
Agent Communication Transfer Protocol
Alexander Artikis, Jeremy Pitt and Christos Stergiou

Intelligent & Interactive Systems Group
Department of Electrical & Electronic Engineering

Imperial College of Science, Technology and Medicine
Exhibition Road, London, SW7 2BT, UK

+44-(0)207-59.46316
{a.artikis, j.pitt, c.stergiou} @ic.ac.uk

ABSTRACT
The idea of agent-oriented middleware is to support high-level 
communication between computational processes like agents. 
Such communication requires an interaction protocol, an agent 
communication language and a transfer protocol. This paper 
focuses on the third requirement and presents the framework, 
design and implementation of an Agent Communication Transfer 
Protocol (ACTP). The ACTP is an application layer protocol 
designed to facilitate communication between heterogeneous 
agents. In particular, we show how the ACTP supports various 
ways of communication, logical abstraction of the communication 
process, platform-independence, a naming convention, reliability 
in message transfers and a degree of flexibility. In conclusion, we 
suggest that the ACTP contains the right reliability, flexibility and 
generality to support high-level interoperability in agent 
communications and therefore can be useful for standardization in 
FIPA compliant platforms.

Keywords
Agent-Oriented Middleware, Agent Communication Protocols, 
Multi-Agent Systems, Software Agents, Agent Conversations,
Transfer Protocols.

1. INTRODUCTION
Communication is the sine qua non of multi-agent systems. Inter-
agent communication requires knowledge of an interaction 
protocol, an agent communication language (ACL), and a transfer 
protocol [1]. In previous work, we developed a general framework 
for designing ACLs and interaction protocols [10], [11]. In this 
paper, we concentrate on the third requirement, the transfer 
protocol.
Our starting point is the observation that humans use multiple 
channels for communication, and if one fails, we try another (e.g. 
with no reply to a phone call, we may send e-mail). If we seek to 
support higher-level communication between agents rather than 
processes, some of the same flexibility should be seen, without 
forgetting that we are essentially dealing with a mechanistic 

interaction.
Reviewing different alternatives for combining high-level 
flexibility with mechanical efficiency, we find that:

• network protocols or protocols in distributed computing are 
too inefficient for the purposes of intelligent agents [1];

• although a number of different agent frameworks are 
available, specifically designed for inter-agent 
communication, there appears to be no architecture that 
combines alternative ways for message and data transfer in 
an efficient way; 

• almost all protocols impose a number of constraints on the 
agents that can use them, requiring agent-level customization 
on the part of the developer.

Our proposed solution is the Agent Communication Transfer 
Protocol (ACTP), which is an application layer protocol that 
combines various features of existing communication protocols 
with a number of innovative ones. The purpose of implementing 
the ACTP was to support agent-oriented middleware with the 
following facilities:

• Support for various kinds of communication and data 
transfer. Agents are able to interact in a synchronous as well 
as an asynchronous manner. The choice of having 
conversations in a one-way or a bi-directional fashion is 
offered.

• Logical abstraction of the communication process. Agents 
view the whole data and message transfer process as a black 
box. In addition, agents that use the ACTP run on any 
platform and no constraints are imposed on their 
functionality.

• The use of a name. The agent that sends a message denotes 
the peer agent not by its physical address, but by its name. It 
is up to the transmission system to convert this name to a 
physical address.

• Reliability of transfer. The ACTP is resilient to failures and 
it informs the agents with appropriate messages about each 
type of error that may occur. In the case of multiple failures, 
the ACTP uses many different methods of communication to 
ensure a successful data transfer.

• A degree of flexibility in the handling of interactions. The 
ACTP will take into account the history of previous 
interactions when dealing with future communications.

In section 2, we define a general framework of the Agent 
Communication Transfer Protocol. Section 3 describes the design 
of the ACTP using UML. Based on this object-oriented design, 



section 4 illustrates the implementation of this protocol along with 
its special features, like the abstraction of the communications, the 
ability of direct interactions and the use of alternative protocols in 
the case of failures. Section 5 contains the evaluation and testing 
of the ACTP illustrating its visualization and a failure scenario. 
Finally, we discuss related and future work and draw some 
conclusions. These include the standards that the ACTP has set 
and indicate that agent-oriented middleware should support a 
significant degree of flexibility, reliability and interoperability.

2. THE GENERAL FRAMEWORK
The details of the networking layers that lie below the primitive 
communicative acts of the ACLs are hidden from the agent. The 
ACTP manipulates the application protocols taking under 
consideration the dependencies that exist among them. The 
protocols that the ACTP uses in order to carry out the agent 
communication have several relationships between them. These 
relationships play a key role in the design of ACTP and are 
illustrated in figure 1.
The bottom layer represents all protocols that the hardware 
provides. The second layer from the bottom is the Internet Layer 
and contains the IP or IPv6. It also includes the error and control 
message protocol ICMP. The two basic protocols of the Transport 
Layer are the TCP and the UDP. The Real Time Protocol (RTP) 
and the Resource Reservation Protocol (RSVP) also reside in the 
same layer. As presented in figure 1, the Application Layer 
illustrates the dependencies among the various application 
protocols. Each enclosed rectangle corresponds to an application 
protocol and resides directly above the protocols that it uses.

