behaviours detected on a series of surveillance videos.

To perform high-level recognition we define a set of long-term behaviours of in-
terest — for example, ‘leaving an object’, ‘fighting’ and ‘meeting’ — as temporal
combinations of short-term behaviours — for instance, ‘walking’, ‘running’, ‘inac-
tive’ (standing still) and ‘active’ (body movement in the same position). We employ
the Event Calculus (EC) [6], a declarative temporal reasoning formalism, in order
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Table 1 Main Predicates of the Event Calculus.

Predicate Textual Description

happens( Act, T ) Action Act occurs at time T
initially( F=V ) The value of fluent F is V at time 0
holdsAt( F=V, T ) The value of fluent F is V at time T
holdsFor( F=V, Intervals ) The value of fluent F is V during Intervals
initiates( Act, F=V, T ) The occurrence of action Act at time T

initiates a period of time for which
the value of fluent F is V

terminates( Act, F=V, T ) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F is V

to express the definition of a long-term behaviour. More precisely, we employ EC to
express the temporal constraints on a set of short-term behaviours that, if satisfied,
lead to the recognition of a long-term behaviour.

The remainder of the paper is organised as follows. First, we present the Event
Calculus. Second, we describe the dataset of short-term behaviours on which we
perform long-term behaviour recognition. Third, we present our knowledge base
of long-term behaviour definitions. Fourth, we present our experimental results. Fi-
nally, we briefly discuss related work and outline directions for further research.

2 The Event Calculus

Our system for long-term behaviour recognition (LTBR) is a logic programming
implementation of an Event Calculus formalisation expressing long-term behaviour
definitions. The Event Calculus (EC), introduced by Kowalski and Sergot [6], is a
formalism for representing and reasoning about actions or events and their effects.
We present here the version of the EC that we employ (for more details see [2]).

EC is based on a many-sorted first-order predicate calculus. For the version used
here, the underlying time model is linear and it may include real numbers or integers.
Where F is a fluent — a property that is allowed to have different values at different
points in time — the term F =V denotes that fluent F has value V . Boolean fluents
are a special case in which the possible values are true and false. Informally, F =V
holds at a particular time-point if F =V has been initiated by an action at some
earlier time-point, and not terminated by another action in the meantime.

An action description in EC includes axioms that define, among other things,
the action occurrences (with the use of the happens predicate), the effects of actions
(with the use of the initiates and terminates predicates), and the values of the fluents
(with the use of the initially, holdsAt and holdsFor predicates). Table 1 summarises the
main EC predicates. Variables (starting with an upper-case letter) are assumed to be
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universally quantified unless otherwise indicated. Predicates, function symbols and
constants start with a lower-case letter.

The domain-independent definition of the holdsAt predicate is as follows:

holdsAt( F=V, T )←
initially( F=V ),
not broken( F=V, 0, T )

(1)

holdsAt( F=V, T )←
happens( Act, T ′ ),
T ′ < T,
initiates( Act, F=V, T ′ ),
not broken( F=V, T ′, T )

(2)

According to axiom (1) a fluent holds at time T if it held initially (time 0) and has not
been ‘broken’ in the meantime, that is, terminated between times 0 and T . Axiom
(2) specifies that a fluent holds at a time T if it was initiated at some earlier time T ′

and has not been terminated between T ′ and T . ‘not’ represents ‘negation by failure’
[3]. The domain-independent predicate broken is defined as follows:

broken( F=V, T1, T3 )←
happens( Act, T2 ),
T1 ≤ T2, T2 < T3,
terminates( Act, F=V, T2 )

(3)

F =V is ‘broken’ between T1 and T3 if an event takes place in that interval that ter-
minates F =V . A fluent cannot have more than one value at any time. The following
domain-independent axiom captures this feature:

terminates( Act, F=V, T )←
initiates( Act, F=V ′, T ),
V 6= V ′

(4)

Axiom (4) states that if an action Act initiates F =V ′ then Act also terminates F =V ,
for all other possible values V of the fluent F . We do not insist that a fluent must
have a value at every time-point. In this version of EC, therefore, there is a differ-
ence between initiating a Boolean fluent F = false and terminating F = true: the first
implies, but is not implied by, the second.

