
Simulating Computational Societies

Lloyd Kamara, Alexander Artikis, Brendan Neville and Jeremy Pitt

Intelligent & Interactive Systems Group, Imperial College,
Electrical Engineering Dept., London, UK, SW7 2BT. �+44 (0)20 7594 6221

l.kamara,a.artikis,brendan.neville,j.pitt{@ic.ac.uk}

Abstract. Multi-agent systems can be considered from a variety of per-
spectives. One such perspective arises from considering the architecture
of an agent itself. Another is that of an instantiated agent architecture
and its interaction with its peers in a MAS. A third perspective is that of
an external observer. These three perspectives cover a potentially over-
lapping but essentially distinct set of issues concerning MAS simulation
and modelling. In this paper, we consider each of these perspectives in
turn and demonstrate how a simulation framework can support a collec-
tive treatment of such concepts. We discuss the implications for agent
development and agent society design arising from the results and anal-
ysis of our simulation approach.

1 Introduction

Multi-agent systems (MAS) can be considered from a variety of perspectives.
One such perspective arises from considering the architecture of an agent itself
(e.g. [18]). This is relevant to agent designers and implementors, as it concerns
the internal operation of an agent. The basic architectural properties largely
determine how the agent will interact with its environment. Another perspective
to consider is that of an instantiated agent architecture and its interaction with
its peers in a MAS. This covers both communicative and socio-cognitive aspects
of agent interaction (e.g. [7,9,17]). In addition to being relevant to agent designers
and implementors, this can be used to model, analyse and explain the behaviour
of the agents in terms of social theories (e.g. [7, 9]). The introduction of socio-
cognitive elements to agent reasoning allows interactions to be characterised in
increasingly anthropomorphic terms. A third perspective is that of an external
observer (e.g. [1,2,27,29]). Under such circumstances, we adopt a bird’s eye view
of computational systems — we are not concerned with the internal architecture
of the participating agents. We can specify the legal and social aspects of these
systems, such as the normative positions and institutional powers of the agents,
without making any assumptions about mentalistic concepts like beliefs, desires
or intentions.

We aim to enable society designers and agent developers to view simulated
societies both at a micro (i.e. from an intensional perspective) and a macro (i.e.

from an extensional perspective) level (as is the case with [10] and [27])1. To
this end, we propose simulation tools which address concerns and requirements
identified at both (and intermediate) levels. We refer to these tools collectively
as our simulation framework.

Pitt et al. [16] describe an abstract producer/consumer (APC) scenario where
producers sell information to consumers. In this scenario the producers are ex-
plorer agents that map out the distribution of oil in their environment and con-
sumers are cartographer agents that initiate contract-net protocols [23] (CNP)
to acquire the maps from the explorers. We have used variants of the CNP in
Section 3 and Section 4 as vehicles for analysing trust, experience and repu-
tation from the socio-cognitive (micro) perspective; and power, permission and
obligation from the external (macro) perspective.

The rest of this paper is organised as follows. In Section 2, we present MAS
and agent simulation architectures. In Section 3, we describe an approach to
trust and reputation modelling in MAS. In Section 4, we consider executable
specifications of norm-governed computational societies in a manner independent
of agent internals. In Section 5, we relate our findings to agent development and
agent society design endeavours, concluding that they offer some preliminary
guidelines to agent implementors and society developers for scoping social MAS.

2 Agent and MAS Simulation Architectures

The basis of our MAS simulation architecture is a collection of agents whose
interaction is governed by a communications interface and an accompanying set
of protocols. The MAS is neutral with respect to the architecture of participat-
ing agents: no assumptions are made about internal operation and motivations
of an agent by its peers. Interaction between two agents takes place through
their communications interfaces, either creating or extending a communicative
context, or conversation.