APPLICATION
LAYER

HOST-TO-
HOST

TRANSPORT
LAYER

INTERNET
 LAYER

NETWORK
ACCESS
LAYER

TCP, UDP, RTP, RSVP

IP, IPv6, ICMP

HARDWARE DEVICE DRIVERS AND MEDIA ACCESS
PROTOCOLS

ACL Messages

INTERACTION PROTOCOLS

SMTP POP3 FTP
Synchronous

HTTP
Asynchronous

HTTP IIOP

Agent Communication Transfer Protocol (ACTP)

Figure 1: Location of the ACTP in the TCP/IP model
The application protocols that the ACTP uses as transport 
mechanisms use other protocols in order to carry out their tasks. 
In other words, many of the application protocols can be viewed 
as a wrapper, in the sense that they hide the implementation and 
use of other protocols from the ACTP. For example, the FTP uses 
the synch signal of Telnet to abort an in-progress transfer. 
Nevertheless, the ACTP does not interact with Telnet; it just uses 
the FTP and it does not deal with the way the FTP is 
implemented. In the architecture of the ACTP there are two levels 
of encapsulation; in the higher one, the networking details of the 
communication processes are hidden from the agents. In the lower 
one, the implementation of the underlying application protocols is 
concealed from the ACTP.
In this layered architecture, the ACTP resides in the Application 
Layer and, in particular, it is above all the other application 
protocols. In other words, the ACTP provides an interface 

between the ACL messages and the Application Layer. In this
way, the ACTP receives the communicative acts through the ACL 
messages and uses the appropriate underlying protocol for the 
actual data transfer. The ACTP could not be a transport protocol 
because the primary duty of these protocols is to transfer data 
from one application program to the other. The ACTP’s primary 
role is to allocate an application protocol to carry out the agent 
communication. If the communication is not successful, then the 
ACTP will decide which protocol will be the next one to use. If 
the ACTP were a transport protocol, it would not be able to 
allocate an application protocol as the means of communication 
between agents.
The Agent Communication Language (ACL) messages reside 
above the Application Layer. Finally, above the ACL messages 
are the interaction protocols. As shown in figure 1, the ACTP 
provides the API between the network protocols and the agent 
execution framework, hiding all the low-level communication 
details from the agent. The ACTP integrates the agent’s speech 
acts with the network mechanisms that implement them, providing 
an advanced form of communication in multi-agent systems.

3. THE ARCHITECTURE OF THE ACTP
3.1 The Conceptual Model of the ACTP
The conceptual model is an abstract representation of the concepts 
in the problem domain. In this case, the basic concepts 
(components) of the Agent Communication Transfer Protocol are 
the NameServer, the Agent Interface, and the underlying 
communication mechanisms. The structure of these components is 
illustrated in the conceptual model in figure 2. It is important to 
note that the term conceptual model strongly emphasizes domain 
concepts and not software entities or classes (the software classes 
are described in section 3.2.2).

3.1.1 The NameServer
The NameServer is a process that provides the ACTP with low-
level information about the agents, such as their logical name and 
domain, and their physical addresses in relation to each 
underlying protocol (e.g. the physical address of an agent 
concerning FTP may be ftp.ee.ic.ac.uk). In addition, the 
NameServer stores authentication data that may be needed in 
order to contact each agent (e.g. an agent’s FTP account is 
accessible only after providing a valid user name and password). 
The NameServer acquires this information when the agents 
register themselves in the ACTP and stores it in its database. In 
addition, the NameServer stores the names of the underlying 
protocols that the ACTP uses. In this way, the queries that agents 
make to the ACTP about the protocols that can be used for 
communication are forwarded to the NameServer and the results 
are passed back to the agents.
Before establishing a connection between two agents, the ACTP 
“asks” the NameServer for the physical addresses of the two 
agents, as well as any authentication information that has to be 
used in order to contact them. If an agent provides this low-level 
information then the NameServer will not be contacted. The 
function of the NameServer of the ACTP resembles the one of the 
facilitator of KQML and the Agent Management System of FIPA. 
The basic difference between the NameServer and KQML’s 
facilitator is that the latter entity also functions as a matchmaker, 
providing information about the abilities of agents. The 
NameServer does not store such information because the ACTP is



a communication protocol and not an interaction one. In other 
words, the ACTP provides an efficient data transfer mechanism 
and does not deal with the social context of the communicating 
agents. The relationship between the FIPA platform and the 
ACTP will be thoroughly discussed in section 6.

