
A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks

Alexander Artikis1, Lloyd Kamara2, Jeremy Pitt2, and Marek Sergot1

1 Department of Computing, SW7 2BZ
2 Electrical & Electronic Engineering Department, SW7 2BT

Imperial College London
a.artikis@acm.org, {l.kamara, j.pitt, m.sergot}@imperial.ac.uk

Abstract. Ad hoc networks may be viewed as computational systems
whose members may fail to, or choose not to, comply with the rules
governing their behaviour. We are investigating to what extent ad hoc
networks can usefully be described in terms of permissions, obligations
and other more complex normative relations, based on our previous work
on specifying and modelling open agent societies. We now propose to
employ our existing framework for the management of ad hoc networks,
exploiting the similarities between open agent societies and ad hoc net-
works viewed at the application level. We also discuss the prospects of
modelling ad hoc networks at the physical level in similar terms. We
demonstrate the framework by constructing an executable specification,
in the event calculus, of a common type of protocol used to regulate the
control of access to shared resources in ad hoc networks.

1 Introduction

Ad Hoc Network (AHN) is a term used to describe a transient association of
network nodes which inter-operate largely independently of any fixed support in-
frastructure [17]. An AHN is typically based on wireless technology and may be
short-lived, supporting spontaneous rather than long-term interoperation [18].
Such a network may be formed, for example, by the devices of the participants
in a workshop or project meeting (for sharing and co-authoring documents); by
consumers entering and leaving an 802.11 wireless hot spot covering a shopping
mall (for buying/selling goods C2C-style by matching potential buyers and sell-
ers); or by emergency or disaster relief workers, where the usual static support
infrastructure is unavailable.

An AHN may be visualised as a continuously changing graph [17]: connection
and disconnection may be controlled by the physical proximity of the nodes or,
it may be controlled by the nodes’ continued willingness to cooperate for the
formation, and maintenance, of a cohesive (but potentially transient) community.
An issue that typically needs to be addressed when managing and maintaining
an AHN is that of resource sharing: the participating nodes compete over a
set of limited resources such as bandwidth and power (for example, battery
consumption). Often AHNs are specifically set up for sharing a resource such as
broadband Internet access, processor cycles, file storage, or a document in the

2

project meeting example mentioned above. In all cases the limited resources are
controlled by the participants of a network.

Due to its inherently transient nature, an AHN needs to be ‘adaptable’, that
is, it should be able to deal with ‘exceptions’. The aim of our present research is
to investigate to what extent adaptability can be enhanced by viewing AHNs as
instances of norm-governed systems. We want to examine this question both at
the application level and at the physical level. At the application level, an AHN
can be viewed as an open agent society [1–3], that is, a computational (agent)
community exhibiting the following characteristics:

– Members are programmed by different parties — moreover, there is no direct
access to a member’s internal state and so we can only make inferences about
that state.

– Members do not necessarily share a notion of global utility — they may fail
to, or even choose not to, conform to the community specifications in order
to achieve their individual goals.

– The members’ behaviour and interactions cannot be predicted in advance.
In previous work [1–3] we presented a theoretical framework for specifying open
agent societies in terms of concepts stemming from the study of legal and social
systems. The behaviour of the members of an open agent society is regulated
by rules expressing their permissions, obligations and other more complex nor-
mative relations that may exist between them [10]. Software tools enable formal
specifications of these rules to be executed and analysed in various ways. We
propose to use this framework for the management of AHNs. In this paper we
focus on the issue of resource sharing and employ the theoretical framework to
specify a common family of protocols for controlling access to shared resources.

We believe that there may also be value in viewing an AHN as an instance of
a norm-governed system at the physical level. This is because it is possible, even
likely, that system components will fail to behave as they ought to behave — not
from wilfulness or to seek advantage over others but simply because of the inher-
ently transient nature of the AHN. It is therefore meaningful to speak of system
components failing to comply with their obligations, of permitted/forbidden ac-
tions, and even of ‘sanctions’ (though clearly not of ‘punishments’). A secondary
aim of our research is to investigate to what extent the methods we have previ-
ously used to model open agent societies can be applied to this new setting.

The remainder of this paper is divided into three main parts. First, we review
a line of research on resource sharing, namely floor control protocols. Second, we
present a specification of a protocol for resource sharing in norm-governed AHNs.
The presentation of the protocol specification includes a description of the rele-
vant parts of the theoretical framework mentioned above. Third, we summarise
the presented work and outline directions for current and future research.

2 Floor Control Protocols

In the fields of Collaborative Multimedia Computing (CMC) and Computer-
Supported Co-operative Work (CSCW), the term floor control denotes a service

3

guaranteeing that at any given moment only a designated set of users (subjects)
may simultaneously work with or on the same objects (shared resources), thus
creating a temporary exclusivity for access on such resources [5].