2.1 Communications Interface

The communications interface consists of a higher and lower-level component
pair: the Agent Communication Language (ACL) and a socket-based module for
TCP/IP transmission of messages. The former defines (amongst other things)
the supported syntax of messages while the latter defines how messages are
exchanged. Following [17], we define an ACL in terms of three components: a
content language, which defines the syntax of messages, a set of protocols which
define patterns of interaction and a reply function which provides an external
semantics for the ACL. The content language is the set of performatives that
agents use in communication, while the protocols identify sequences of performa-
tives that constitute meta-level interaction (such as auction and query/response
1 We also note that these intensional and extensional perspectives are respectively

related to the subjective and objective approaches to multi-agent co-ordination di-
cussed in [19].

protocols). Given an input performative, protocol and current conversation state,
the reply function returns the set of ‘acceptable’ responses. These take the form
of performative-protocol pairs, which, depending on the options available, may
enable a responding agent to continue the conversation using the same protocol,
or to initiate an auxiliary conversation using a different protocol. The relation-
ship between content language, protocols and reply function is specified in a
separate (Prolog) module, making it straightforward to refine and enhance the
communicative behaviour of agents.

Pitt and Mamdani [17] justify the use of a protocol-based semantics to cover
the external aspects of agent interaction in MAS featuring agents with hetero-
geneous architectures and distinct reasoning and motivational traits. A similar
justification is used here, with the introduction of a socio-cognitive perspective
arguably serving to re-inforce the need for such an approach. The additional sub-
jective treatment of concepts including trust and reputation makes each agent
even more distinct and thus external characterisations of interactions become
increasingly relevant. In the following section, we describe an agent architec-
ture that can be parameterised with different reasoning and socio-cognitive be-
haviour, allowing us to represent heterogeneous MAS in our experiments while
retaining a compact simulation base.

2.2 Agent Architecture

In our proposed experimental configuration, a generic BDI-based [18] architec-
ture forms the computational base for each agent. We use the same architecture
for reasons of simplicity: the principle of heterogeneity outlined earlier has not
been abandoned. It would be equally possible to use agents with different archi-
tectures as long as they possess compatible interfaces (like in [11, 13]). Specific
behaviour is determined by parameterisation of the respective agent instances.
This approach can be used, for example, to pre-assign the roles of auctioneer and
bidders in a group of agents enacting an electronic auction. Figure 1 gives a dia-
grammatic overview of the agent architecture. The control module contains the
agent interface and interpreter, in addition to housing the protocols sub-module.
The agent interface facilitates and manages conversations (as mentioned previ-
ously), representations of which are to be found in the conversational component
of the agent’s mental state.

The interpreter serves as the animating core of the agent architecture, op-
erating in the form of a typical BDI cycle. It processes incoming messages at
the content level, consulting and updating mental state representation while ex-
ecuting communicative actions appropriate to the agent’s recent perception and
interpretation of events.

The mental state representation consists of several elements (see Figure 1).
The intentional state holds the agent’s belief and motivational state alongside the
agent’s current intentions. These are expressed as time-stamped Prolog terms
with assertion being the means of updating state content. Records of conver-
sations — again, represented through Prolog terms — are maintained in the
conversational state component. Each conversation is recorded as a four-tuple

initial mental state
behaviour

userget
msgsbi−directional

connections
to other agent
processes

agent
interface

control module

graphing
utility

protocols

user interface

server socket

interpreter

intentional
state

socio−cognitive
characteristics

conversational
state

trust
model

reply

Fig. 1. Generic Agent Architecture for Experiments

denoting the correspondent (the other agent in the conversation), local and re-
mote conversation identifiers [17] and the current state of the conversation (from
a local perspective). A sub-set of the contained data reflects proceedings in cur-
rent, or active, conversations. The user interface provides a means for the ex-
perimenter to initialise the agent and to monitor and control its behaviour. The
architecture does not feature a fixed procedure for belief update at present, al-
though the way has been prepared for the introduction of such a mechanism. In
particular, with each Prolog term used to represent a belief there is an associ-
ated credence measure (in the range of 0–1) which reflects the level of certainty
the agent has in the content.

3 Socio-Cognitive Modelling

Our investigation of socially motivated behaviour is based on formal models
of anthropomorphic socio-cognitive relations. Accordingly, our socio-cognitive
model defines three component beliefs of each agent about its peers in the society:
trust, direct experience and reputation. This section defines the socio-cognitive
model and the software developed to facilitate experimentation with agent so-
cieties whose members are implemented with a (parameterised) version of the
model.