We make the following further comments regarding this version of EC. First, the
domain-independent EC axioms (1)–(4) specify that a fluent does not hold at the
time that was initiated but holds at the time it was terminated. Second, in addition to
the presented domain-independent definitions, the holdsAt and terminates predicates
may be defined in a domain-dependent manner. The happens, initially and initiates
predicates are defined only in a domain-dependent manner. Third, in addition to
axioms (1)–(4), the domain-independent axioms of EC include those defining the
holdsFor predicate, that is, the predicate for computing the intervals in which a fluent
holds. To save space we do not present here the definition of holdsFor; the interested
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reader is referred to the source code of the long-term behaviour recognition (LTBR)
system, which is available upon request.

3 Short-Term Behaviours: The CAVIAR Dataset

LTBR includes an EC action description expressing long-term behaviour defini-
tions. The input to LTBR is a symbolic representation of short-term behaviours.
The output of LTBR is a set of recognised long-term behaviours. In this paper we
present experimental results given the short-term behaviours of the first dataset of
the CAVIAR project1. This dataset includes 28 surveillance videos of a public space.
The videos are staged — actors walk around, browse information displays, sit down,
meet one another, leave objects behind, fight, and so on. Each video has been manu-
ally annotated in order to provide the ground truth for both short-term and long-term
behaviours.

For this set of experiments the input to LTBR is: (i) the short-term behaviours
walking, running, active and inactive, along with their time-stamps, that is, the frame
in which a short-term behaviour took place, (ii) the coordinates of the tracked people
and objects as pixel positions at each time-point, and (iii) the first time and the last
time a person or object is tracked (‘appears’/‘disappears’). Given this input, LTBR
recognises the following long-term behaviours: a person leaving an object, a person
being immobile, people meeting, moving together, or fighting.

Short-term behaviours are represented as EC actions whereas the long-term be-
haviours that LTBR recognises are represented as EC fluents. In the following sec-
tion we present example fragments of all long-term behaviour definitions.

4 Long-Term Behaviour Definitions

The long-term behaviour ‘leaving an object’ is defined as follows:

initiates( inactive(Object), leaving object(Person, Object)= true, T )←
holdsAt( appearance(Object) = appear, T ),
holdsAt( close(Person, Object, 30)= true, T ),
holdsAt( appearance(Person)=appear, T0 ),
T0 < T

(5)

initiates( exit(Object), leaving object(Person, Object)= false, T ) (6)

Axiom (5) expresses the conditions in which a ‘leaving an object’ behaviour is
recognised. The fluent recording this behaviour, leaving object(Person, Object), be-
comes true at time T if Object is inactive at T , Object ‘appears’ at T , there is a

1 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
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Person close to Object at T (in a sense to be specified below), and Person has ap-
peared at some time earlier than T . The appearance fluent records the times in
which an object/person ‘appears’ and ‘disappears’. The close(A,B,D) fluent is true
when the distance between A and B is at most D. The distance between two tracked
objects/people is computed given their coordinates. Based on our empirical analysis
the distance between a person leaving an object and the object is at most 30.

An object exhibits only inactive short-term behaviour. Any other type of short-
term behaviour would imply that what is tracked is not an object. Therefore, the
short-term behaviours active, walking and running do not initiate the leaving object
fluent. In the CAVIAR videos an object carried by a person is not tracked — only
the person that carries it is tracked. The object will be tracked, that is, ‘appear’,
if and only if the person leaves it somewhere. Consequently, given axiom (5), the
leaving object behaviour will be recognised only when a person leaves an object
(see the second line of axiom (5)), not when a person carries an object.

Axiom (6) expresses the conditions in which a leaving object behaviour ceases
to be recognised. In brief, leaving object is terminated when the object in question
is picked up. exit(A) is an event that takes place when appearance(A) = disappear.
An object that is picked up by someone is no longer tracked — it ‘disappears’ —
triggering an exit event which in turn terminates leaving object.

