
Dynamic Protocols for Open Agent Systems

Alexander Artikis1 2

1Institute of Informatics & Telecommunications, NCSR “Demokritos”, Athens, 15310, Greece
2Electrical & Electronic Engineering Department, Imperial College London, SW7 2BT, UK

a.artikis@acm.org

ABSTRACT
Multi-agent systems where the members are developed by
parties with competing interests, and where there is no ac-
cess to a member’s internal state, are often classified as
‘open’. The specification of protocols for open agent systems
of this sort is largely seen as a design-time activity. More-
over, there is no support for run-time specification modifi-
cation. Due to environmental, social, or other conditions,
however, it is often required to revise the specification dur-
ing the protocol execution. To address this requirement, we
present an infrastructure for ‘dynamic’ protocol specifica-
tions, that is, specifications that may be modified at run-
time by agents. The infrastructure consists of well-defined
procedures for proposing a modification of the ‘rules of the
game’ as well as decision-making over and enactment of pro-
posed modifications. We evaluate proposals for rule modifi-
cation by modelling dynamic specifications as metric spaces.
Furthermore, we constrain the enactment of proposals that
do not meet the evaluation criteria. We illustrate our infras-
tructure by presenting a dynamic specification of a resource-
sharing protocol, and an execution of this protocol in which
the participating agents modify the protocol specification.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Design

Keywords
organised adaptation, norm, action language

1. INTRODUCTION
A particular kind of Multi-Agent System (MAS) is one

where the member agents are developed by different parties,
and where there is no access to an agent’s internal state.
In this kind of MAS it cannot be assumed that all agents
will behave according to the system specification because
the agents act on behalf of parties with competing inter-
ests, and thus may inadvertently fail to, or even deliberately
choose not to, conform to the system specification in order to

Cite as: Dynamic Protocols for Open Agent Systems, Alexander Artikis,
Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

achieve their individual goals. Two examples of this type of
MAS are Virtual Organisations and electronic marketplaces.
MAS of this type are often classified as ‘open’.

Open MAS can be viewed as instances of normative sys-
tems [11]. A feature of this type of system is that actuality,
what is the case, and ideality, what ought to be the case, do
not necessarily coincide. Therefore, it is essential to specify
what is permitted, prohibited, and obligatory, and perhaps
other more complex normative relations that may exist be-
tween the agents. Among these relations, considerable em-
phasis has been placed on the representation of institutional
power [12] — a standard feature of any normative system
whereby designated agents, when acting in specified roles,
are empowered by an institution to create specific relations
or states of affairs (such as when an agent is empowered by
an institution to award a contract and thereby create a bun-
dle of normative relations between the contracting parties).

Several approaches have been proposed in the literature
for the specification of protocols for open MAS. The major-
ity of these approaches offer ‘static’ specifications, that is,
there is no support for run-time specification modification.
In some open MAS, however, environmental, social or other
conditions may favour, or even require, specifications modi-
fiable during the protocol execution. Consider, for instance,
the case of a malfunction of a large number of sensors in
a sensor network, or the case of manipulation of a voting
procedure due to strategic voting, or when an organisation
conducts its business in an inefficient manner. Therefore, we
present in this paper an infrastructure for ‘dynamic’ proto-
col specifications, that is, specifications that are developed
at design-time but may be modified at run-time by agents.
The presented infrastructure is an extension of the frame-
work for static specifications of [3], and is motivated by ‘dy-
namic argument systems’ [5] — argument systems in which,
at any point in the disputation, agents may start a meta
level debate, that is, the rules of order become the current
point of discussion, with the intention of altering these rules.

Our infrastructure for dynamic specifications allows agents
to alter the rules of a protocol P during the protocol execu-
tion. P is considered an ‘object’ protocol; at any point in
time during the execution of the object protocol the partici-
pants may start a ‘meta’ protocol in order to decide whether
the object protocol rules should be modified. Moreover, the
participants of the meta protocol may initiate a meta-meta
protocol to decide whether to modify the rules of the meta
protocol, or they may initiate a meta-meta-meta protocol to
modify the rules of the meta-meta protocol, and so on.

We employ a resource-sharing protocol to illustrate our



Table 1: Main Predicates of the Event Calculus.
Predicate Meaning

happens(Act , T ) Action Act occurs at time T

initially(F = V ) The value of fluent
F is V at time 0

holdsAt(F = V , T ) The value of fluent
F is V at time T

initiates(Act , F = V , T ) The occurrence of action Act
at time T initiates a period of
time for which the value of
fluent F is V

terminates(Act , F = V , T ) The occurrence of action Act
at time T terminates a period
of time for which the value of
fluent F is V

infrastructure for dynamic specifications: the object proto-
col concerns resource-sharing while the meta protocols are
voting protocols. In other words, at any time during a
resource-sharing procedure the agents may vote to change
the rules that govern the management of resources. The
resource-sharing protocol was chosen for the sake of pro-
viding a concrete example. In general, the object protocol
may be any protocol for open MAS, such as a protocol for
coordination or e-commerce; similarly a meta protocol can
be any procedure for decision-making over rule modification
(argumentation, negotiation, and so on).

The remainder of this paper is organised as follows. First,
we briefly review the Event Calculus, the action language
that we employ to formalise protocol specifications. Sec-
ond, we review a static specification of a resource-sharing
protocol. Third, we present a dynamic specification of the
resource-sharing protocol and an infrastructure for modi-
fying the protocol specification at run-time. Fourth, we
present an execution of the protocol, demonstrating how
the agents may alter the protocol specification. Finally, we
compare our work to research on dynamic specifications, and
discuss further research.