Our computational representation of trust is based on the formal model of
Castelfranchi and Falcone [7,9]. The essential conceptualisation is as follows: the
degree to which Agent A trusts Agent B about task τ in Ω (state of the world)
is a subjective probability; this is the basis of agent A’s decision to rely upon B
for τ . Our method incoporates this stance, defining trust as the resultant belief
of one agent about another, borne out of direct experience of that other party
and/or from the testimonies of peers (i.e. reputation).

We define direct experience as the belief one agent has about the trustworthi-
ness of another, based on first-hand interactions. Having ‘trusted’ another agent
to perform task τ and assessed the outcome, an agent will update its direct
experience beliefs concerning the delegated agent accordingly. The outcome of
delegating a task may be either successful or unsuccessful: this categorisation is
the basis of an experience update rule [25] that calculates the revised level of
trustworthiness to associate with the agent in question.

Our motivation in investigating reputation mechanisms by simulation is pro-
vided by Conte [8], who outlines the need for ‘decentralised mechanisms of en-
forcement of social order’ noting that ‘reputation plays a crucial role in dis-
tributed social control’. In an agent society, reputation is the collectively in-
formed opinion held by a group of agents about the performance of a peer agent
within a specific social context. By consulting its peers, an agent can discover
the individual reputation of an agent. However, the received testimonies may be
affected by existing relationships and attitudes (for example, agent C may be
willing to divulge reputation information to agent A but not to agent B). Thus,
reputation is also a subjective concept which we define as a belief held/derived by
one agent. The Subjective Reputation Evaluation Function (SREF) formulates
subjectively — that is, from the perspective of an agent A — the reputation of an
agent B, based on information from the peers of A and B. SREF may take sev-
eral forms; examples are a weighted sum or a fuzzy relation. In our current work,
we use the former approach; a summing function in which n assertions received
from peers regarding agent B are weighted by the agent’s trust (confidence) in
each peer to make accurate recommendations. This approach incorporates the
credibility of each assertion’s source (the credibility of a belief being dependent
upon the credibility of its sources, evidences and supports [7]).

We briefly address a proposed method of combining direct experience with
reputation to formulate the mental state of trust. Each belief has associated with
it a degree of confidence signifying an agent’s trust in the belief’s accuracy. This
confidence measure is essential to what trust will be based on, be it one or indeed
both of the beliefs, experience or reputation. An agent with strong confidence
in its experience beliefs and little confidence in the accuracy of its reputation
beliefs should rationally choose to calculate its degree of trust (DoT) primarily
from its experiences. An agent recently introduced to the system should have
little confidence in its own (in)experience and should thus base its trust solely
on reputation. The number of direct experiences is therefore significant in eval-
uating confidence in a belief about direct experience. It is similarly the case for
reputation, where the number of agreeing testimonies is a decisive factor. Expe-
rience and reputation thus become influences of trust, the weighting assigned to
them dependent upon an agent’s confidence in their respective accuracies.

3.1 The Trading Economy

We simulate our commerce society as trading agents executing a variant of the
CNP [23]. In this variant, the corresponding communicative acts for informing
of the successful completion of a task and making payment are sent without any

intermediate evaluation — that is, the cartographer (manager) does not know
how well (if at all) a task has been performed before it sends a payment in
response to a contracted explorer’s (bidder) task completed message. In effect,
we have a CNP concluding with a prisoner’s dilemma [3] (PD). Each agent’s
actions at any stage will be influenced by expectations about the actions of its
trading counterpart. The agents are able to execute the CNP repeatedly, forming
the basis for an iterated PD. This differs from the game theoretic studies in [3],
however, in that agents choose the peers with which they are willing to enter the
PD on a trust/cost trade-off basis. The reasoning behind which action to take
once a contract is established is similarly distinguished.

An explorer agent is able to vary bidding price from one CNP instance to
another. This could be used to increase the desirability of an agent’s bid, by
under-cutting the bids of other explorers held in higher esteem. Agents not be-
ing awarded contracts may lower their prices in an attempt to generate business.
Once a loyal trade relationship has been established, an explorer agent can grad-
ually increase its bidding price in order to increase profitability.

When a cartographer awards a contract to a specific explorer, a PD-style
dependence is obtained. The explorer is relying upon the cartographer to make
prompt payment; the cartographer is relying upon the explorer to provide the
required information. Our system however, does not guarantee that agent actions
will always have the intended effect. Agents may fail to complete a task for
reasons other than conscious deception. The inclusion of this fallibility factor is
to account for unpredictability and unreliability within MAS environments and
real-world applications.