1

consults

*

ACTP Domain
Concept Package

Agent

logical_name
domain

0..1

0..1

*

Agent Interface Name Server

ACTP

IIOP
Implementation

MAIL
Implementation

FTP
Implementation

HTTP
Implementation

Figure 2: The Conceptual Model of the ACTP

3.1.2 The Agent Interface
The main component of the Agent Communication Transfer 
Protocol is called the Agent Interface. It receives requests from 
the agents and, after processing them, it forwards them to the 
appropriate ACTP modules. Then, it informs the agents of the 
outcome of their request. The Agent Interface is the main 
component of this protocol that each agent interacts with. The 
agents are not aware of the existence of the NameServer and are 
not concerned with the actual implementation of the underlying 
protocols. The Agent Interface module is also responsible for the 
error detection and handling of the Agent Communication 
Transfer Protocol (see section 4.3).

3.1.3 The Communication Mechanisms
The ACTP is organized into a generalization-specialization type 
hierarchy (or type hierarchy). The super type ACTP represents a 
more general concept (i.e. a general way of communication) and 
the subtypes HTTP Implementation, FTP Implementation, MAIL 
Implementation and IIOP Implementation represent more 
specialized ones. In this case, identifying super and subtypes is of 
significant value because their presence allows the understanding 
of concepts in more general, refined and abstract terms [7].

3.2 The Design of the ACTP
3.2.1 The Semantics of the Agent Communication 
Transfer Protocol
The basic commands that an agent will use concerning the ACTP 
are read, where the agent requests to receive data, and write, 
where the agent requests to transmit data. Before reading or 
writing the agent will either declare to the ACTP which protocol 
it wants to be used for the data transfer or it will let the ACTP 
decide which protocol is best suited for that transfer. The 
remaining commands of the ACTP provide the agents with the 
ability to be informed about the available underlying protocols, to 
register and deregister themselves to the ACTP’s database, and to 
change their IP address when moving from one host to another.

Agent

-read() : String[]
-write() : String[]
-register() : String
-deregister() : String
-query_protocols() : String[]
-updateIP() : String

-name : String[2] Data

+filenames : String[]
+URLs : String[]
+replycodes : String

StateTransition

+read() : String[]
+write() : String[]
+updateIP() : String
+query_protocols() : String[]

AgentInt

#read() : String
#write() : String
#updateIP() : String
#query_protocols() : String[]

ACTP

#handleRead() : String
#handleWrite() : String

HTTPImp

#handleRead() : String
#handleWrite() : String

IIOPImp

#handleRead() : String
#handleWrite() : String

FTPImp

#handleRead() : String
#handleWrite() : String

MAILImp

#handleRead() : String
#handleWrite() : String

NameServer

HTTPDaemon

DataBaseAPI

#register() : String
#deregister() : String
#updateIP() : String
#query_protocols() : String[]

Figure 3: The Design of the ACTP

3.2.2 The Class Diagram of the Agent 
Communication Transfer Protocol
The class diagram in figure 3 represents the basic architecture of 
the Agent Communication Transfer Protocol. In this phase, we 
have transformed the concepts of the ACTP domain into software 
classes. For example, the StateTransition, Data, and AgentInt
classes represent the concept of the Agent Interface, while the 
NameServer and DataBaseAPI classes represent the concept of 
the NameServer.
The Agent class represents an agent that uses the ACTP and 
contains a number of methods that must exist in all agents that 
want to communicate through the ACTP. The agent provides the 
StateTransition class with data in the form of the attributes that 
are defined in the Data class. The StateTransition class 
implements the error handling mechanism of the protocol. This 
class forwards the agent request to the AgentInt class, which, in 
turn, queries the NameServer about low-level information that 
concerns the communicating agents. The AgentInt class handles 
the agent requests and formats the messages that are sent to the 
NameServer through the TCP. In addition, the AgentInt class 
passes the agent requests along with the low-level information to 
the ACTP class. The ACTP class provides two abstract methods, 
called handleRead and handleWrite, which are inherited by its 
subclasses. The subclasses of the ACTP class are the HTTPImp 
(Imp is short for implementation), the FTPImp, the MAILImp and 
the IIOPImp classes, and they forward the agent request to the 
actual application protocols. The class diagram in figure 3 is 
simplified and does not illustrate the whole design structure of the 
ACTP. Each subclass of the ACTP class implements the actual 
data transfer in the context of an application protocol or a 
communication mechanism. The design of each communication 
technique is not represented in figure 3 in order to keep the class 
diagram comprehensible.