2. THE EVENT CALCULUS
The Event Calculus (EC), introduced by Kowalski and

Sergot [14], is a formalism for representing and reasoning
about actions or events and their effects in a logic program-
ming framework. In this section we briefly describe the ver-
sion of the EC that we employ. EC is based on a many-
sorted first-order predicate calculus. For the version used
here, the underlying time model is linear and it may include
real numbers or integers. Where F is a fluent (a property
that is allowed to have different values at different points
in time), the term F = V denotes that fluent F has value
V . Boolean fluents are a special case in which the possible
values are true and false. Informally, F = V holds at a par-
ticular time-point if F = V has been initiated by an action
at some earlier time-point, and not terminated by another
action in the meantime.

An action description in EC includes axioms that define,
among other things, the action occurrences (with the use of
happens predicates), the effects of actions (with the use of
initiates and terminates predicates), and the values of the flu-
ents (with the use of initially and holdsAt predicates). Table
1 summarises the main EC predicates. Variables (starting
with an upper-case letter) are assumed to be universally

Figure 1: A chaired floor control protocol.

quantified unless otherwise indicated. Predicates, function
symbols and constants start with a lower-case letter.

The following sections present a logic programming im-
plementation of an EC action description expressing an in-
frastructure for a dynamic resource-sharing protocol.

3. A RESOURCE-SHARING PROTOCOL
We present a specification of a resource-sharing or floor

control protocol in the style of [3]. In the field of Computer-
Supported Co-operative Work the term floor control denotes
a service guaranteeing that at any given moment only a des-
ignated set of users (subjects) may simultaneously work on
the same objects (shared resources), thus, creating a tem-
porary exclusivity for access on such resources. We present
a ‘chair-designated’ Floor Control Protocol (cFCP), that is,
a distinguished participant is the arbiter over the usage of a
specific resource. For simplicity we assume a single resource.

The roles of cFCP are summarised below:
• Floor Control Server (FCS), the role of the only par-

ticipant physically manipulating the shared resource.
• Subject (S), the role of designated participants request-

ing the floor from the chair, releasing the floor, and
requesting from the FCS to manipulate the resource.
• Chair (C ), the role of the participant assigning the

floor for a particular time period to a subject, extend-
ing the time allocated for the floor, and revoking the
floor from the subject holding it.

Figure 1 provides an informal description of the possible
interactions between the agents occupying the roles of cFCP.
More details about these interactions will be given presently.

It has been argued [12] that the specifications of protocols
for open MAS should explicitly represent the concept of in-
stitutional power, that is, the characteristic feature of organ-
isations/institutions — legal, formal, or informal — whereby
designated agents, often when acting in specific roles, are
empowered, by the institution, to create or modify facts of
special significance in that institution — institutional facts
— usually by performing a specified kind of act. Searle [17],
for example, has distinguished between brute facts and in-
stitutional facts. Being in physical possession of an object
is an example of a brute fact (it can be observed); being
the owner of that object is an institutional fact. The cFCP
specification explicitly represents the concept of institutional
power; moreover, there is a distinction between institutional
power, physical capability, permission and obligation. Ta-
ble 2 presents the conditions in which a cFCP participant
has the physical capability, institutional power, permission
and obligation to perform an action (to save space Table 2
displays only three protocol actions).

According to the cFCP specification all protocol actions



Table 2: cFCP Specification.

Action Capability Power Permission Obligation

request floor(S , C , M ) > f requested(S) = false > ⊥
assign floor(C , S) > status = free, status = free, status = free,

best candidate = S best candidate = S best candidate = S

revoke floor(C ) > status = granted(S , Tg) status = granted(S , Tg), status = granted(S , Tg),

CurrentTime ≥ Tg , CurrentTime ≥ Tg , CurrentTime ≥ Tg ,

best candidate 6= S best candidate 6= S best candidate = S ′, S 6= S ′

are physically possible at any time. In other examples the
specification of physical capability could have been different.

In this example, a subject S is empowered to request the
floor from the chair C when S has no pending requests:

holdsAt(pow(S , request floor(S , C , M )) = true, T )←
holdsAt(role of (S) = subject , T ),
holdsAt(role of (C ) = chair , T ),
holdsAt(f requested(S) = false, T )

(1)

The variable M in request floor represents the requested
type of resource manipulation. The pow fluent expresses in-
stitutional power, the role of (Ag) fluent expresses the roles
an agent Ag occupies, while the f requested(Ag) fluent is
true if Ag has pending requests for the floor. To avoid clut-
ter, in Table 2 we do not display the role of fluents and
assume that S denotes an agent occupying the role of sub-
ject and C denotes an agent occupying the role of chair.

Having specified the institutional power to request the
floor, it is now possible to define the effects of this action:
a request for the floor is eligible to be serviced if and only
if it is issued by an agent with the institutional power to
request the floor. Requests for the floor issued by agents
without the necessary institutional power are ignored. Due
to space limitations, we do not present here the EC axioms
expressing the effects of protocol actions (we show only one
such axiom below).