3.2 Trust-based prediction

Here, we discuss the use of a trust mechanism as a predictor for future peer
behaviour. In this context, we interpret trust as a subjective probability that
a peer will take a certain action, the outcome of which will characterise the
corresponding interaction context. For each outcome, the agent will experience
profit or loss to a varying extent — we refer to this as the outcome’s pay-off.
Knowing the pay-offs of each outcome in advance and having an estimate of
their probabilities of occurrence (trust), the agent and calculate the expected
pay-off of each of its options. How the agent determines trading partners and
what action to take (co-operate or defect) once a contract is established depends
upon its character type and the expected pay-offs of each possible action. We
currently simulate three basic character types. Co-operators only choose co-
operation strategies; if the expected outcome for co-operation is not greater than
zero, a co-operator will not enter into a contract. Defectors will pursue a policy of
co-operation or defection purely based upon maximising the expected pay-off of
an interaction. Reciprocators have probabilistic intentions; the probability that
they will co-operate (their trustworthiness) is matched to their evaluation of a
trading partner’s behaviour (DoT in the peer). As a result, their trustworthiness
displayed towards competent co-operators is high, whereas they are likely to
defect against defectors and incompetent agents in general.

3.3 Agent Configuration and Monitoring

The Multiple Agent Launcher (MAL) is a software tool that allows experimenters
to create and launch an arbitrary number of agents with distinct configuration
parameters. Agents may be launched individually or in groups. The configuration
parameters are expressed as arguments to the agent architecture presented in
Section 2 and range from low-level (e.g. agent cycle delay time) to high-level (e.g.
file-name of Prolog source for run-time behaviour). The motivation behind the
MAL is to provide the user with a single interface from which to configure and
monitor agent experiments, as well as to visualise real-time agent interactions.
It is important to note that the agents thus launched remain semi-autonomous
processes; the MAL is not a centralised control mechanism, but behaves as a
convenient abstraction of one. The MAL supports configuration of agents with
heterogeneous socio-cognitive characteristics and behavioural traits, by allowing
the experimenter to adjust the parameters of the trust and reputation update
functions (for example). The output of these functions is logged at various in-
tervals during a simulation run and can also be graphed in real-time.

3.4 Simulation and Results

We now discuss an example simulation for trust update based on direct experi-
ence. The experiment consists of twelve agents, split evenly between managers
and bidders. All of the agents are of reciprocator interaction type, differing only
in their ability to complete the tasks relied upon by their respective contract
partners. This ability is manifested through a probability parameter which de-
termines the rate of successful task completion per agent. In this experiment,
three ability levels were specified: 95%, 75% and 50%. Two cartographers and
two explorers were all assigned the same probability parameter for each of the
three levels, resulting in a tripartite ability configuration. When an agent fails
to successfully perform its part of the contract, its partner perceives this and
consequently reacts as if it were a conscious act of defection. In the graphs of
Figure 2 and Figure 3, each line reflects the mean data values belonging to a
pair of equally skilled agents of the same type. The mean data readings for two
explorer agents whose degree of ability is 95%, for example, is labelled ‘Explorers
(95%)’. Time-points occur at ten second intervals; the current trust beliefs and
monetary worth of the agents are logged at each point.
Figure 2 plots the level of trust directed towards different members, over the time
of the simulation. The featured DoT is simply the mean of the opinions of all the
members in the society who know the agent in question. Agents are configured
to initially blindly trust their peers (DoT = 1.0). As the simulation progresses
their opinions change dramatically — in particular, there is a drop in communal
trust for the capable agents. This is because the incompetent agents do not trust
the competent agents, while the capable agents reciprocate for the incompetents’
failures by defecting against them. The competent agents have a very strong trust
relationship among themselves but a very poor one with others — the average is
therefore lowered. Our next graph (Figure 3) shows the performance measure,

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
0

0.2

0.4

0.6

0.8

1

Timepoint (10×Seconds)

A
ve

ra
ge

 D
eg

re
e

of
 T

ru
st

 (
D

ire
ct

 E
xp

er
ie

nc
e)

Cartographers (50%)

Explorers (50%)
Cartographers (75%)

Explorers (95%)

Cartographers (95%)

Explorers (75%)

Fig. 2. Experimental Results - Trust Evolution

the amount of assets accrued or lost. From this it can be seen that a society of
reciprocators is a meritorious one. The highly capable agents (95%) are able to
succeed; agents of intermediate skill (75%) break roughly even while the least
skilled agents (50%) are punished.