The long-term behaviour immobile was defined in order to signify that a person
is resting in a chair or on the floor, or has fallen on the floor (fainted, for example).
Below is (a simplified version of) an axiom of the immobile definition:

initiates( inactive(Person), immobile(Person)= true, T )←
happens( active(Person), T0 ),
T0 < T,
duration( inactive(Person), Intervals ),
(T, T1) ∈ Intervals,
T1 > T+54

(7)

According to axiom (7), the behaviour immobile(Person) is recognised if Person:
(i) has been active some time in the past, and (ii) stays inactive for more than 54
frames (we chose this number of frames given our empirical analysis of the CAVIAR
dataset). duration is a predicate computing the duration of inactive behaviour, that
is, the number of consecutive instantaneous inactive events. The output of duration
is a set of tuples of the form (s,e) where s is the time in which inactive(Person)
started and e is the time in which inactive(Person) ended. Note that this is not the
only way to represent durative events in EC. See [9] for alternative representations.

Axiom (7) has an additional constraint requiring that Person is not close to an
information display or a shop — if Person was close to a shop then she would have
to stay inactive much longer than 54 frames before immobile could be recognised.
In this way we avoid classifying the behaviour of browsing a shop as immobile. To
simplify the presentation we do not present here the extra constraint of axiom (7).

The definition of immobile includes axioms according to which immobile(Person)
is recognised if Person: (i) has been walking some time in the past, and (ii) stays in-
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active for more than 54 frames. We insist that Person in immobile(Person) has been
active or walking before being inactive in order to distinguish between a left object,
which is inactive from the first time it is tracked, from an immobile person.

immobile(Person) is terminated when Person starts walking, running or ‘disap-
pears’ — see axioms (8)–(10) below:

initiates( walking(Person), immobile(Person)= false, T ) (8)

initiates( running(Person), immobile(Person)= false, T ) (9)

initiates( exit(Person), immobile(Person)= false, T ) (10)

The following axioms represent a fragment of the moving behaviour definition:

initiates( walking(Person), moving(Person, Person2)= true, T )←
holdsAt( close(Person, Person2,34)= true, T ),
happens( walking(Person2), T )

(11)

initiates( walking(Person), moving(Person, Person2)= false, T )←
holdsAt( close(Person, Person2, 34)= false, T ) (12)

initiates( active(Person), moving(Person, Person2)= false, T )←
happens( active( Person2 ), T ) (13)

initiates( running(Person), moving(Person, Person2)= false, T ) (14)

initiates( exit(Person), moving(Person, Person2)= false, T ) (15)

According to axiom (11) moving is initiated when two people are walking and are
close to each other (their distance is at most 34). moving is terminated when the
people walk away from each other, that is, their distance becomes greater than 34
(see axiom (12)), when they stop moving, that is, become active (see axiom (13))
or inactive, when one of them starts running (see axiom (14)), or when one of them
‘disappears’ (see axiom (15)).

The following axioms express the conditions in which meeting is recognised:

initiates( active(Person), meeting(Person, Person2)= true, T )←
holdsAt( close(Person, Person2, 25)= true, T ),
not happens( running(Person2), T )

(16)

initiates( inactive(Person), meeting(Person, Person2)= true, T )←
holdsAt( close(Person, Person2, 25)= true, T ),
not happens( running(Person2), T )

(17)

meeting is initiated when two people ‘interact’: at least one of them is active or
inactive, the other is not running, and the distance between them is at most 25.
This interaction phase can be seen as some form of greeting (for example, a hand-
shake). meeting is terminated when the two people walk away from each other, or
one of them starts running or ‘disappears’. The axioms representing the termina-
tion of meeting are similar to axioms (12), (14) and (15). Note that meeting may
overlap with moving: two people interact and then start moving, that is, walk while
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being close to each other. In general, however, there is no fixed relationship between
meeting and moving.