“[. . . F]loor control lets users attain exclusive control over a shared re-
source by being granted the floor, extending the traditional notion as the
“right to speak” [20] to the multimodality of data formats in networked
multimedia systems. We understand floor control as a technology to im-
plement group coordination, but use both terms synonymously in this
paper.” [7, p.18]

Sharing a resource may be achieved by executing Floor Control Protocols (FCPs)
and Session Control Protocols (SCPs). FCPs prescribe ways for mutually exclu-
sive access to shared resources amongst the subjects. A number of properties of
such protocols have been identified [5,6]: safety (each floor request is eventually
serviced), fairness (no subject ‘starves’, each floor request is serviced based on
a common metric), and so on. SCPs prescribe ways for, amongst other things,
joining a FCP (or session), withdrawing from a session, inviting to join a session,
determining the resources to be shared, and determining the policy of a session,
that is, the ways in which a floor may be requested or granted. Example policies
are chair-designated (an elected participant is the arbiter over the usage of spe-
cific floors), election (participants vote on the next subject holding the floor),
and lottery scheduling (floor assignment operates on a probabilistic basis).

It is our assumption that the abstractions of floor control and session control
are applicable to the issue of resource sharing in AHNs. Clarifying what ‘being
granted the floor’ or ‘holding the floor’ implies is one of the aims of the formal-
isation presented in later sections. The concept of session control (or conference
management [23]) is applicable to the formation of an AHN, and to the man-
agement and maintenance of such a network in general. In this paper, however,
we will focus on the issue of floor control, assuming that an AHN and a FCP
within that network have already been established. The issue of session control
will be addressed elsewhere.

We will present a specification of a simple chaired Floor Control Proto-
col (cFCP). (We apologise for the unfortunate mixed metaphor.) The chair-
designated policy was chosen simply to provide a concrete example of a FCP —
we could have equally chosen an election, or some other policy type. Moreover,
we have intentionally omitted to address several of the design issues set out in
the literature on FCPs (for instance, that a protocol should provide mutually
exclusive resource access in ‘real-time’ [5,6]). Our point here is to illustrate that,
in settings in which subjects (or other system members) may fail to behave as
they ought to behave, any protocol specification for resource sharing (following
a chair-designated, lottery scheduling or any other policy type, stemming from
the CSCW, CMC, or any other research field) needs to express what a member
is permitted to do, obliged to do, and, possibly, additional normative relations
that may exist between them.

Two factors that characterise a FCP are [7]: (i) the mechanism and node
topology that determine the ways in which floor information (for instance, floor

4

(a) request_floor(Si, C)
(b) assign_floor(C, Si)
(c) extend_assignment(C, Si)
(d) release_floor(Si)
(e) revoke_floor(C)
(f) manipulate_resource(Si)

...

(a)

(d)/(f)

(a)

Sn

S1

C
(b)/(c)/(e)

resource

(d)/(f)

Fig. 1. A two-role chaired floor control protocol.

requests, the status of the floor, and so on) is communicated amongst the par-
ticipants, and (ii) the policy followed in the protocol. Factor (i) is the major
design decision for a group coordination protocol and determines, amongst other
things, which policies are established in a protocol. We adopt a high-level view
of FCPs: we specify the rules prescribing the ways in which a floor is requested
and granted without making any explicit assumptions about the node topology
and distribution of floor information in general.

3 A Protocol for Resource Sharing in Ad Hoc Networks

In this section we present a chaired Floor Control Protocol (cFCP). For sim-
plicity, we present a cFCP specification concerning a single resource, a single
floor (associated with the resource), and a single chair, that is, a distinguished
participant determining which other participant is actually given the floor. In
this setting, the allocation of several resources in an AHN may be performed by
several parallel executions of FCPs (following a chair-designated, election or any
other policy type). Our cFCP specification includes the following roles:

– Subject, the role of designated participants performing the following actions:
request floor (requesting the floor from the chair), release floor (releasing
the floor), and manipulate resource (physically manipulating the resource).
Sometimes we will refer to the subject holding the floor as a ‘holder’.

– Chair, the controller for the floor, that is, the participant performing the
following actions: assign floor (assigning the floor for a particular time pe-
riod to a subject), extend assignment (extending the time for which the floor
may be held), and revoke floor (revoking the floor from the holder).

The floor can be in one of the following states: (i) granted, denoting that a sub-
ject has been given exclusive access to the resource by the chair, or (ii) free,
denoting that no subject currently holds the floor. In both cases, the floor may
or may not be requested by a subject (for example, the floor may be granted to
subject S ′ and requested by subject S ′′ at the same time). We make the follow-
ing comments concerning our cFCP specification. First, there are no time-outs

5

(deadlines) prescribing when a request should be issued, a floor should be as-
signed, or an assignment should be extended. Second, there is no termination
condition signalling the end of the protocol. There is no particular difficulty
in including timeouts and termination conditions in the formalisation but it
lengthens the presentation and is omitted here for simplicity. See [2, 3] for ex-
ample formalisations of deadlines and termination conditions in the context of
protocol specifications.

Figure 1 provides an informal presentation of the possible interactions be-
tween the entities of a cFCP, that is, the subjects S1, . . . , Sn, the chair C, and
the resource. The actions of our protocol specification may be classified into
two categories: (i) communicative actions and, (ii) physical actions. The first
category includes the request floor action whereas the second category includes
the assign floor , extend assignment , release floor , revoke floor , and manipulate
resource actions3). Consider an example in which the shared resource is hard disk
space. In this setting, the action of assigning the floor could be realised as creat-
ing an account on the file server so that the holder can manipulate the resource,
that is, store files.