The agent also interacts with the HTTP Daemon that the ACTP 
provides it with. We will describe in detail the concept of the 
HTTP Daemons in the next section. The HTTPDaemon class 
represents the HTTP Daemon and it communicates with the agent 
through TCP messages.
The structure of the ACTP resembles the structure of the state
design pattern [4]. The read and write methods that the agent 
invokes result in the invocation of the ACTP’s handleRead and 
handleWrite methods. These methods are inherited and 
overridden by the ACTP’s subclasses that carry out each 
specialized way of communication. The handleRead and 
handleWrite method invocation is manipulated by polymorphism 
of the ACTP subclasses and not by the programmer. The benefits 
of having such a structure are several:

• Each protocol implementation is put into a separate class. 
New protocols for the agent communication can be added by 
defining new ACTP subclasses. The state pattern localizes 
application-specific behavior and partitions behavior for 
different protocols. 

• Size and complexity of operations is reduced, enhancing 
code understanding and maintainability.

• Adding a new protocol is wholly independent of the agent. 
An agent simply invokes a read or write command. The way 
this method will be handled is independent of the agent. In 
this way, adding or removing a protocol from the ACTP will 
not result in modifying the agent code.

4. IMPLEMENTATION
This section describes the implementation of the Agent 
Communication Transfer Protocol design that was illustrated in 
the previous section. Java was chosen as the main implementation 
language of this protocol because it supports platform-
independence, network programming, parallelism, high-level 
client-server programming, connectivity to databases, as well as 
graphical user interface production. In this section we illustrate 
how the implementation supports the facilities described in 
section 1.

4.1 Support for Various Kinds of Communication and 
Data Transfer
4.1.1 Indirect and Direct Interactions
The Agent Communication Transfer Protocol supports both 
indirect and direct interactions. In the first case, the 
communicating agents are not aware of the physical addresses of 
their peers. The ACTP module of the initiating agent will consult 
the NameServer about that necessary information and it will use it 
in order to contact the peer agents. Such a scenario is 
demonstrated on the left-hand side of figure 4. The numbers in 
this figure show the sequence of the exchanging messages.
If the agents know the physical addresses and authentication 
information of their peers in advance (i.e. user names and 
passwords), then the ACTP module will not contact the 
NameServer, and the interaction will be direct between the ACTP 
modules of the communicating agents. This way of 
communication is demonstrated on the right-hand side of figure 4. 
The communication between two or more ACTP modules and 
between an ACTP module and the NameServer is performed 
through the TCP. On the other hand, the interaction between an 

agent and its ACTP module is performed through method 
invocation.

Agent

1

5

4

2

Agent

NameServer

ACTP

ACTP

Agent

1

2

3

Agent

ACTP

ACTP

3

Figure 4: Indirect and Direct Communication Using the ACTP

4.1.2 Use of Various Ways of Communication
The ACTP uses a number of different transport mechanisms in 
order to accomplish the data transfers. The ACTP uses two forms 
of the HTTP; the first one is called SynchronousHTTP and the 
second one is called AsynchronousHTTP. The SynchronousHTTP 
functions almost in the same way as the HTTP. The client 
contacts the web server of the peer and receives the web pages it 
requests. The reason that this way of communication is called 
SynchronousHTTP and not just HTTP is to contrast it with a 
similar but asynchronous way of communication that we call 
AsynchronousHTTP.
The Agent Communication Transfer Protocol provides each agent 
with an HTTP Daemon, which is a server that receives all the 
AsynchronousHTTP messages of the agent it belongs to and 
stores them for a certain period of time. If the agent does not 
check for its messages during that period of time or checks but 
does not accept them, then its HTTP Daemon will delete them. 
When using the AsynchronousHTTP in the context of the ACTP, 
an agent sends a message to a peer and does not wait for a certain 
period of time to receive a response, as it happens with the 
SynchronousHTTP. As already explained, the HTTP Daemon of 
the peer agent will receive and store this message. When the peer 
agent is informed that it has a new message then it may either 
accept it or not. If it does accept it then it may either respond or 
not. In the case that the peer agent responds, it may send the 
response at any time. This kind of communication is 
asynchronous, and the format of the exchanging messages is 
similar to those of the HTTP. This is why the communication 
protocol is called AsynchronousHTTP. It is important to note that 
this way of communication can become synchronous if the peer 
agent responds in real-time.
The remaining application protocols that the ACTP uses are the 
FTP, the SMTP and the POP3. The FTP is used for the transfer of 
large messages, while the SMTP is used to send e-mail and the 
POP3 to receive e-mail. We are currently working on an 
implementation of the IIOP in order to include the object-oriented 
technology in the ACTP (this work is described in section 6.2.1).

4.2 Logical Abstraction of the Communication Process
The agents that use the ACTP do not deal with low-level 
networking details at all. They only use a limited number of high-
level commands in order to communicate. These commands offer 
a significant degree of encapsulation, hiding the implementation 
aspects of the communication process. In addition, using the 



NameServer, the ACTP does not require the agents to know low-
level information about their peer agents. Each agent can refer to 
the others using only their names. In other words, using the 
ACTP, inter-agent communication is performed in a high-level. 
Consequently, agents using the ACTP run in any platform and 
operating system. In general, very few constraints are imposed on 
the agents that use the ACTP; agent interactions can be performed 
only with the use of a read and a write command.