The axioms below present the conditions in which fighting is initiated:

initiates( active(Person), fighting(Person, Person2)= true, T )←
holdsAt( close(Person, Person2, 24)= true, T ),
not happens( inactive(Person2), T )

(18)

initiates( running(Person), fighting(Person, Person2)= true, T )←
holdsAt( close(Person, Person2, 24)= true, T ),
not happens( inactive(Person2), T )

(19)

Two people are assumed to be fighting if at least one of them is active or running, the
other is not inactive, and the distance between them is at most 24. We have specified
that running initiates fighting because, in the CAVIAR dataset, moving abruptly,
which is what happens during a fight, is often classified as running. fighting is ter-
minated when one of the people walks or runs away from the other, or ‘disappears’
— see axioms (20)–(22) below:

initiates( walking(Person), fighting(Person, Person2)= false, T )←
holdsAt( close(Person, Person2, 24)= false, T ) (20)

initiates( running(Person), fighting(Person, Person2)= false, T )←
holdsAt( close(Person, Person2, 24)= false, T ) (21)

initiates( exit(Person), fighting(Person, Person2)= false, T ) (22)

Under certain circumstances LTBR recognises both fighting and meeting — this
happens when two people are active and the distance between them is at most 24.
This problem would be resolved if the CAVIAR dataset included a short-term be-
haviour for abrupt motion, which would be used (instead of the short-term behaviour
active) to initiate fighting, but would not be used to initiate meeting.

5 Experimental Results

We present our experimental results on 28 surveillance videos of the CAVIAR
project. These videos contain 26419 frames that have been manually annotated in
order to provide the ground truth for short-term and long-term behaviours. Table
2 shows the performance of LTBR — we show, for each long-term behaviour, the
number of True Positives (TP), False Positives (FP) and False Negatives (FN), as
well as Recall and Precision.

LTBR correctly recognised 4 leaving object behaviours. Moreover, there were
no FP. On the other hand, there was 1 FN. This, however, cannot be attributed to
LTBR because in the video in question the object was left behind a chair and was
not tracked. In other words, the left object never ‘appeared’, it never exhibited a
short-term behaviour.
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Table 2 Experimental Results.

Behaviour True Positive False Positive False Negative Recall Precision

leaving object 4 0 1 0.8 1
immobile 9 8 0 1 0.52
moving 16 12 1 0.94 0.57
meeting 6 3 3 0.66 0.66
fighting 4 8 2 0.66 0.33

Regarding immobile we had 9 TP, 8 FP and no FN. The recognition of immobile
would be much more accurate if there was a short-term behaviour for the motion
of leaning towards the floor or a chair. Due to the absence of such a short-term
behaviour, the recognition of immobile is primarily based on how long a person is
inactive. In the CAVIAR videos a person falling on the floor or resting in a chair
stays inactive for at least 54 frames. Consequently LTBR recognises immobile if,
among other things, a person stays inactive for at least 54 frames (we require that
a person stays inactive for a longer time period if she is located close to a shop to
avoid FP when a person is staying inactive browsing a shop). There are situations,
however, in which a person stays inactive for more than 54 frames and has not fallen
on the floor or sat in a chair: people watching a fight, or just staying inactive waiting
for someone. It is in those situations that we have the FP concerning immobile. We
expect that in longer videos recording actual behaviours (as opposed to the staged
behaviours of the CAVIAR videos) a person falling on the floor or resting in a chair
would be inactive longer than a person staying inactive while standing. In this case
we could increase the threshold for the duration of inactive behaviour in the defini-
tion of immobile, thus potentially reducing the number of FP concerning immobile.