4 An Event Calculus Specification

In previous work we employed three action languages with direct routes to im-
plementation to express protocol specifications:
1. The Event Calculus (EC) [13], a formal, intuitive and well-studied action

language (see [2] for an EC specification of a contract-net protocol).
2. The C+ language [9], a formalism with explicit transition systems semantics

(see [3] for a C+ specification of a dispute resolution protocol).
3. The (C+)++ language [25], an extended form of C+ specifically designed

for modelling the normative and institutional aspects of multi-agent systems
(see [25] for a (C+)++ specification of a resource sharing protocol).

Each formalism has its advantages and disadvantages (see [1, Section 6.12] for
a discussion about the utility of C+, (C+)++ and EC on protocol specifica-
tion). In this paper we will use EC because an EC implementation (in terms
of logic programming) has proved to be more efficient than a C+ or (C+)++

implementation (in terms of the Causal Calculator, a software tool supporting
computational tasks regarding the C+ language) for the provision of ‘run-time
services’ (a description of such services is presented in Section 6).

First, we briefly present EC. Second, we specify the social constraints (or
protocol rules) governing the behaviour of the cFCP participants. We maintain
the standard and long established distinction between physical capability, insti-
tutionalised power and permission (see, for instance, [11, 15] for illustrations of
this distinction). Accordingly, our specification of social constraints expresses: (i)
the externally observable physical capabilities, (ii) institutional powers, and (iii)
3 The following convention is adopted in the figures of this paper: physical actions

are represented by an underlined letter (for example, (b)) whereas communicative
actions are represented with no underlining (for example, (a)).

6

Table 1. Main Predicates of the Event Calculus.

Predicate Meaning

happens(Act ,T) Action Act occurs at time T

initially(F =V) The value of fluent F is V at time 0

holdsAt(F =V ,T) The value of fluent F is V at time T

initiates(Act ,F =V ,T) The occurrence of action Act at time T
initiates a period of time for which
the value of fluent F is V

terminates(Act ,F =V ,T) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F is V

permissions and obligations of the cFCP participants; in addition, it expresses
(iv) the sanctions and enforcement policies that deal with the performance of
forbidden actions and non-compliance with obligations.

4.1 The Event Calculus

The Event Calculus (EC), introduced by Kowalski and Sergot [13], is a formalism
for representing and reasoning about actions or events and their effects in a logic
programming framework. In this section we briefly describe the version of the
EC that we employ. EC is based on a many-sorted first-order predicate calculus.
For the version used here, the underlying time model is linear and it may include
real numbers or integers. Where F is a fluent (a property that is allowed to have
different values at different points in time), the term F =V denotes that fluent
F has value V . Boolean fluents are a special case in which the possible values
are true and false. Informally, F =V holds at a particular time-point if F =V
has been initiated by an action at some earlier time-point, and not terminated
by another action in the meantime.

An action description in EC includes axioms that define, amongst other
things, the action occurrences (with the use of happens predicates), the effects of
actions (with the use of initiates and terminates predicates), and the values of the
fluents (with the use of initially and holdsAt predicates). Table 1 summarises the
main EC predicates. Variables (starting with an upper-case letter) are assumed
to be universally quantified unless otherwise indicated. Predicates, function sym-
bols and constants start with a lower-case letter. The domain-independent def-
initions of the EC predicates are presented in the Appendix. In the following
sections we present an EC action description expressing our cFCP specification.

4.2 Physical Capability

Table 2 displays a number of the fluents of the EC action description expressing
the cFCP specification. The utility of these fluents will be explained during the

7

Table 2. Main Fluents of the cFCP Specification.

Fluent Domain Textual Description

requested(S ,T) boolean subject S requested the floor at time T

status {free, granted(S ,T)} the status of the floor: status = free
denotes that the floor is free whereas
status = granted(S ,T) denotes that the
floor is granted to subject S until time T

best candidate agent identifiers the best candidate for the floor

can(Ag ,Act) boolean agent Ag is capable of performing Act

pow(Ag ,Act) boolean agent Ag is empowered to perform Act

per(Ag ,Act) boolean agent Ag is permitted to perform Act

obl(Ag ,Act) boolean agent Ag is obliged to perform Act

sanction(Ag) Z∗ the sanctions of agent Ag

Table 3. Physical Capability and Institutional Power in the cFCP.

Action can pow

assign floor(C ,S) status = free –

extend assignment(C ,S) status = granted(S ,T) –

revoke floor(C) status = granted(S ,T) –

release floor(S) status = granted(S ,T) –

manipulate resource(S) status = granted(S ,T) –

request floor(S ,C) > not requested(S ,T)

presentation of the protocol specification. This section presents the specification
of the externally observable physical capabilities of the cFCP participants. The
second column of Table 3 presents the conditions that, when satisfied, enable the
participants to perform the actions displayed in the first column of this table.
We will refer to these conditions as expressing ‘physical capability’ though the
term ‘practical possibility’ might have been employed instead. (In Table 3, C
represents an agent occupying the role of the chair and S represents an agent
occupying the role of the subject.)

The chair is capable of assigning the floor to a subject if and only if the
floor is free (see Table 3). The performance of such an action always changes the
status of the floor as follows:

initiates(assign floor(C,S), status = granted(S, T ′), T)←
role of(C, chair), role of(S, subject),
holdsAt(status= free, T), (T ′ := T + 5)

(1)

8

After assigning the floor to a subject S at time T , the floor is considered granted
until some future time (say T +5). The first two conditions of axiom (1) refer to
the roles of the participants. We assume (in this version) that the participants of
a cFCP do not change roles during the execution of a protocol, and so role of is
treated as an ordinary predicate and not as a time-varying fluent. Notice that the
practical capability condition is included here as part of the initiates specification.
There are other possible treatments of the practical capability conditions but we
do not have space for discussion of alternative treatments here.