4.3 Reliability of Transfer
Each underlying protocol and communication technique has its 
own error handling mechanism. The ACTP’s error handling 
mechanism is based on the outcome (failure or success) of the 
execution of the application protocols. This error handling 
mechanism is based on a state transition diagram where the 
different states represent the various protocols that can be used to 
implement the agent’s interactions, and the events represent the 
outcome of these interactions. Figure 5 demonstrates a partial 
state transition diagram that represents the way the error handling 
mechanism of the ACTP works. A partial diagram is shown in 
order to be comprehensible.

Figure 5: The State Transition in the Case of Failures.
The occurrence of an event results in a transition from one state to 
another. For example, when the ACTP is writing using the SMTP 
and a permanent negative completion occurs, then the ACTP will 
send a file using the FTP to the peer agent, informing it of the 
attempt that was made to contact it. In addition, the agent that 
invoked the write command will be notified (with the appropriate 
reply code) that the attempt to use the SMTP failed and that the 
ACTP has tried to use the FTP for the data transfer.
In the state transition diagram we represent only the state 
transitions that occur in the presence of permanent failures, 
meaning that there is no way to contact the peer using a particular 
protocol. The temporary failures are not represented because they 
are handled by each protocol until they become permanent. 
Finally, failures that are caused by agents (i.e. agents providing 
the ACTP with incorrect or missing data) are simply reported 
back to them and are not dealt with.
The process of using a new protocol for the data transfer (in the 
case of failures) continues until all the appropriate protocols have 
been used (according to the state transition mechanism), or the 
data transfer has been carried out successfully. Only then will the 
agent be informed about all the communication attempts.

Figure 6 illustrates the case where the attempt of a data transfer 
has resulted in a permanent negative completion. In this scenario, 
when the StateTransition instance receives the reply code 
indicating the failure, it uses the next appropriate protocol in 
order to carry out the data transfer that the agent requested. The 
sequence of messages is the same in the new attempt but now the 
AgentInt instance asks the NameServer about physical addresses 
of agents concerning another protocol. If the first attempt to 
transfer data had not resulted in a failure then the StateTransition 
would not have triggered an execution of a new protocol.
This state transition mechanism resides on the agent-side and can 
be configured by each agent. In other words, each agent can 
customize the state transition according to its preferences and 
modify it at any time.

:Agent :AgentInt :ACTP:StateTransition NameServer

reply_codes:=
read()

reply_code:=read() send
queryAddress()

send reply
reply_code:=
handleRead()

reply_code2:=
read() send

queryAddress()

send reply

reply_code2:=
handleRead()

queryAddress()

queryAddress()

Figure 6: The Sequence Diagram of a read Invocation in the 
Case of Failures.

4.4 A Degree of Flexibility in the Handling of 
Interactions
Normally, an agent will specify the exact protocol that it wants to 
be used for the data transfer. In this case the ACTP will use the 
specified protocol for the communication. In other cases, an agent 
might not specify a particular transport mechanism and let the 
ACTP decide about that. The ACTP has the flexibility to take that 
kind of decisions. In particular, the ACTP offers a decision-
making algorithm that is primarily based on the properties of the 
message being exchanged, like the size and the time-criticality of 
the message. The output of this decision-making algorithm is the 
transport medium that will be used for the message transfer. We 
discuss ways of enhancing the decision-making algorithm in the 
future work section.

5. TESTING AND EVALUATION
The ACTP was developed on the Windows NT platform and has 
been tested on Windows 98 and Linux platforms.
The purpose of producing a GUI for the ACTP was to explain the 
use of this protocol to developers who are going to use it as the 
communication medium of the agents they create and control. The 
basic window of this GUI is shown in figure 7. This GUI 
illustrates the facilities of the ACTP (e.g. the transport 
mechanisms, registration of agents etc.) and the way these 
facilities can be used. In real applications agents will interact with 
the core ACTP code like the GUI code interacts with it.

readUsing
SynchronousHTTP

readingUsing
SynchronousHTTP

readingUsing
FTP

readingUsing
POP3

writingUsing
SMTP

writingUsing
FTP

readUsing
FTP

Permant
Negative

Completion

readUsingPOP3

Permanent
Negative

Completion

server
error

Permanent
Negative

Completion

Error
E-mail

AgentReadyfor
Communication



Figure 7: GUI of the ACTP
We will illustrate a scenario in order to show the way the ACTP 
handles failures. In this scenario (figure 8), an agent requests its 
ACTP module to retrieve some web pages from the peer’s web 
server (invocation 1). The ACTP module consults the 
NameServer about the http address of the peer (message 2) and 
uses the SynchronousHTTP in order to retrieve the requested web 
pages (message 3). Supposing that a permanent failure occurs 
during the execution of the SynchronousHTTP, the ACTP module 
will use the next appropriate protocol (based on the state 
transition algorithm) which is in this case the SMTP. In other 
words, the ACTP will send the peer an e-mail requesting the web 
pages that could not be retrieved (message 5). Similarly, if an 
additional failure occurs in the execution of the SMTP, the ACTP 
will use the FTP in order to send the peer a file containing the 
requested web pages (message 7). Before each protocol execution, 
the ACTP will consult the NameServer about the physical address 
of the peer concerning that protocol (messages 2, 4, 6). In figure 8 
the dashed lines represent the fact that at any time the peer agent 
can invoke a read command concerning its servers or ACTP 
module.