We chose to specify that a subject is always permitted to
exercise its power to request the floor. Moreover, a subject
S is permitted to request the floor even if S is not empow-
ered to do so (see Table 2). In the latter case a request for
the floor will be ignored by the chair (since S was not em-
powered to request the floor) but S will not be sanctioned
since it was not forbidden to issue the request. In general,
an agent is sanctioned when performing a forbidden action
or not complying with an obligation. To save space, we do
not present a specification of sanctions for cFCP. Finally, a
subject is never obliged to request the floor.

The chair’s power to assign the floor is defined as follows:

holdsAt(pow(C , assign floor(C , S)) = true, T )←
holdsAt(role of (C ) = chair , T ),
holdsAt(status = free, T ),
holdsAt(best candidate = S , T )

(2)

The chair C is empowered to assign the floor to S if the
floor is free, and S is the best candidate for the floor. The
status fluent expresses the status of the floor; it can be ei-
ther free or granted(S , Tg), that is, granted to some sub-
ject S until time Tg . The best candidate fluent denotes the
best candidate for the floor. The definition of this fluent is
application-specific. For instance, the best candidate could

be the one with the earliest request, that with the most ‘ur-
gent’ request (however ‘urgent’ may be defined), and so on.
There is no difficulty in expressing such definitions in the
formalism employed here. Indeed, the availability of the full
power of logic programming is one of the main attractions
of employing EC as the temporal formalism.

The effects of assigning the floor are expressed as follows:

initiates(Act , status = granted(S , T+60 ), T )←
Act = assign floor(C , S),
holdsAt(pow(C , Act) = true, T )

(3)

The result of exercising the power to assign the floor to S at
time T is that the floor becomes granted to S until T+60.
In other versions of the specification (as we shall see later)
the floor could be allocated for a longer/shorter period.

The conditions in which the chair is permitted and obliged
to assign the floor are the same as the conditions in which
the chair is empowered to assign the floor (see Table 2).

Similarly we specify the power, permission and obligation
to perform the remaining protocol actions, and the effects
of these actions. For instance, the chair’s power to revoke
the floor is defined as follows:

holdsAt(pow(C , revoke floor(C )) = true, T )←
holdsAt(role of (C ) = chair , T ),
holdsAt(status = granted(S , Tg), T ), T ≥ Tg ,
not holdsAt(best candidate = S , T )

(4)

The chair C is empowered to revoke the floor if the floor is
granted to a subject S until time Tg , the current time is
greater or equal to Tg , and S is not the best candidate for
the floor. ‘not’ represents negation by failure.

The specification of the power, permission or obligation
to revoke the floor, assign the floor, or perform some other
protocol action, should include a deadline stating the time
by which the action of revoking the floor, assigning the floor,
etc, should be performed. There is no particular difficulty
in including deadlines in the formalisation but it lengthens
the presentation and is omitted here for simplicity. Example
formalisations of deadlines may be found in [3].

4. A DYNAMIC RESOURCE-SHARING
PROTOCOL

Being motivated by Brewka [5], we present an infrastruc-
ture that allows agents to modify (a subset of) the rules of
a protocol at run-time. Regarding our running example, we
consider the resource-sharing protocol as an ‘object’ proto-
col; at any point in time during the execution of the object
protocol the participants may start a ‘meta’ protocol in or-
der to potentially modify the object protocol rules — for
instance, replace an existing rule-set with a new one. The



Figure 2: A k-level Infrastructure for Dynamic Spec-
ifications.

meta protocol may be any protocol for decision-making over
rule modification. For the sake of presenting a concrete ex-
ample, we chose a voting procedure as a meta protocol, that
is, the meta protocol participants take a vote on a proposed
modification of the object protocol rules. The participants
of the meta protocol may initiate a meta-meta protocol to
modify the rules of the meta protocol, or they may initi-
ate a meta-meta-meta protocol to modify the rules of the
meta-meta protocol, and so on. For simplicity, in this ex-
ample all meta protocols are voting procedures (in other sys-
tems each meta protocol may be a different decision-making
procedure). In general, in a k-level infrastructure, level 0
corresponds to the main (resource-sharing, in this example)
protocol while a protocol of level n, 0<n≤k−1 (voting, in
this example), is created, by the protocol participants of a
level m, 0≤m<n, in order to decide whether to modify the
protocol rules of level n−1. The infrastructure for dynamic
(resource-sharing) specifications is displayed in Figure 2.

Apart from object and meta protocols, the infrastructure
for dynamic specifications includes ‘transition’ protocols —
see Figure 2 — that is, procedures that express, among other
things, the conditions in which an agent may successfully ini-
tiate a meta protocol (for instance, only the members of the
board of directors may successfully initiate a meta protocol
in some organisations), the roles that each meta protocol
participant will occupy, and the ways in which an object
protocol is modified as a result of the meta protocol inter-
actions. The components of the infrastructure for dynamic
specifications, level 0 protocol, level n protocol (n>0), and
transition protocol, are discussed in the following sections.