Note also that the chair can assign the floor to a subject that has never
requested it. In some systems, this type of behaviour may be considered ‘unde-
sirable’ or ‘wrong’. Section 4.4 presents how ‘undesirable’ behaviour in the cFCP
is specified by means of the concept of permitted action.

If an assignment concerns a subject that has requested the floor, represented
by the requested fluent (see Table 2), then this request is considered serviced,
that is, the associated requested fluent no longer holds:

initiates(assign floor(C,S), requested(S, T ′) = false, T)←
role of(C, chair),
holdsAt(status= free, T),
holdsAt(requested(S, T ′) = true, T)

(2)

The chair can extend the assignment of the floor to a subject S if and only if S
is holding the floor. Moreover, extending the assignment of the floor changes its
status as follows:

initiates(extend assignment(C,S), status = granted(S, T ′′), T)←
role of(C, chair),
holdsAt(status= granted(S, T ′), T), (T ′′ := T ′ + 5)

(3)

In other words, if the floor was granted to S until time T ′, after the extension
it will be granted until time T ′ + 5. Note that the chair is capable of extending
the floor even if the holder has not requested such an extension.

A subject S can release the floor if and only if S is the holder (irrespective
of whether or not the allocated time for the floor has ended). Releasing the floor
changes its status as follows:

initiates(release floor(S), status = free, T)←
holdsAt(status= granted(S, T ′), T)

(4)

In a similar manner we express when an agent is capable of performing the
remaining physical actions of the protocol as well as the effects of these actions.

In this example cFCP there is only one communicative action, that of re-
questing the floor. We have specified that a subject is always physically capable
of communicating a request for the floor to the chair. For the specification of the
effects of this action, it is important to distinguish between the act of (‘success-
fully’) issuing a request and the act by means of which that request is issued.

9

Communicating a request for the floor, by means of sending a message of a
particular form via a TCP/IP socket connection, for example, is not necessarily
‘successful’, in the sense that the request is eligible to honoured by the chair. It
is only if the request is communicated by an agent with the institutional power
to make the request that it will be ‘successful’. An account of institutional power
is presented in the following section.

4.3 Institutional Power

The term institutional (or ‘institutionalised’) power refers to the characteristic
feature of organisations/institutions — legal, formal, or informal — whereby
designated agents, often when acting in specific roles, are empowered, by the
institution, to create or modify facts of special significance in that institution —
institutional facts — usually by performing a specified kind of act. Searle [24],
for example, has distinguished between brute facts and institutional facts. Being
in physical possession of an object is an example of a brute fact (it can be
observed); being the owner of that object is an institutional fact.

According to the account given by Jones and Sergot [11], institutional power
can be seen as a special case of a more general phenomenon whereby an action,
or a state of affairs, A — because of the rules and conventions of an institution
— counts, in that institution, as an action or state of affairs B (such as when
sending a letter with a particular form of words counts as making an offer, or
banging the table with a wooden mallet counts as declaring a meeting closed).

In some circumstances it is unnecessary to isolate and name all instances
of the acts by means of which agents exercise their institutional powers. It is
convenient to say, for example, that ‘the subject S requested the floor from the
chair C’ and let the context disambiguate whether we mean by this that S per-
formed an action, such as sending a message of a particular form via a TCP/IP
socket connection, by means of which the request for the floor is signalled, or
whether S actually issued a request, in the sense that this request is eligible to
be honoured by C. We disambiguate in these circumstances by attaching the
label ‘valid’ to act descriptions. We say that an action is valid at a point in time
if and only if the agent that performed that action had the institutional power
(or just ‘power’ or ‘was empowered’) to perform it at that point in time. So,
when we say that ‘the subject S requested the floor from the chair C’ we mean,
by convention, merely that S signalled its intention to request the floor; this act
did not necessarily constitute the request eligible to be honoured. In order to
say that a request is eligible to be honoured, we say that the action ‘subject S
requested the floor’ was valid : not only did S signal its intention to request the
floor, but also S had the institutional power to make the request. Similarly, in-
valid is used to indicate lack of institutional power: when we say that the action
‘subject S requested the floor’ is invalid we mean that S signalled its intention
to request it but did not have the institutional power to do so at that time (and
so the attempt to make the request eligible to be serviced was not successful).

10

We express the institutional power to request the floor as follows:

holdsAt(pow(S, request floor(S, C))= true, T)←
role of(C, chair), role of(S, subject),
not holdsAt(requested(S, T ′) = true, T)

(5)

Axiom (5) expresses that a subject S is empowered to request the floor from the
chair C if S has no pending valid requests. not represents negation by failure [4].

The existence of a valid request is recorded with the use of the requested
fluent:

initiates(request floor(S, C), requested(S, T) = true, T)←
holdsAt(pow(S, request floor(S, C))= true, T)

(6)

There is no corresponding fluent for invalid requests.