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
0

500

1000

1500

2000

2500

Timepoint (10×Seconds)

A
ss

et
s

V
al

ue

Cartographers (95%)
Explorers (95%)

Cartographers (75%)

Explorers (50%)

Cartographers (50%)
Explorers (75%)

Fig. 3. Experimental Results - Monetary Performance

Although our presented experiments have not covered reputation, we intend
to address this in future work, as we believe it is an important aspect of agent
interaction. In particular, we note how reputation is related to the notion of
scalability: in a system with a large number of agents, the likelihood of any
individual agent having interacted with a specific peer is less. This leads to
an overall reduction in the amount of direct experience available to an agent
during its decision-making. We are investigating when and how agents (in their
capacity as third parties for reputation information transmission) can effectively
propagate information [8] under such circumstances. It is expected that the
results of further experiments will establish what parameters and socio-cognitive

characteristics lead to ‘stable’ trust relationships; ones that are resistant to minor
aberrations in agent behaviour due to circumstances beyond their control.

4 Executing the Specifications of Computational Societies

Artikis et al. [1] present a theoretical framework for providing executable spec-
ifications of particular kinds of multi-agent systems, called open computational
societies. Open computational societies (as defined in [1]) have the following char-
acteristics: first, the internal architecture of the agents is not publicly known,
i.e. there is no direct access to an agent’s mental state. Second, the members
of the society do not necessarily share a notion of global utility. Members may
fail to, or choose not to, conform to specifications in order to achieve their indi-
vidual goals. In addition to these properties, in open societies ‘the behaviour of
the members and their interactions cannot be predicted in advance’ [14]. In this
framework the computational systems are viewed from an external perspective,
that is to say, the internal architecture of the agents is not considered. Three
key components of computational systems are specified, namely the social con-
straints, social roles and social states. The specification of these concepts is based
on and motivated by the formal study of legal and social systems (a theory of
institutionalised power [15] and a theory of normative positions [21]) and tra-
ditional distributed computing techniques (state transition systems). The social
constraints and roles have been specified with two different formalisms from AI:
the Event Calculus [22] (see [1]) and the C+ language [12] (see [2]). Next, we
briefly discuss the way social constraints are specified in [1, 2]. Then we present
a computational framework that executes the specifications (i.e. the social con-
straints) of the agent societies during their execution.

4.1 Social Constraints

Artikis et al. [1, 2] follow Jones and Sergot [15] and maintain the standard,
in the study of social and legal systems, long established distinction between
permission, physical capability and institutionalised power. The social constraints
specify:

– What kind of actions ‘count as’ [15] valid (‘effective’) actions. Distinguishing
between valid and invalid actions enables the separation of meaningful from
meaningless activities.

– What kind of actions (valid, invalid) are permitted. Determining the per-
mitted, prohibited, obligatory actions enables the classification of the agent
behaviour as ‘legal’ or ‘illegal’, ‘social’ or ‘anti-social’, etc.

– What are the sanctions and enforcement policies that deal with ‘illegal’,
‘anti-social’ behaviour.

Valid actions are specified as follows: An action ‘counts as’ a valid action at a
point in time if and only if the agent that performed that action had the institu-
tionalised power [15] to perform it at that point in time. Differentiating between

valid (‘meaningful’) and invalid (‘meaningless’) actions is of great importance in
the analysis of agent systems. For example, in an auction, the auctioneer has to
determine which bids are valid and therefore, which bids are eligible for winning
the auction.

SOCIETY

VISUALISER

CURRENT SOCIAL STATE:

t+1:-pow(agentA, action1).

t+1:pow(agentB, action3).

t+1:permitted(agentB,action3).

…

SOCIAL CONSTRAINTS:

i:pow(Agent, Act) => i:permitted(Agent, Act)

i:
action1=> i+1:pow(agentB,action3) …

NARRATIVE:

t:action1.

t:action2.