4.1 Level 0
For illustration purposes we chose a resource-sharing pro-

tocol — the specification of which was presented in Section
3 — as a level 0 protocol. A protocol specification consists
of the core rules that are always part of the specification,
and the Degrees of Freedom (DoF ), that is, the specification
components that may be modified at run-time. Consider, for
instance, the definition of the best candidate for the floor as
a DoF: the participants of the resource-sharing protocol may
decide, at run-time, to change the way the best candidate
is computed. To provide a simple example, consider the
following rules:

holdsAt(best candidate = S , T )←
holdsAt(active(bc) = fcfs, T ),
holdsAt(requests = List , T ),
first(List , (S , Tr , M ))

(5)

holdsAt(best candidate = S , T )←
holdsAt(active(bc) = random, T ),
holdsAt(requests = List , T )
random(List , (S , Tr , M ))

(6)

The above two rules provide simple, alternative specifica-
tions of what constitutes the best candidate for the floor,
that is, they are two possible ‘values’ of the best candidate
DoF. According to rule (5) the best candidate is the subject
with the earliest pending request for the floor, while accord-
ing to rule (6) the best candidate is chosen randomly from
the list of subjects that have pending requests. The requests
fluent provides a list of the pending requests for the floor,
each request represented as a triple (subject , request−time,
manipulation−type), while first and random are suitably
chosen atemporal predicates returning, respectively, the first
and a random element of a list of requests (this list is sorted
by request time). The active(DoF ) fluent denotes the cur-
rent or ‘active’ value of a DoF. For instance, active(bc) = fcfs
states that the best candidate (bc) is determined on a first-
come, first-served (fcfs) basis whereas active(bc) = random
states that the best candidate is chosen randomly. Rules (5)
and (6) are replaceable in the sense that the participants
of the resource-sharing protocol may activate/deactive one
of them at run-time (that is, change the value of the corre-
sponding active fluent) by means of a meta protocol.

The resource-sharing protocol may have other DoF, such
as the specification of the permission and the obligation to
perform an action. The classification of a specification com-
ponent as a DoF is application-specific.

4.2 Level n
To provide a concrete example we chose a three-level in-

frastructure for dynamic specifications. Moreover, both lev-
els 1 and 2 are voting procedures, such as that presented in
[16]. Due to space limitations we do not present here a spec-
ification of a voting procedure. Briefly, we assume a simple
procedure including a set of voters casting their votes, ‘for’
or ‘against’ a particular motion, which would be in this ex-
ample a proposed modification of the rules of level n−1, and
a chair counting the votes and declaring the motion carried
or not carried, based on the standing rules of the voting
procedure — simple majority, two-thirds majority, etc.

Our infrastructure allows for the modification of the rules
of all protocol levels apart from the top one. Consequently,
we define DoF for all protocol levels apart from the top one.
For the protocol of level 1 — voting — we chose to set as
a DoF the standing rules of the voting procedure. In other
words, a level 2 protocol may be initiated in order to decide
whether level 1 voting should become, say, simple majority
instead of two-thirds majority. Note that the voting proce-
dures of levels 1 and 2 may not always have the same set of
rules. For example, at a particular time-point level 2 vot-
ing may require a simple majority whereas level 1 voting
may require a two-thirds majority (as mentioned above, the
standing rules of level 1 constitute a DoF and thus the speci-
fication of this part of the protocol may change at run-time).

Each protocol level, including level 0, has its own state;
for instance, at a particular time-point agent Ag1 may have
the institutional power to vote in level 1 but have no powers
in levels 0 and 2, Ag2 may occupy the role of subject in
level 0 and the role of voter in level 1 (role-assignment in a
meta protocol will be discussed presently), etc. In order to
distinguish between the states of different protocol levels, we



add a parameter in the representation of actions and fluents
of all protocol specifications, expressing the protocol level
PL, as follows: role of (Ag , PL) expresses the set of roles Ag
occupies in level PL, active(DoF , PL) expresses the value of
DoF in level PL, etc.

4.3 Transition Protocol
In order to modify the protocol rules of level m, m≥0

(for example, to change the value of the best candidate DoF
from fcfs to random), that is, in order to start a protocol
of level m+1 , the participants of level m need to follow a
‘transition’ protocol — see Figure 2. The infrastructure for
dynamic specifications presented in this paper requires two
types of transition protocol: one leading from the resource-
sharing protocol to a voting one (level 0 to level 1 or 2),
and one leading from one voting protocol to the other (level
1 to level 2). We will only present the first type of transi-
tion protocol; the latter type of protocol may be specified in
a similar manner. An example transition protocol leading
from resource-sharing to voting is the following: a subject of
the resource-sharing protocol proposes a modification of the
rules of this protocol (or of the rules of level 1). If the subject
is empowered to make such a proposal, then the modification
is directly accepted, without the execution of a meta proto-
col, provided that another subject seconds the proposal, and
no other subject objects to that proposal. If the proposal is
not seconded then it is ignored. If the proposal is seconded
and there is an objection then an argumentation procedure
commences, the topic of which is the proposed rule modifi-
cation, the proponent of the topic is the subject that made
the proposal, and the opponent is the subject that objected
to the proposal. The argumentation procedure is followed
by a meta protocol (level 1 or 2) in which a vote is taken on
the proposed rule modification.

In this example transition protocol we have specified the
power to propose a rule-set replacement as follows:

holdsAt(pow(Ag , propose(Ag , P)) = true, T )←
P = replace(DoF , OldVal , NewVal , PL),
holdsAt(role of (Ag , 0 ) = subject , T ),
holdsAt(protocol(PL+1 ) = idle, T ),
holdsAt(active(DoF , PL) = OldVal , T )

(7)

An agent Ag is empowered to propose to change the value
of DoF in protocol level PL from OldVal to NewVal if:
• Ag occupies the role of subject in level 0. In this ex-

ample, the chair is not empowered to propose a modi-
fication of the protocol rules.
• There is no protocol taking place in level PL+1 . A

protocol for modifying the rules of level PL, that is, a
protocol of level PL+1 , may commence only if there
is no other protocol of level PL+1 taking place.
• The value of DoF in level PL is OldVal .