4.4 Permission and Obligation

Now we specify which of the cFCP acts are permitted or obligatory. Behaviour
which does not comply with the specification is regarded as ‘undesirable’. Such
behaviour is not necessarily wilful. When an AHN member performs a non-
permitted act or fails to perform an obligatory act, it could be deliberate, as
when an agent (at the application level) seeks to gain an unfair advantage, but
it could also be unintentional, and it could even be unavoidable, due to network
conditions outside that member’s control.

The definitions of permitted actions are application-specific. It is worth not-
ing that there is no fixed relationship between powers and permissions. In some
computational societies an agent is permitted to perform an action if that agent
is empowered to perform that action. In general, however, an agent can be em-
powered to perform an action without being permitted to perform it (perhaps
temporarily). The specification of obligations is also application-specific. It is
important, however, to maintain the consistency of the specification of permis-
sions and obligations: an agent should not be forbidden and obliged to perform
the same action at the same time.

Table 4 displays the conditions that, when satisfied, oblige or simply permit
the cFCP participants to perform an action. (In this table, CurrentTime rep-
resents the time that the presented conditions are evaluated.) There are other
possible specifications of permitted and obligatory actions. The presented ones
were chosen simply to provide a concrete illustration of cFCP.

The chair is permitted and obliged to assign the floor to a subject S provided
that: (i) the floor is free, and (ii) S is the best candidate for the floor (see Table
4). The procedure calculating the best candidate for the floor at each point in
time is application-specific. For the sake of this example, the best candidate is
defined to be the one with the earliest (valid) request. In more realistic scenarios
the calculation of the best candidate would consider additional factors such as
how urgent the request is, how many times the requesting subject had the floor

11

Table 4. Permission and Obligation in the cFCP.

Action per obl

assign floor(C ,S) status = free, status = free,
best candidate =S best candidate =S

extend assignment(C ,S) status = granted(S ,T), status = granted(S ,T),
best candidate =S best candidate =S

revoke floor(C) status = granted(S ,T), status = granted(S ,T),
CurrentTime ≥ T , CurrentTime ≥ T ,
best candidate 6= S best candidate =S ′,

S 6= S ′

release floor(S) > status = granted(S ,T),
CurrentTime ≥ T ,
best candidate =S ′,

S 6= S ′

manipulate resource(S) status = granted(S ,T), ⊥
CurrentTime < T

request floor(S ,C) > ⊥

in the past, and so on4. There is no difficulty in expressing such definitions in
the formalism employed here. Indeed, the availability of the full power of logic
programming is one of the main attractions of employing EC as the temporal
formalism.

According to the above specification of permission, when the floor is free the
chair is only permitted to assign it to the best candidate (if any). At the same
time, however, the chair is capable of assigning it to any subject participating
in the cFCP (see Table 3).

The chair is permitted to revoke the floor if: (i) the floor is currently granted
to a subject, (ii) the allocated time for the floor has ended, and (iii) the subject
holding the floor is currently not the best candidate for the floor. Note that the
chair can revoke the floor even if the allocated time for the floor has not ended
or if the subject holding the floor is currently the best candidate for it.

The chair is permitted to revoke the floor (after the allocated time for the
holder has ended) even if there is no subject requesting the floor. If there is a
subject requesting the floor, however, and that subject is the best candidate,
then the chair is not only permitted, but obliged to revoke the floor:

holdsAt(obl(C, revoke floor(C))= true, T)←
role of(C, chair),
holdsAt(status= granted(S, T ′), T), (T ≥ T ′),
holdsAt(best candidate=S′, T), (S 6= S′)

(7)

4 The best candidate is picked from the set of subjects having pending (valid) requests,
not from the set of all subjects participating in a cFCP.

12

We have chosen to specify that a subject is always permitted to release the floor,
although releasing the floor is not always physically possible. Alternatively, we
could have specified that the permission to release the floor coincides with the
physical capability to do so. In this example, we might guess that the alternatives
are equivalent, in the sense that they produce protocols that always have the
same outcome. This is a hypothesis that can be tested. One aim of the work pre-
sented here is to provide computational tools to support the automated testing
of such hypotheses.

A subject S is permitted to manipulate the resource if S is holding the floor
and the allocated time for it has not ended. Permitted or not, S is never obliged
to manipulate the resource. Similarly, a subject is never obliged to request the
floor — it is always permitted, however, to do so.

4.5 Sanction

Sanctions and enforcement policies are a means of dealing with ‘undesirable’
behaviour. In the cFCP, we want to reduce or eliminate the following types of
‘undesirable’ behaviour:

– the chair extending the assignment of, and revoking the floor when being
forbidden to do so, and

– non-compliance with the obligation to assign, revoke and release the floor.
One possible enforcement strategy is to try to devise additional controls (phys-
ical or institutional) that will force agents to comply with their obligations or
prevent them from performing forbidden actions. When competing for hard disk
space, for example, a forbidden revocation of the floor may be physically blocked,
in the sense that it is not possible to delete the holder’s account on the file server.
The general strategy of designing mechanisms to force compliance and eliminate
non-permitted behaviour is what Jones and Sergot [10] referred to as regimen-
tation. Regimentation devices have often been employed in order to eliminate
‘undesirable’ behaviour in computational systems. Interagents [21], for example,
enforce the rules of the FishMarket auction house to the buyer and seller agents.
Sentinels [12] monitor and, when necessary, modify some aspects of the agent
interactions in order to provide ‘exception handling’ services. Controllers [16]
enforce the ‘law-governed interaction’ coordination mechanism in open agent
societies. (Lomuscio and Sergot [14] show how it is possible to determine for-
mally whether the introduction of a controller does have the intended effect of
eliminating unwanted system behaviour.) It has been argued [10], however, that
regimentation is rarely desirable (it results in a rigid system that may discour-
age agents from entering it [19]), and not always practical. The practicality of
regimentation devices is even more questionable when considering AHNs, due
to the transient nature of these networks. In any case, violations may still occur
even when regimenting a computational system (consider, for instance, a faulty
regimentation device). For all of these reasons, we have to allow for sanctioning
and not rely exclusively on regimentation mechanisms.