2, 4, 6

NameServer

Agent

Agent

ACTP

3
7

5

1

AGENT-SIDE

Web Server Mail Server FTP Server

ACTP

Figure 8: The ACTP in the Case of Failures
The model that is most commonly used to evaluate middleware 
systems measures such products against the following dimensions 
[5], [9]:

• Availability. The ACTP is robust concerning software 
failures. All possible exceptions are caught and appropriately 
dealt with.

• Reliability. The ACTP provides a good degree of reliability 
using the reply codes and state transition mechanisms. 
However, while the ACTP’s fault management deals with 
network operations, higher-level failures (i.e. syntax errors in 
the ACL message) should be handled by the agents.

• High Performance. The use of multi-threading techniques 
makes the throughput of data transfers acceptable for a 
reasonable number of agent conversations.

• Security. The ACTP lacks security measures. We propose 
ways to overcome this deficiency in the future work section.

• Scalability. New agents can use this protocol without 
affecting existing agent interactions. New agents can use the 
existing ACTP modules (i.e. agents that reside on the same 
machine) or can download and use new modules.

• Resource Handling. The ACTP makes good use of the 
network resources, as it opens a new connection only when 
an existing one fails to achieve a message transfer.

• Applicability. The ACTP is platform-independent and 
provides simple read and write API functions.

Since it is not possible to evaluate middleware systems against 
objective criteria, we performed subjective assessments against 
the above dimensions. Our overall assessment of the ACTP is that 
it performs satisfactorily in these dimensions.

6. RELATED AND FUTURE WORK
6.1 Related Work
There are a number of platforms that provide a communication 
transport for multi-agent systems. Our work has similarities with 
some platforms and offers a number of innovative features that 
enhance the agent communications.
The Simple Agent Communication Protocol (SACP) [12] is an 
application protocol that aims at making agent conversations 
simpler for developers and works by grouping agent 
communication into two roles, listening and talking. Unlike the 
ACTP, the SACP does not provide peer-to-peer communication. 
In general, apart from the fact that the SACP is easy-to-use like 
the ACTP, the only significant ability that it provides is the well-
structured data storage mechanism. Agents that use the SACP can 
exchange data that are in the form of this mechanism, which is 
called “nodespace”.
The Java Agent Template, Lite (JATLite) [6] is an agent 
architecture that does not merely provide a communication 
protocol, but an agent model that uses a specified transport 
medium. The functionality of the communication protocol of the 
JATLite bears a strong resemblance to the functionality of the 
ACTP. Both the JATLite and the ACTP support asynchronous 
communication in a bi-directional as well as in a one-way manner 
and they both use a number of network application protocols like 
the FTP and the SMTP. Nevertheless, the JATLite model has a 
basic disadvantage. Each agent conversation has to go through the 
Agent Message Router (AMR). If the recipient of a message has 
crashed or is unavailable for some reason, then the AMR will 
store the message and will send it again when the recipient is 
available again. Clearly, under this scheme the AMR creates a 



bottleneck. Due to the fact that the ACTP supports indirect as well 
as direct communications, the bottleneck that is created in the 
JATLite architecture has been overcome. In the case where the 
NameServer crashes, agent communications can still be 
performed, provided that the communicating agents are aware of 
the physical addresses of their peers.
Another disadvantage of the JATLite architecture is that, although 
it is constructed in modular layers, it is inefficient to include an 
IIOP implementation in a future version. The inclusion of an IIOP 
implementation would require the rewriting of the AMR, in order 
for it to be able to send and receive IIOP messages. On the other 
hand, due to the extensible design of the ACTP (using the state 
design pattern), any implementation of a new protocol can be 
included without having to perform major changes.
Aglets are Java objects that have the ability to move from one host 
on the Internet to the other and use the Agent Transfer Protocol 
(ATP) as the default implementation of the communication layer. 
The ATP is a simple, application-level protocol, designed to 
transmit an agent in a system-independent manner [8]. The ATP is 
modeled on the HTTP, providing an asynchronous message-
passing mechanism using a client/server paradigm. The ATP also 
supports synchronous peer-to-peer communication between 
agents. The ATP is a rather restricted communication protocol 
because it is used mainly to enable mobile agents, and in 
particular the Aglets, to move from one host to the other. Due to 
the fact that the ATP does not provide a wide range of 
communication capabilities, the Aglets model also uses the RMI 
mechanism and CORBA in order to communicate. Mobility is 
supported in the ACTP through the FTP and the updateIP
command. In particular, the code of an agent can be sent to a new 
host through the FTP and the moving agent can inform the ACTP 
using the updateIP command. The result will be to update its IP 
address in the NameServer's database and, consequently, all its 
messages will be sent to its new IP address.
The FIPA Agent Message Transport (AMT) [2] appears to be the 
most complete communication platform for multi-agent systems. 
The AMT has many similarities with the ACTP, like the support 
for both synchronous and asynchronous communications, the 
support for both direct and indirect interactions, and the logical 
abstraction of the communication process. Furthermore, the FIPA 
platform offers a number of facilities that the ACTP lacks, like the 
application of security mechanisms on agent communications (i.e. 
transport-level security and agent audit logs) and the support for 
brokering. Nevertheless, the ACTP is complementary to FIPA in a 
way, containing features that are not included in the FIPA 
platform. In particular, the ACTP is very reliable in the data and 
message transfers, due to the fact that it uses a number of 
alternative protocols in the case of failures. In addition, the ACTP 
provides a greater degree of interoperability, enabling 
communication between non FIPA-compliant agents, and thus 
providing an alternative route to legacy software integration.