A proposal for rule modification needs to be seconded by
a subject having the institutional power to second the pro-
posal, in order to be directly enacted, or initiate an argu-
mentation procedure, that is followed by a voting procedure.
We chose to specify the power to second a proposal for rule
modification as follows:

holdsAt(pow(Ag , second(Ag , P)) = true, T )←
holdsAt(role of (Ag , 0 ) = subject , T ),
holdsAt(proposal(Ag ′, P) = true, T ), Ag 6= Ag ′

(8)

Ag is empowered to second any proposal for rule modifica-
tion P made by some other subject. The proposal fluent

records proposals made by empowered agents.
In other examples the specification of the power to pro-

pose a rule modification, or second such a proposal, could
have different, or additional conditions further constraining
how a protocol specification may change at run-time. For in-
stance, in some systems an agent would not have the power
to propose a rule modification, or second a proposal, that
would create some type of protocol inconsistency. In Section
4.4 we present a way of constraining the process of run-time
specification modification. Other ways of achieving that,
such as the one described above, could have been formalised
(see Section 6).

We have specified that any subject is empowered to object
to a proposal for rule modification. Exercising the power to
object to a proposal for rule modification initiates an ar-
gumentation procedure, the topic of which is the proposed
modification. To save space we do present here a specifica-
tion of an argumentation procedure; see [2] for an example
formalisation of such a procedure.

The completion of the argumentation taking place in the
context of a transition protocol initiates a meta protocol.
The latter protocol is a voting procedure concerning a pro-
posed rule modification. The agents participating in this
procedure and the roles they occupy are determined by the
transition protocol that results in the voting procedure. We
chose to specify that the chair of the resource-sharing proto-
col becomes the chair of the voting procedure. Furthermore,
the agents occupying the role of voter, thus having the power
to vote, are the subjects that have not been sanctioned for
exhibiting ‘anti-social’ behaviour, that is, performing forbid-
den actions or not complying with obligations:

holdsAt(role of (Ag , PL) = voter , T )←
holdsAt(role of (Ag , 0 ) = subject , T ),
holdsAt(protocol(PL) = executing , T ), PL > 0 ,
holdsAt(sanctions(Ag) = false, T )

(9)

The value of protocol(PL) becomes executing , in the case
where PL > 0, at the end of the argumentation of the
transition protocol that leads to level PL. We chose not
to relativise the fluent recording sanctions to a protocol
level. Therefore, the sanctions fluent records ‘anti-social’
behaviour exhibited at any protocol level. Depending on
the employed treatment of sanctions, ‘anti-social’ behaviour
may be permanently recorded, thus permanently depriving
a subject of participating in a meta level, or it may be tem-
porarily recorded, thus enabling subjects to participate in
a meta level after a specified period has elapsed from the
performance of forbidden actions or non-compliance with
obligations.

The fact that an agent may successfully start a protocol of
level m+1 by proposing a modification of the protocol rules
of level m, does not necessarily imply that the rules of level
m will be modified. It is only if the motion of level m+1,
that is, the proposed rule modification in level m, is carried
that the rules of level m will be modified. Consider the
following rule expressing the outcome of a voting procedure
of level m+1 that takes place in order to change the value
of DoF in level m from OldVal to NewVal :

initiates(Act , active(DoF , PL) = NewVal , T )←
Act = declare(C , Motion, carried , PL+1 ),
Motion = replace(DoF , OldVal , NewVal , PL),
holdsAt(pow(C , Act) = true, T )

(10)



Exercising the power to declare the motion carried in level
PL+1 results in setting the value of DoF in level PL to
NewVal , if the motion was the replacement of OldVal with
NewVal . If the chair of the voting procedure did not declare
the motion carried, or was not empowered to make the dec-
laration, then the value of DoF would not have changed in
level PL. To save space we do not present here the specifi-
cation of the power to make a declaration.

4.4 Constraining the Process of Run-time
Specification Modification

As already mentioned, all protocol levels apart from the
top one have DoF and, therefore, their specification may be
modified at run-time. In this section we present a way of
evaluating a proposal for protocol modification. Moreover,
we present a way of constraining the enactment of proposals
that do not meet the evaluation criteria.

A protocol specification with l DoF creates an l-dimensio-
nal specification space where each dimension corresponds to
a DoF. A point in the l-dimensional specification space, or
specification point, represents a complete protocol specifica-
tion, and is denoted by an l-tuple where each element of the
tuple expresses a value of a DoF. Consider, for example, the
resource sharing protocol with three DoF: the specification
of the best candidate, the power to request the floor, and
the floor allocation time. The specification of these three
protocol features may change at run-time — for instance,
the best candidate may be determined randomly, on a first-
come, first-served basis, priority may be given to subjects re-
questing a particular manipulation type, or to subjects that
have not been sanctioned. The specification of the power to
request the floor may dictate that a subject is empowered to
request the floor if it has no pending requests, or it may be
that a subject is always empowered to request the floor. Fi-
nally, in this example, the floor may be allocated for 60, 120
or 180 time-points. In the resource-sharing example with
these three DoF, a specification point s is, for instance:

s = (fcfs, anytime, 120 )

According to the above specification point, the best candi-
date is determined on first-come, first-served basis (fcfs),
a subject is empowered to request the floor at any time
(anytime), and the floor is allocated for 120 time-points.