For the present example, we employ an additive fluent, sanction(Ag), to
express each participant’s sanctions (see Table 2): initially, the value of this

13

fluent is equal to zero and it is incremented every time a participant exhibits
the type of ‘undesirable’ behaviour mentioned above. Consider the following
example: the chair is sanctioned if it assigns the floor to a subject S while it is
obliged to assign the floor to another subject S′:

initiates(assign floor(C,S), sanction(C) =V ′, T)←
role of(S, subject),
holdsAt(obl(C, assign floor(C,S′))= true, T), (S 6= S′),
holdsAt(sanction(C) =V, T), (V ′ := V + 1)

(8)

According to axiom (8), every time the chair C fails to comply with its obligation
to assign the floor the value of the associated sanction(C) fluent is incremented
by one. Similarly, we update the value of sanction(Ag) when the remaining
participants exhibit ‘undesirable’ behaviour. We would ordinarily also include a
means for decreasing the value of a sanction(Ag) fluent, for instance if Ag has
not performed forbidden (‘undesirable’) actions for a specified period of time.
We have omitted the details for simplicity of the presentation.

One way of discouraging the performance of forbidden actions and non-
compliance with obligations (at the application level) is by penalising this type
of behaviour. We specify the following penalties for the aforementioned sanctions
(the presented specification is but one of the possible approaches, chosen here
merely to provide a concrete illustration). Consider the following example:

holdsAt(pow(S, request floor(S, C))= true, T)←
role of(C, chair), role of(S, subject),
not holdsAt(requested(S, T ′) = true, T),
holdsAt(sanction(S) =V, T), (V < 5)

(5′)

The above formalisation is a modification of the axiom expressing the power to
request the floor (that is, axiom (5)), in the sense that it considers the sanctions
associated with a subject S: when the value of sanction(S) is greater or equal
to five (say) then S is no longer empowered to request the floor. One may argue
that once that happens, S is no longer an ‘effective’ participant of the protocol,
in the sense that S may no longer ‘successfully’ request the floor. It may be the
case, however, that the chair does not abide by the protocol rules and assigns
(and even extends the assignment of) the floor to S, even though S has not
‘successfully’ requested the floor.

We anticipate applications in which agents participate in a Session Control
Protocol (SCP) before taking part in a cFCP in order to acquire a set of roles that
they will occupy while being part of that cFCP. Given the value of sanction(C),
a chair C may be:

– suspended, that is, C is temporarily disqualified from acting as a chair in
future cFCPs. More precisely, C may not ‘effectively’ participate, for a spec-
ified period, in a SCP and, therefore, may not acquire the role of the chair.

– banned, that is, C is permanently disqualified from acting as a chair.

14

(a) request_floor(Si, C)
(b) assign_floor(C, Si)
(c) extend_assignment(C, Si)
(d) release_floor(Si)
(e) revoke_floor(C)
(f) manipulate_resource(FCS, M)
(g) request_to_manipulate(Si, M, FCS)

...

(b)\(c)\(e)

(a)\(d)

(d)\(g)

(a)\(d)

Sn

S1

C

(f)

FCS

resource

(b)\(c
)\(e

)

(b)\(c)\(e)

(d)\(g)

Fig. 2. A three-role chaired floor control protocol.

Being deprived of the role of the chair means, in this example, being deprived of
the permission and, more importantly, the physical capability to assign, extend
the assignment of, and revoke the floor. Alternatively, a sanctioned chair may be
suspended or banned from acting as a subject in future FCPs (not necessarily
chaired-designated ones), thus not being able to compete for, and access other
shared resources in an AHN. The axiomatisation of the penalties associated
with a sanctioned chair and a detailed discussion about SCPs in general will be
presented elsewhere (see, however, [2, Section 3.2], [1, Section 4.5]) for a brief
presentation of role-assignment in open agent societies).

At the physical level, where the members of the AHN are network devices, the
question of imposing penalties clearly does not arise. There is a possible role for
‘sanctions’ nevertheless. In the present example, the value of the sanction(Ag)
fluent can be seen as a measure of Ag ’s ‘reliability’. When the value of that fluent
passes the specified threshold, floor assigning capabilities (say) may be suspended
(and usually passed to another network member) not as a ‘punishment’ but as a
way of adapting the network organisation. To what extent this view gives useful
insights in practice is a topic of our current research.

5 A Few Notes on cFCP

In the FCP literature, a cFCP usually includes a third role, that of the Floor
Control Server (FCS) [23]. Figure 2 provides an informal presentation of the
possible interactions between the entities of a three-role cFCP. In such a setting,
only the FCS can physically manipulate the resource. A subject holding the floor
may only request from the FCS to manipulate the resource, describing the type
of manipulation M — it is up to the FCS whether this request will be honoured
or not. The chair still assigns, extends the assignment of, and revokes the floor.
These actions, however, are now communicative ones, they are multi-casted to
the holder and the FCS. Similarly, releasing the floor is now a communicative
action, multi-casted to the chair and the FCS.