LTBR recognised correctly 16 moving behaviours. However, it also recognised
incorrectly 12 such behaviours. Half of the FP concern people that do move together:
walk towards the same direction while being close to each other. According to the
manual annotation of the videos, however, these people do not exhibit the moving
long-term behaviour. The remaining FP fall into two categories. First, people walk
close to each other as they move to different directions — in such a case the dura-
tion of a FP is very short. We may eliminate these FP by adding a constraint that
the duration of moving is greater than a specified threshold. Second, the short-term
behaviours of people fighting are sometimes classified as walking. Consequently,
the behaviour of these people is incorrectly recognised by LTBR as moving since,
according to the manual annotation of the CAVIAR dataset, they are walking while
being close to each other (moreover, their coordinates change). Introducing a short-
term behaviour for abrupt motion would resolve this issue, as abrupt motion would
not initiate moving.

LTBR did not recognise 1 moving behaviour. This FN was due to the fact that
the distance between the people walking together was greater than the threshold we
have specified. Increasing this threshold would result in substantially increasing the
number of FP. Therefore we chose not to increase it.
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LTBR recognised 9 meeting behaviours, 6 of which took place and 3 did not take
place. 2 FP concerned fighting behaviours realised by people being active and close
to each other. As mentioned in the previous section, in these cases LTBR recog-
nises both meeting and fighting. The third FP was due to the fact that two people
were active and close to each other, but were not interacting. LTBR did not recog-
nise 3 meeting behaviours. 2 FN were due to the fact that the distance between the
people in the meeting was greater than the threshold we have specified. If we in-
creased that threshold LTBR would correctly recognise these 2 meeting behaviours.
However, the number of FP for meeting would substantially increase. Therefore we
chose not to increase the threshold distance. The third FN was due to the fact that
the short-term behaviours of the people interacting — handshaking — were clas-
sified as walking (although one of them was actually active). We chose to specify
that walking does not initiate a meeting in order to avoid incorrectly recognising
meetings when people simply walk close to each other.

Regarding fighting we had 4 TP, 8 FP and 2 FN. The FP were mainly due to the
fact that when a meeting takes place LTBR often recognises the long-term behaviour
fighting (as well as meeting). LTBR did not recognise 2 fighting behaviours because
in these two cases the short-term behaviours of the people fighting were classified
as walking (recall the discussion on the recognition of moving). We chose to specify
that walking does not initiate fighting. Allowing walking to initiate fighting (pro-
vided, of course, that two people are close to each other) would substantially in-
crease the number of FP for fighting, because fighting would be recognised every
time a person walked close to another person.

6 Discussion

We presented our approach to behaviour recognition. As demonstrated by the pre-
sented experiments, the use of EC allows for the development of a recognition sys-
tem capable of dealing with, among other things, durative (short-term and long-
term) behaviours, temporally overlapping, repetitive, and ‘forbidden’ behaviours,
that is, behaviours that should not take place within a specified time-period in order
to recognise some other behaviour (see [9, 8] for presentations of the expressiveness
of EC). Furthermore, the availability of the full power of logic programming, which
is one of the main attractions of employing EC as the temporal formalism, allows for
the development of behaviour definitions including complex temporal and atempo-
ral constraints. The majority of behaviour recognition systems (see [5, 4, 11, 10, 7]
for a few well-known examples) employ less formal and less expressive formalisms
to represent the properties of behaviours. For example, the well-known chronicle
recognition system2 (a ‘chronicle’ can be seen as a long-term behaviour) does not
support any form of spatial reasoning and thus cannot be directly used for behaviour
recognition in video surveillance applications. Our approach for more expressive be-

2 http://crs.elibel.tm.fr/
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haviour definitions leads to the recognition of more complex behaviours. Although
the practicality of our approach, in terms of real-time recognition, remains to be
investigated — this is an area of current research — the presented work can, at the
very least, be applied to post-mortem analysis. A thorough comparison of our work
with related research is not possible in the available space — such a comparison will
be presented elsewhere.

We outline two directions for future research. First, we plan to perform behaviour
recognition using datasets exhibiting a finer classification of short-term behaviours
— for instance, explicitly representing abrupt motion. Second, we aim to employ
inductive logic programming (ILP) techniques for fine-tuning in an automated way
behaviour definitions (see, for example, [1] for an application of ILP techniques on
EC formalisations).
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