We evaluate a proposal for protocol modification by mod-
elling a dynamic protocol specification as a metric space [6].
More precisely, given the set of specification points of a pro-
tocol, we define a ‘desired’ specification point, and compute
the ‘distance’ between the desired point and the specifica-
tion point that would be reached if the proposal for protocol
modification was accepted (‘resulting’ point). We constrain
the process of run-time protocol modification by forbidding
agents to propose a modification in a way that the result-
ing specification point is ‘far’ from the desired point. In
what follows we describe when a specification point is con-
sidered ‘desired’, the way we compute the distance between
two specification points, and the way we forbid agents to
propose protocol modifications.

A desired specification point is a tuple of the desired DoF
values. A desired specification point for the resource-sharing
protocol could be one where the best candidate is deter-
mined on a first-come, first-served basis, the power to re-
quest the floor depends on whether a subject has pending
requests, and the floor allocation time is 60 time-points.

We follow two steps to compute the distance between two
specification points s and s′, each represented as an l-tuple,
where each element of the tuple expresses a DoF value.
First, we transform s and s′ to l-tuples of non-negative in-
tegers qs and qs′ respectively. To achieve that we define an
application-specific function v, that ‘ranks’ each DoF value,
that is, associates every DoF value with a non-negative in-
teger. The i-th element of qs, qsi, has the value of v(si),
where si is the i-th element of s (respectively, the i-th ele-
ment of qs′, qs′

i, has the value of of v(s′
i), where s′

i is the
i-th element of s′). Second, we employ a metric (or dis-
tance function), such as the Manhattan metric, to compute
the distance between qs and qs′ (the choice of a metric is
application-specific — see [6] for a list of metrics). Depend-
ing on the employed metric, we may add weights on the DoF
— for instance, we may require that the computation of the
distance between qs and qs′ is primarily based on the best
candidate DoF rather than the other two DoF. The distance
between s and s′ is the distance between qs and qs′.

We constrain run-time protocol modification as follows:

holdsAt(per(Ag , propose(Ag , P)) = true, T )←
holdsAt(pow(Ag , propose(Ag , P)) = true, T ),
P = replace(DoF , OldVal , NewVal , PL),
holdsAt(dofValuesExcept(DoF , PL) = List , T ),
holdsAt(distance(List ∪ [(DoF , NewVal)], PL) = Dist , T ),
holdsAt(threshold(PL) = TDist , T ),
Dist < TDist

(11)
The per(Ag , Act) fluent expresses whether Ag is permitted
to perform Act . The dofValuesExcept(DoF , PL) fluent re-
turns a list of the degrees of freedom of level PL, except DoF ,
and their current values. The distance fluent calculates the
distance between a given specification point (the first argu-
ment of the fluent) and the desired specification point in
level PL. distance includes a logic programming implemen-
tation of a chosen metric. The threshold fluent returns the
maximum distance that a specification point should have
from the desired one in level PL. Different protocol levels
may have different threshold values, different metrics and
different desired specification points. According to axiom
(11), an agent is permitted to propose a rule modification
if it is empowered to propose a rule modification, and the
distance between the resulting specification point and the
desired one is less than a specified threshold. In this exam-
ple, an agent is forbidden to propose a rule modification if
these conditions are not satisfied.

Similarly we may express the permission to second a pro-
posal for rule modification or the obligation to object to
such a proposal. To further constrain the process of run-
time specification modification, when the current specifica-
tion point is too ‘far’ from the desired one (say twice the
distance given by threshold), we could impose the obligation
to propose a rule modification in a way that the resulting
specification point is ‘close’ to the desired one. Due to space
limitations we do not present here such an obligation.

What constitutes a ‘desired’ specification point often de-
pends on environmental, social or other conditions. Conse-
quently, we need to allow for the possibility that a desired
specification point may change during a protocol execution.
Similarly, we need to allow for the possibility that the metric
with which the distance between two specification points is
computed, and the threshold distance, may change at run-
time. Changing the desired specification point, metric and



Table 3: Narrative of Events.

Time Action

0 request floor(s1 , c, cpu, 0 )
5 request floor(s2 , c, cpu, 0 )
6 request floor(s3 , c, cpu, 0 )
8 request floor(s5 , c, cpu, 0 )
14 propose(s3 , replace(sr , 3/4m, sm, 1 ))
16 object(s1 , replace(sr , 3/4m, sm, 1 ))
17 second(s5 , replace(sr , 3/4m, sm, 1 ))

<transition protocol argumentation>
28 vote([s2 , s3 , s4 , s5 , s6 ], for , 2 )
30 vote(s1 , against , 2 )
31 declare(c, carried , 2 )
35 propose(s5 , replace(bc, fcfs, random, 0 ))
36 second(s3 , replace(bc, fcfs, random, 0 ))
39 object(s2 , replace(bc, fcfs, random, 0 ))

<transition protocol argumentation>
51 vote([s3 , s4 , s6 ], for , 1 )
53 vote([s1 , s2 ], against , 1 )
54 declare(c, carried , 1 )
58 assign floor(c, s3 , 0 )

threshold distance, may be achieved in a manner similar to
run-time rule modification.