6.2 Future Work
The present work is the first step in the development of an 
intelligent middleware that integrates heterogeneous agents. 
Further work is necessary in order to establish the ACTP as a 
standard middleware in multi-agent systems.

6.2.1 Integration of OO Technology With Network 
Protocols
The ACTP has been designed in such a way that any protocol can 
be added without having to perform any major changes to the 
existing code. We are currently working on an implementation of 
the IIOP. The IIOP provides location and programming language 
transparency, and will thus make the ACTP a very powerful tool 
in the area of agent communication. An integration of object-
oriented technology with network protocols will offer features 
such as the concept of inheritance that object-oriented techniques 
contain, as well as the reliability of transfer and maintainable 
software that message-based middleware provide.

6.2.2 Use of a Learning Algorithm to Decide the 
Way of Communication
The decision-making algorithm of the ACTP chooses the transport 
mechanism based on criteria, which are static and do not change 
dynamically. In order to enhance this algorithm, we plan to 
modify it, so that it will also take the history of previous 
interactions into consideration. In particular, we plan to use a 
learning algorithm that will also take into account the outcome of 
previous data transfers when specifying the transport mechanism 
for future ones. In this way, the ACTP will learn from previous 
failures and will avoid repeating them in the future.

6.2.3 Application of Security Measures on the 
Communications
The data transfers through the ACTP are liable to a number of 
security threats. A way of grouping these threats can be in terms 
of active and passive attacks [14]. A form of an active attack is the 
altering of the messages in transit between two peer agents. 
Passive attacks include eavesdropping on network traffic. There 
are a number of security measures that could be applied in the 
future versions of the ACTP, in order to improve the level of 
authentication, integrity and confidentiality of the agent 
conversations. One of these measures could be the 
implementation of a security application just above the TCP. An 
example of this approach is the Secure Sockets Layer (SSL) [14]. 
An alternative would be to enforce security constraints on the IP 
level, by using the IPv6 and the IPsec. Short for IP security, IPsec 
was developed to support secure exchange of packets at the IP 
layer. The advantage of applying security constraints on the IP 
level is that it is transparent to agents and applications and 
provides a general-purpose solution.

6.2.4 Support for Programming Language 
Independence
Due to the fact that the ACTP has been implemented in Java, only 
Java agents can use this protocol. Using an Interface Definition 
Language (IDL) can lift such a constraint in the future. Using an 
IDL, agents can invoke the ACTP methods without knowing 
where the objects of the ACTP that they access reside, or in what 
language the requested objects are implemented. In other words, 
any agents written in a language that supports method invocation 
of an IDL will be able to use the ACTP.

6.2.5 Resource Handling
General middleware technologies do not offer load balancing or 
offer it only on a limited basis [13]. If an agent is unable to satisfy 
all requests, then the ACTP should have the intelligence to send 
these requests to an equivalent agent, if there is one. Such a 



facility can be implemented by providing a fundamental brokering 
mechanism at the NameServer. In particular, the NameServer 
could store the type of requests each agent can process. In this 
way, the ACTP will consult the NameServer about alternative 
agents, when one is unable to satisfy a request.
The ACTP should also provide adaptation to traffic. In other 
words, it should be able to handle an increase in network traffic 
effectively (e.g. due to an increase of agents). Each ACTP module 
can check how many agents are connected to it and prioritize the 
way these agents will communicate.