15

In order to illustrate the difference between the two-role and three-role cFCP,
we outline the physical capabilities and institutional powers associated with a
holder in each setting. In a two-role cFCP, a holder S has the physical capability
to manipulate the shared resource. In a three-role cFCP, a holder S has the
institutional power to request (from the FCS) to manipulate the shared resource.
Unlike the two-role setting, in a three-role cFCP a holder may not succeed in
manipulating the shared resource (for example, if the FCS disregards S’s valid
requests for manipulation of the resource, thus not complying with the protocol
rules). Developing a complete specification of a three-role cFCP and comparing
that with a specification of a two-role cFCP is another topic of our current
research.

6 Discussion

We have presented a specification of a simple protocol for resource sharing in
norm-governed AHNs. The specification of norm-governed computational sys-
tems has been the focus of several studies stemming from various research fields.
A few examples are [8, 16, 21, 26–28]. Generally, work on the specification of
norm-governed computational systems does not explicitly represent the institu-
tional powers of the member agents. This is one key difference between our work
and related approaches in the literature: our specification of social constraints
explicitly represents the institutional powers of the agents, differentiates between
institutional power, permission, physical capability and sanction, and employs
formalisms with a declarative semantics and clear routes to implementation to
express these concepts. (A detailed comparison between our work and related
approaches in the literature can be found in [1, Section 4.10].)

The cFCP specification is expressed as a logic program and is therefore di-
rectly executable providing a clear route to (prototype) implementations. In
previous work [2] we presented ways of executing an EC action description ex-
pressing a protocol specification. The cFCP executable specification may inform
the agents’ decision-making at run-time, for example, by allowing the powers,
permissions, obligations, and sanctions current at any time to be determined.

At design-time, agents may wish to prove various properties of the protocol
specification in order to decide whether or not they should participate in the
protocol. Such properties may include, for instance, that a protocol specification
is ‘safe’ and ‘fair’ (see Section 2), that no agent is forbidden and obliged to
perform an action at the same time, non-compliance with the obligation to assign
the floor always leads to a sanction, and so on. We have been experimenting [3,25]
with the use of various techniques (for example, planning query computation and
model checking) to prove properties of a protocol specification expressed in the
C+ language. (Our theoretical framework for specifying norm-governed systems
is not dependent on any particular action language or temporal structure.) We
aim to investigate the feasibility and practicality of the application of some of the
aforementioned techniques to an EC-formalised protocol specification in order
to prove properties of such a specification.

16

Sadighi and Sergot [22] argue that when dealing with resource access control
in heterogeneous computational systems in which ‘undesirable’ behaviour may
arise (such as AHNs), the concepts of permission and prohibition are inadequate
and need to be extended with that of entitlement : “entitlement to access a
resource means not only that the access is permitted but also that the controller
of the resource is obliged to grant the access when it is requested” [22]. We are
currently working towards a treatment of this and related senses of ‘entitlement’
as they arise in the context of our cFCP specification (entitlement is concept
that arises naturally in a three-role cFCP). More precisely, we are identifying the
conditions in which a subject holding the floor can be said to be ‘entitled’ to it,
and what the consequences are, and the circumstances in which it is meaningful
to say that a subject not holding the floor is ‘entitled’/not ‘entitled’ to it, and
what the consequences are.

We believe that viewing AHNs as instances of norm-governed systems en-
hances their ‘adaptability’ both at the application level and at the physical
level. By specifying the permissions, obligations, entitlements, and other more
complex normative relations that may exist between the members of an AHN,
one may precisely identify ‘undesirable’ behaviour, such as performance of for-
bidden actions and non-compliance with obligations, and, therefore, introduce
enforcement strategies in order to adapt to such behaviour. To what extent this
view gives useful insights in practice remains to be investigated.

Acknowledgements

This work has been supported by the EPSRC project “Theory and Technology
of Norm-Governed Self-Organising Networks” (GR/S74911/01).

References

1. A. Artikis. Executable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, University of London, November 2003. Retrieved April 8,
2004, from http://www.doc.ic.ac.uk/∼aartikis/publications/artikis-phd.

pdf, also available from the author.
2. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-

eties. In Proceedings of Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), pages 1053–1062. ACM Press, 2002.

3. A. Artikis, M. Sergot, and J. Pitt. An executable specification of an argumentation
protocol. In Proceedings of International Conference on Artificial Intelligence and
Law (ICAIL), pages 1–11. ACM Press, 2003.

4. K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322. Plenum Press, 1978.

5. H.-P. Dommel and J. J. Garcia-Luna-Aceves. Design issues for floor control pro-
tocols. In Proceedings of Symposium on Electronic Imaging: Multimedia and Net-
working, volume 2417, pages 305–316. IS&T/SPIE, 1995.

6. H.-P. Dommel and J. J. Garcia-Luna-Aceves. Floor control for multimedia confer-
encing and collaboration. Multimedia Systems, 5(1):23–38, 1997.

17

7. H.-P. Dommel and J. J. Garcia-Luna-Aceves. Efficacy of floor control protocols
in distributed multimedia collaboration. Cluster Computing Journal, Special issue
on Multimedia Collaborative Environments, 2(1):17–33, 1999.