5. ANIMATION
We illustrate our infrastructure for dynamic specifications

by animating an example run of the dynamic resource-sharing
protocol. A part of the narrative of events of this run is
displayed in Table 3. The events of transition protocols
(propose, second , object), level 1 and level 2 protocols (vote
and declare) are indented. The last argument of a level
0, 1 and 2 event indicates the protocol level in which the
event took place. Recall that the resource-sharing proto-
col (level 0) includes three DoF (see Section 4.4). Initially,
the best candidate is determined on a first-come, first-served
basis (see rule (5)), the power to request the floor depends
on whether a subject has pending requests, and the floor
allocation time is 60 time-points. Level 1 voting has a sin-
gle DoF: the standing rules (sr). Initially, a 75% majority
(3/4m) is required. In this example run, the initial specifi-
cation points of levels 0 and 1 happen to coincide with the
initial desired specification points of these levels. Level 2
voting does not have a DoF; moreover, a 75% majority is
required. The Euclidean metric is used in levels 0 and 1.

Given that our infrastructure is expressed as a logic pro-
gram, we may query our implementation to determine the
state current at each time and protocol level. We may cal-
culate, for instance, which roles each agent occupies, what
powers, permissions, obligations each agent has, etc.

The present example includes 7 agents, a chair c and 6
subjects s1 –s6 . In the beginning of the run-time activities
s1 , s2 , s3 and s5 exercise their power to request the floor,
all of them requiring CPU cycles (see third argument of
request floor). s3 and s5 aim to change the best candidate
DoF from fcfs to random because in this way they may ac-
quire access to the resource faster. Before attempting to
change the value of the best candidate DoF, s3 and s5 at-
tempt to change the standing rules of level 1 voting from
75% majority to simple majority (sm), so that less votes
would be required in level 1 when they propose to change
the value of best candidate DoF. The proposal for chang-

ing the standing rules of level 1 takes place at time-point
14. At that time s3 is empowered to make the proposal (see
rule (7)), and permitted to exercise its power (see rule (11))
because the distance, in level 1, between the resulting spec-
ification point and the desired one is less than the specified
threshold. Effectively the specified threshold distance allows
agents to change level 1 standing rules to simple majority.
s3 ’s proposal is followed by an objection, a secondment, and
an argumentation. Then level 2 voting commences; the mo-
tion is the proposal for modifying the standing rules of level
1. s2 –s6 vote for the motion while s1 votes against it. At
time-point 31 the motion of level 2 is declared carried (recall
that level 2 requires 75% majority) and thus the standing
rules of level 1 change to simple majority (see rule (10)). To
avoid clutter in Table 3 we omit the motion in declare.

s5 proposes at time-point 35 to change value of the best
candidate DoF to random. s5 is empowered to make the
proposal at that time. However, s5 is not permitted to ex-
ercise its power because the distance, in level 0, between the
resulting specification point and the desired one is greater
than the specified threshold. Consequently, s5 is sanctioned
for performing a forbidden action and thus cannot partici-
pate in level 1 to vote (see rule (9)). s3 , s4 and s6 vote for
the motion of level 1 — the proposal for changing the best
candidate DoF of level 0 — while s1 and s2 vote against it.
At time 54 the motion of level 1 is declared carried (recall
that level 1 now requires a simple majority) and thus the
best candidate in level 0 is chosen randomly from the list of
subjects having pending requests (see rule (6)). At time 58
c exercises its power (see rule (2)) to assign the floor to s3 .

6. DISCUSSION
We presented a significant extension of [3, 1]: we de-

veloped an infrastructure for dynamic protocol specifica-
tions for open MAS, that is, specifications that are devel-
oped at design-time but may be modified at run-time by
agents. Moreover, we modelled dynamic specifications as
metric spaces in order to evaluate proposals for specification
modification and constrain the enactment of proposals that
do not meet the evaluation criteria. Any protocol for open
MAS may be in level 0 of our infrastructure whereas any
protocol for decision-making over specification modification
may be in level n, n>0. The transition protocols linking
the different protocol levels can be as complex/simple as
required by the application in question.

The use of metric spaces for modelling dynamic specifica-
tions was proposed in [13]. In this line of work a protocol is
evaluated by computing the distance between the specifica-
tion point current at each time and the desired point. Our
works differs in two ways from [13]. First, we developed an
infrastructure (meta protocols, transition protocols) allow-
ing for run-time specification point change. Second, we con-
strained the process of run-time specification point change
by requiring that the specification point current at each time
is ‘close’ to the desired one.

Bou and colleagues [4] have presented a mechanism for the
run-time modification of the norms of an ‘electronic institu-
tion’. These researchers have proposed a ‘normative tran-
sition function’ that maps a set of norms (and goals) into
a new set of norms. The ‘institutional agents’, representing
the institution, are observing the members’ interactions in
order to learn the normative transition function, so that they
(the institutional agents) will directly enact the norms en-



abling the achievement of the ‘institutional goals’ in a given
scenario. Unlike Bou and colleagues, we do not necessarily
rely on designated agents to modify norms. We presented an
infrastructure with which any agent may (attempt to) adapt
a protocol specification. This does not exclude the possibil-
ity, however, that, in some applications, specific agents are
given the institutional power to directly modify a protocol
specification.