…

o

b
se

rv
er

agent

agent

Fig. 4. The Society Visualiser

4.2 The Society Visualiser

In this section we describe a software platform called Society Visualiser (SV),
that builds upon the theoretical framework for the specification of open sys-
tems [1] and that compiles (produces) and updates the global state of an agent
society. The global state includes information like the institutional powers, per-
missions, obligations, sanctions and social roles of the members. Figure 4 de-
scribes the architecture of the SV in terms of inputs/outputs. In order to pro-
duce the global state of the societies, the SV has two inputs: a narrative and the
social constraints2. The narrative is a description of the externally observable
events that take place in a computational society. For example, t : action1 states
that action1 took place at time point t (Figure 4). The narrative is produced
in the following manner: When a member of the society sends a message to a
peer, he also sends that message to an observer agent for monitoring purposes3.
These messages are called report messages and are necessary for the compilation
of the social states. The report messages (and all other monitored events) con-
sist of the narrative. In other words, the SV observes (without intervening) the
interactions of the members of the computational societies in order to produce
the social states of the societies. The social constraints specify the valid actions,
institutional powers, permissions and so on. of the members of the society. Con-
sider the following constraint (expressed in a generic notation):

i : pow(Agent,Act)⇒ i : permitted(Agent,Act)

2 The social constraints and the narrative are expressed in terms of either the Event
Calculus or the C+ language. However, in order to simplify our analysis, we illustrate
the social constraints and narrative in Figure 4 with the use of a generic notation.

3 The observer agents monitors the execution of the members for the benefit of the
Society Visualiser.

The above constraint states that if at time point i an agent is ‘empowered’ [15]
to perform an action (represented by pow(Agent ,Act)) then this agent is also
‘permitted’ to perform the same action (represented by permitted(Agent ,Act)).
The remaining constraints are specified in a similar fashion.

As mentioned earlier, the output of the SV is the global state of the society at
a point in time. In other words, given the narrative of time point t (say), the SV
will produce the states of affairs that hold at time t + 1 . Global states are stored
in a database and are displayed in a graphical interface for the benefit of the
society designer. This graphical display the represents the following information
about each agent: (i) institutional powers, (ii) permissions, (iii) obligations, (iv)
sanctions and (v) valid actions. Figure 5 demonstrates the GUI of the SV during
the simulations of a variation of the CNP (see [1] for more details). Global states
are produced for the benefit of the members of the societies as well. Agents can
send query messages to the SV in order to find out the social state of the group or
of their peers. Apart from producing the global state of each time point, the SV

Agent (or environment) description

in the form of Prolog lists.

Agent

description in

terms of:

roles, powers,

permissions,

obligations,

sanctions,

valid actions. If

the environment

were selected at

the list of agents

then this table

would show a

description of

the environment

List of the members of the

society and the environment.

Viewing

either the

social states

or the

narrative of

the current

time-point

Current time-

point of the

simulation.

The user may

scroll to any

time-point in

the simulation.

Starting/

stopping the

compilation of

social states

Fig. 5. The main GUI of the Society Visualiser

includes a number of additional capabilities. One of these capabilities is planning.
Given an initial state and a goal state (and the set of social constraints), the
SV can determine if there exists a sequence of actions that will lead from the
initial to the goal state. Due to the high complexity of such tasks, computation of
planning queries can be mainly performed in an off-line phase, that is before the
commencement of the interactions of the agent societies. Such a functionality
enables the society designer to prove various properties of the agent systems
and, therefore, evaluate the design of the social constraints. For example, having
specified the constraints of an auction protocol, the designer can determine with
the use of planning queries if it is possible to reach a state where two different
agents have won the auction. Currently, this functionality is only provided if the
social constraints are expressed by means of the C+ language4.
4 In this case the SV is an extended version of the Causal Calculator software tool

(see [2]).

5 Concluding Remarks

We presented a simulation framework that addresses the internal architecture of
the agents in addition to accounts of the trust relationships of the agents and of
the institutional and social aspects of agent systems. We intentionally did not
address/fully investigate issues like low-level details of the simulation framework,
experimentation, scalability and other criteria discussed in the community for
the experimental study of MAS (see for example [11]). Our aim is to stress the
need for the representation of conceptually different perspectives in the modelling
and simulation of computational societies. The issues that were not addressed
in this paper will be investigated in future work5.