8. M. Esteva, J. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. Arcos. On the formal
specifications of electronic institutions. In F. Dignum and C. Sierra, editors, Agent
Mediated Electronic Commerce, LNAI 1991, pages 126–147. Springer, 2001.

9. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153(1–2):49–104, 2004.

10. A. Jones and M. Sergot. On the characterisation of law and computer systems: the
normative systems perspective. In Deontic Logic in Computer Science: Normative
System Specification, pages 275–307. J. Wiley and Sons, 1993.

11. A. Jones and M. Sergot. A formal characterisation of institutionalised power.
Journal of the IGPL, 4(3):429–445, 1996.

12. M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent
exception handling services to enable robust open multi-agent systems: the case
of agent death. Journal of Autonomous Agents and Munti-Agent Systems, 7(1–
2):179–189, 2003.

13. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–96, 1986.

14. A. Lomuscio and M. Sergot. A formulation of violation, error recovery, and en-
forcement in the bit transmission problem. Journal of Applied Logic, 2:93–116,
2004.

15. D. Makinson. On the formal representation of rights relations. Journal of Philo-
sophical Logic, 15:403–425, 1986.

16. N. Minsky and V. Ungureanu. Law-governed interaction: a coordination and con-
trol mechanism for heterogeneous distributed systems. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 9(3):273–305, 2000.

17. A. Murphy, G.-C. Roman, and G. Varghese. An exercise in formal reasoning about
mobile communications. In Proceedings of Workshop on Software Specification and
Design, pages 25–33. IEEE Computer Society, 1998.

18. C. Perkins. Ad Hoc Networking, chapter 1. Addison Wesley Professional, 2001.
19. H. Prakken. Formalising Robert’s rules of order. Technical Report 12, GMD –

German National Research Center for Information Technology, 1998.
20. H. Robert. Robert’s Rules of Order: The Standard Guide to Parliamentary Proce-

dure. Bantam Books, 1986.
21. J. Rodriguez-Aguilar, F. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards

a test-bed for trading agents in electronic auction markets. AI Communications,
11(1):5–19, 1998.

22. B. Sadighi and M. Sergot. Contractual access control. In Proceedings of Workshop
on Security Protocols, 2002.

23. H. Schulzrinne. Requirements for floor control protocol. Internet Engineering
Task Force, January 2004. Retrieved April 8, 2004, from http://www.ietf.org/

internet-drafts/draft-ietf-xcon-floor-control-req-00.txt.
24. J. Searle. What is a speech act? In A. Martinich, editor, Philosophy of Language,

pages 130–140. Oxford University Press, third edition, 1996.
25. M. Sergot. Modelling unreliable and untrustworthy agent behaviour. In Proceed-

ings of Workshop on Monitoring, Security, and Rescue Techniques in Multiagent
Systems (MSRAS), Advances in Soft Computing. Springer-Verlag, 2004.

26. M. Singh. A social semantics for agent communication languages. In F. Dignum
and M. Greaves, editors, Issues in Agent Communication, LNCS 1916, pages 31–45.
Springer, 2000.

18

27. W. Vasconcelos. Norm verification and analysis of electronic institutions. In
J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors, This Volume. 2005.

28. M. Winikoff, W. Liu, and J. Harland. Enhancing commitment machines. In
J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors, This Volume. 2005.

Appendix: The Event Calculus

The domain-independent definition of the holdsAt predicate is as follows:

holdsAt(F =V, T)←
initially(F =V),
not broken(F =V, 0, T)

(9)

holdsAt(F =V, T)←
happens(Act, T ′),
T ′ < T,
initiates(Act, F =V, T ′),
not broken(F =V, T ′, T)

(10)

According to axiom (9) a fluent holds at time T if it held initially (time 0) and
has not been ‘broken’ in the meantime, that is, terminated between times 0 and
T . Axiom (10) specifies that a fluent holds at a time T if it was initiated at
some earlier time T ′ and has not been terminated between T ′ and T . not rep-
resents negation by failure. The domain-independent predicate broken is defined
as follows:

broken(F =V, T1, T3)←
happens(Act, T2),
T1 ≤ T2, T2 < T3,
terminates(Act, F =V, T2)

(11)

F =V is ‘broken’ between T1 and T3 if an event takes place in that interval that
terminates F =V . A fluent cannot have more than one value at any time. The
following domain-independent axiom captures this feature:

terminates(Act, F =V, T)←
initiates(Act, F =V ′, T),
V 6= V ′

(12)

Axiom (12) states that if an action Act initiates F =V ′ then Act also terminates
F =V , for all other possible values V of the fluent F . We do not insist that a
fluent must have a value at every time-point. In this version of EC, therefore,
there is a difference between initiating a Boolean fluent F = false and terminating
F = true: the first implies, but is not implied by, the second.

We make two further comments regarding this version of EC. First, the
domain-independent EC axioms, that is, axioms (9)–(12), specify that a fluent
does not hold at the time that was initiated but holds at the time it was termi-
nated. Second, in addition to their domain-independent definitions, the holdsAt
and terminates predicates may be defined in a domain-dependent manner (see,
for example, axioms (5) and (7)). The happens, initially and initiates predicates
are defined only in a domain-dependent manner.