Chopra and Singh [7] have presented a way of adapting
protocols according to context, or the preferences of agents
in a given context. They formalise protocols and ‘transform-
ers’, that is, additions/enhancements to an existing protocol
specification that handle some aspect of context or prefer-
ence. Depending on the context or preference, a protocol
specification is complemented, at design-time, by the ap-
propriate transformer thus resulting in a new specification.
Unlike Chopra and Singh, we are concerned here with the
run-time adaptation of a protocol specification and, there-
fore, we developed an infrastructure to achieve that.

Chopra and Singh, and Bou and colleagues, express proto-
cols in terms of ‘commitments’ (here the term ‘commitment’
refers to a form of directed obligation). It is difficult to see
how an interaction protocol for open MAS can be specified
simply in terms of commitments. At the very least, a spec-
ification of institutional power is also required.

The Organisational Model for Adaptive Computational
Systems (OMACS) [8] is another approach for dynamic MAS.
OMACS concentrates mainly on re-organisation from the
perspective of a functional assignment — the assignment of
goals and roles to agents — whereas we emphasise, like Bou
and colleagues, a different perspective, aimed at achieving a
mapping from norms to norms, that is, the rules which reg-
ulate, among other things, the process of performing such a
functional assignment. In general, we have been concerned
with a particular aspect of ‘adaptation’: the run-time mod-
ification of the ‘rules of the game’ of normative systems.
Clearly there are other aspects of adaptive/dynamic systems
such as the run-time alteration of the (trading and other)
relationships between agents, the members of a system, the
assignment of roles to agents (as done in OMACS, for exam-
ple), and the goals of a system. [15, 10, 19] and the papers
in [9] are but a few examples of studies of adaptive systems.

Our approach for evaluating proposals for specification
modification, that is, modelling dynamic specifications as
metric spaces, is computationally efficient — computing the
distance between two specification points may be performed
in real-time even when there is a large number of DoF —
and flexible — agents may change at run-time the desired
specification point or the metric. There are several appli-
cations, however, where additional constraints are required
on the process of run-time specification modification. For
example, it may be required that a protocol specification
always satisfies a set of properties (‘norm consistency’, for
instance). In this case agents may not be empowered, or per-
mitted, to propose a modification resulting in a specification
that does not satisfy the desirable properties. We are cur-
rently investigating formalisms (such as that presented in
[18]), supported by software implementations allowing for
proving properties and assimilating narratives of events in
an efficient manner.

7. REFERENCES
[1] A. Artikis, D. Kaponis, and J. Pitt. Dynamic

specifications of norm-governed systems. In

V. Dignum, editor, Multi-Agent Systems: Semantics
and Dynamics of Organizational Models. IGI, 2009.

[2] A. Artikis, M. Sergot, and J. Pitt. An executable
specification of a formal argumentation protocol.
Artificial Intelligence, 171(10–15):776–804, 2007.

[3] A. Artikis, M. Sergot, and J. Pitt. Specifying
norm-governed computational societies. ACM
Transactions on Computational Logic, 10(1), 2009.

[4] E. Bou, M. López-Sánchez, and J. Rodriguez-Aguilar.
Using case-based reasoning in autonomic electronic
institutions. In Proceedings of COIN Workshop, LNCS
4870, pages 125–138. Springer, 2008.

[5] G. Brewka. Dynamic argument systems: a formal
model of argumentation processes based on situation
calculus. Journal of Logic and Computation,
11(2):257–282, 2001.

[6] V. Bryant. Metric Spaces. Cambridge University
Press, 1985.

[7] A. Chopra and M. Singh. Contextualizing
commitment protocols. In Proceedings of AAMAS,
pages 1345–1352. ACM, 2006.

[8] S. DeLoach, W. Oyenan, and E. Matson. A
capabilities-based model for adaptive organizations.
Autonomous Agents and Multi-Agent Systems,
16(1):13–56, 2008.

[9] V. Dignum, editor. Multi-Agent Systems: Semantics
and Dynamics of Organizational Models. IGI, 2009.

[10] M. Hoogendoorn, C. Jonker, M. Schut, and J. Treur.
Modeling centralized organization of organizational
change. Computational & Mathematical Organization
Theory, 13(2):147–184, 2007.

[11] A. Jones and M. Sergot. On the characterisation of
law and computer systems: the normative systems
perspective. In Deontic Logic in Computer Science,
pages 275–307. J. Wiley and Sons, 1993.

[12] A. Jones and M. Sergot. A formal characterisation of
institutionalised power. Journal of the IGPL,
4(3):429–445, 1996.

[13] D. Kaponis and J. Pitt. Dynamic specifications in
norm-governed open computational societies. In
Proceedings of ESAW Workshop, LNCS 4457, pages
265–283. Springer, 2007.

[14] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67–96, 1986.

[15] C. Martin and K. S. Barber. Adaptive
decision-making frameworks for dynamic multi-agent
organizational change. Autonomous Agents and
Multi-Agent Systems, 13(3):391–428, 2006.

[16] J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting
in multi-agent systems. Computer Journal,
49(2):156–170, 2006.

[17] J. Searle. What is a speech act? In A. Martinich,
editor, Philosophy of Language, pages 130–140. Oxford
University Press, third edition, 1996.

[18] M. Sergot. Action and agency in norm-governed
multi-agent systems. In Proceedings of ESAW VIII,
LNAI 4995, pages 1–54. Springer, 2008.

[19] Y. Shoham and M. Tennenholtz. On the emergence of
social conventions: modeling, analysis and simulations.
Artificial Intelligence, 94(1-2):139–166, 1997.