Several simulation platforms have similar objectives to the framework pre-
sented in this paper (e.g. Mace3j [11], MadKit, [13], FishMarket [20] and My-
World [26]). These platforms do not formally address all the issues raised in
this paper. For example, in Fishmarket there is a lack of formalisation of con-
cepts such as rights and obligations as well as a lack of an explicit representation
of them during simulations. The MadKit platform is based on the organisation
metaphor AGR (agent/group/role) developed in the context of the Aalaadin
project and integrates heterogeneous agent systems. As pointed out in [29], the
AGR model views organisations simply as collections of roles and does not in-
corporate the necessary notion of organisational rules (i.e. social constraints).

There exist several approaches that modify the traditional BDI cycle in order
to increase the ‘social awareness’ of agents (e.g. [6]). Here, we have selected trust
as the crucial modifier. The results of our experiments (reported in Section 3)
support the notion of trust as an important and beneficial input to agent-based
reasoning in MAS. We believe that a similar view can be taken of the normative
and institutional concepts discussed in Section 4. We have not fully integrated
the trust and deontic concepts of our framework at this stage, but one of our ob-
jectives is to make the information compiled by the Society Visualizer available
to all agents, either through communication (via query messages) or via the ad-
dition of a module equivalent to the Society Visualiser to each agent. Reasoning
about the institutional and social properties of the agents (as produced by the
Society Visualiser) is also a crucial part of trust relationships. Members of a so-
ciety, governed by a set of rules, must consider when deciding to delegate a task
to a peer what are its associated institutional powers, permissions, obligations,
sanctions and social roles. For example, it would not be ‘rational’ to delegate a
task to an agent if that agent does not have the institutional power or is for-
bidden to perform that task. Future work includes modifying the process of the
trust update mechanism by considering attributes such as powers (institutional
and physical), permissions, obligations and roles of the peers.

In conclusion, we believe the combination of architectural, socio-cognitive
and external observational perspectives presented in this paper affords a com-
prehensive approach to modelling MAS. A key aspect of future work will be to

5 Limited space is another reason why we do not fully investigate these issues here.
However, details on experimental results can be found in [1, 2].

refine this combination into a socio-technical substrate defining and supporting
the activities of agents within MAS as well. We believe that building a socio-
technical layer of computation, complementary to (and exploiting functionality
of) a lower level of security, is technically feasible, and indeed offers a more
tractable solution to certain security problems in e-commerce [5, 24] and digital
rights management [4] than, say, ever more sophisticated encryption algorithms
or encoding technology. For example, advocates of the Extensible rights Mark-up
Language (XrML) position XrML as the foundation of trusted system develop-
ment [28]: a higher-level approach is to use trust as the foundation of trusted
system development. We plan to fully validate the presented concepts and argu-
ments through continued design, simulation and analysis.

6 Acknowledgements

This work has been undertaken in the context of the EU-funded ALFEBIITE
Project (IST-1999-10298). We have also benefitted from Marek Sergot’s contri-
butions on the specification of agent societies and on the development of the
Society Visualiser (Section 4). The authors are especially grateful for the com-
ments received both from reviewers and during the ESAW 2002 workshop.

References

1. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In C. Castelfranchi and L. Johnson, editors, Proceedings of AAMAS, pages
1053–1062. ACM, 2002.

2. A. Artikis, M. Sergot, and J. Pitt. Specifying electronic societies with the causal
calculator. In Proceedings of AOSE, pages 75–86, 2002.

3. R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.
4. J. Bing. Managing copyright in a digital environment. In I. Butterworth, editor,

The Impact of Electronic Publishing on the Academic Community, pages 52–62.
Portland Press, 1998.

5. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The role of trust
management in distributed systems security. In Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, number 1603 in LNCS, pages
185–210. Springer, 1999.

6. J. Broersen, M. Dastani, Z. Huang, J. Hulstijn, and L. Van der Torre. The BOID
architecture: Conflicts between beliefs, obligations, intentions and desires. In Pro-
ceedings of Autonomous Agents, pages 9–16. ACM Press, 2001.