6.2.6 Integration with FIPA-OS
As already mentioned, our work has many similarities and can be 
viewed in some ways as complementary to the FIPA 
communication platform. Our aim is to integrate the ACTP with 
an implementation of the FIPA platform and for that reason we 
plan to integrate our protocol with FIPA-OS [3] that has been 
produced by Nortel Networks. FIPA-OS was chosen for that 
integration because the source code is free and because it follows 
FIPA’s specifications in detail.
The integration of the ACTP with that platform can be performed
in various levels. In a lower level, we can integrate the application 
protocols that the ACTP uses with the IIOP that FIPA uses as the 
Message Transport Protocol (MTP). In a higher level, we can 
include the state transition and the transport decision-making 
algorithm in FIPA’s Agent Communication Channel (ACC).
The Agent Management System (AMS) of the FIPA platform is 
an entity that, among other things, stores the mapping between 
globally unique agent names and local transport addresses, like 
the NameServer does. The NameServer also stores authentication 
information about agents concerning each transport mechanism, 
an aspect that can be included in the AMS.

7. SUMMARY AND CONCLUSIONS
In this paper we have presented an agent-oriented middleware that 
offers a number of novel features that enhance communication in 
multi-agent systems. The development of the ACTP was 
accomplished on the basis of an extensible and well-structured 
design. The ACTP provides various levels of encapsulation and 
handles conversations in an efficient manner, thus shielding the 
agents from the complexity of the communication process.
The study of related work in the agent communication area 
highlighted various innovative capabilities of the ACTP, as well 
as a number of features that this protocol lacks. The ACTP has 
been tested over a set of classical examples, like the negotiation 
process that is defined in the Contract Net Protocol. In particular, 
the test cases involved multiple failures of several components of 
the communication process. Due to the fact that a significant 
effort was spent on the implementation of the error handling 
mechanism, the ACTP has proved to be very reliable and robust.
Having developed the first version of the Agent Communication 
Transfer Protocol we suggest that it contains a significant degree 
of generality, reliability and flexibility to support agent 
conversations in heterogeneous environments. Therefore, the 
ACTP can be standardised as a communication platform for multi-
agent systems.
In the short term, we plan to make the object code available on the 
web (http://www.iis.ee.ic.ac.uk/actp) and install the NameServer 
on a dedicated computer at Imperial College. We will also be able 

to demonstrate the full version of the Agent Communication 
Transfer Protocol at future events.
Finally, we plan to integrate the ACTP with FIPA-OS in order to 
produce a reliable, flexible and complete communication transport 
that will offer high-level interoperability in agent interactions.

8. ACKNOWLEDGMENTS
This work has been supported by UK EPSRC, Nortel Networks 
joint-funded project CASBAh (GR/L34440) and EU Esprit 
project MAPPA (EP 28831).

9. REFERENCES
[1] Finin T., Labrou Y. and Mayfield J. KQML as an 

Agent Communication Language. Baltimore, U.S.A., 
1995, 1-22.

[2] FIPA. FIPA’99 Specifications: Agent Message 
Transport. 1999. 
http://www.fipa.org/spec/fipa9716.doc.

[3] FIPA-OS. http://www.nortelnetworks.com/fipa-os.
[4] Gamma E., Helm R., Johnson R. and Vlissides J. 

Design Patterns, Elements of Reusable Object-Oriented 
Software. Addison-Wesley Publishing Company, 1995.

[5] Gorton I., Liu A., Greenfield P., Tran P. Evaluating 
Object Transactional Monitors within MEP. Advanced 
Distributed Software Architectures and Technologies 
(ADSaT), CSIRO Mathematical and Information 
Sciences. http://standishgroup.com/mep.htm

[6] Heecheol J. JATLite FAQ. Stanford University. 
http://cdr.stanford.edu/ProcessLink/papers/JATL.html.

[7] Larman C. Applying UML and Patterns. Prentice-Hall, 
1997, 1-15.

[8] Oshima M., Karjoth G. and Ono K. Aglets 
Specification 1.1 Draft. 
http://www.trl.ibm.co.jp/aglets/spec11.html.

[9] Ovum Evaluates: Middleware. http://www.ovum.co.uk/ 
ovum/reports/enterprise_middleware.htm

[10] Pitt J.V. and Mamdani A. A Protocol-Based Semantics 
for an Agent Communication Language. Proceedings 
of IJCAI'99, Stockholm, Morgan-Kaufmann 
Publishers, pp. 486-491, 1999.

[11] Pitt J.V. and Mamdani A. Designing Agent-
Communication Languages for Multi-Agent Systems. 
In F. Garijo and M. Boman (eds.): Multi-Agent System 
Engineering: Proceedings MAAMAW'99, LNAI1647, 
Springer-Verlag, pp. 102-114, 1999.

[12] Reilly D. Simple Agent Communication Protocol. 
1999. http://www.davidreilly.com/sacp/.

[13] Serain D. Middleware. Springer-Verlag, London, 1999, 
1-30.

[14] Stallings W. Cryptography and Network Security. 
Prentice-Hall, 2nd eds, 1999.