7. C. Castelfranchi and R. Falcone. Social trust: A cognitive approach. In C. Castel-
franchi and Y.-H. Tan, editors, Trust and Deception in Virtual Societies, pages
55–90. Kluwer Academic Press, 2000.

8. R. Conte. A cognitive memetic analysis of reputation. Alfebiite project deliverable,
2002. http://alfebiite.ee.ic.ac.uk/docs/Deliverables/D5D6.zip.

9. R. Falcone and C. Castelfranchi. The socio-cognitive dynamics of trust: Does trust
create trust? In R. Falcone, Y.-H. Tan, and M. Singh, editors, Trust in Cyber-
Societies, number 2246 in LNAI, 2001.

10. J. Filipe. A normative and intentional agent model for organisation modelling. In
P. Petta, R. Tolksdorf, and F. Zambonelli, editors, Proceedings of ESAW, LNCS.
Springer, 2002.

11. L. Gasser and K. Kakugawa. MACE3J: Fast, flexible distributed simulation of
large, large-grain multi-agent systems. In C. Castelfranchi and L. Johnson, editors,
Proceedings of AAMAS, pages 745–852, 2002.

12. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. To appear in the Journal of Artificial Intelligence, 2003.

13. O. Gutknecht, J. Ferber, and F. Michel. Integrating tools and infrastructures for
generic multi-agent systems. In Proceedings of Autonomous agents, pages 441–448.
ACM Press, 2001.

14. C. Hewitt. Open information systems semantics for distributed artificial intelli-
gence. Artificial Intelligence, 47:76–106, 1991.

15. A. Jones and M. Sergot. A formal characterisation of institutionalised power.
Journal of the IGPL, 4(3):429–445, 1996.

16. J. Pitt, L. Kamara, and A. Artikis. Interaction patterns and observable commit-
ments in multi-agent trading scenario. In Proceedings of Autonomous Agents, pages
481–489. ACM Press, 2001.

17. J. Pitt and A. Mamdani. Designing agent communication languages for multi-
agent systems. In F. Garijo and M. Boman, editors, Proceedings of MAAMAW
Workshop, number 1647 in LNAI, pages 102–114. Springer-Verlag, 1999.

18. A. Rao and M. Georgeff. BDI agents: from theory to practice. In Victor Lesser,
editor, Proceedings of ICMAS, pages 312–319, San Francisco, CA, 1995. MIT Press.

19. A. Ricci, A. Omicini, and E. Denti. Activity theory as a framework for MAS
coordination. In P. Petta, R. Tolksdorf, and F. Zambonelli, editors, Proceedings of
ESAW, LNCS. Springer, 2002.

20. J. Rodriguez-Aguilar, F. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards a
test-bed for trading agents in electronic auction markets. In AI Communications,
pages 5–19, 1998.

21. M. Sergot. A computational theory of normative positions. ACM Transactions on
Computational Logic, 2(4):522–581, 2001.

22. M. Shanahan. The event calculus explained. In M. Wooldridge and M. Veloso,
editors, Artificial Intelligence Today, LNAI 1600, pages 409–430. Springer, 1999.

23. R. Smith and R. Davis. Distributed problem solving: The contract-net approach.
In Proceedins of the 2nd Conference of Canadian Society for CSI, 1978.

24. V. Swarup and J. T. Fabréga. Trust: Benefits, models and mechanisms. In Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, number
1603 in LNCS, pages 3–18. Springer, 1999.

25. M. Witkowski, A. Artikis, and J. Pitt. Experiments in building experiential trust
in a society of objective-trust based agents. In R. Falcone, M. Singh, and Y.-H.
Tan, editors, Trust in Cyber Societies, LNAI 2246, pages 110–132. Springer, 2001.

26. M. Wooldridge. This is MyWorld: The logic of an agent-oriented DAI testbed.
In M. Wooldridge and N. Jennings, editors, Intelligent Agents: Proceedings of the
1994 Workshop on ATAL. Springer-Verlag, 1995.

27. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. JAAMAS, 3(3):285–312, 2000.

28. XrML. Extensible rights mark-up language. http://www.xrml.org, 2002.
29. F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational rules as an ab-

straction for the analysis and design of multi-agent systems. International Journal
of Software Engineering and Knowledge Engineering, 11(3):303–328, 2001.

