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Abstract. We have been developing a framework for executable speci-
fication of norm-governed multi-agent systems. In this framework, spec-
ification is a design-time activity; moreover, there is no support for run-
time modification of the specification. Due to environmental, social, or
other conditions, however, it is often desirable, or even necessary, to
alter the system specification during the system execution. In this chap-
ter we extend our framework by allowing for ‘dynamic specifications’,
that is, specifications that may be modified at run-time by the mem-
bers of a system. The framework extension is motivated by Brewka’s
‘dynamic argument systems’ — argument systems in which the rules of
order may become the topic of the debate. We illustrate our framework
for dynamic specifications by presenting: (i) a dynamic specification of an
argumentation protocol, and (ii) an execution of this protocol in which
the participating agents modify the protocol specification.

1 Introduction

A particular kind of Multi-Agent System (MAS) is one where the member agents
are developed by different parties, and where there is no direct access to an
agent’s internal state. In this kind of MAS it cannot be assumed that all agents
will behave according to the system specification because the agents act on be-
half of parties with competing interests, and thus they may inadvertently fail
to, or even deliberately choose not to, conform to the system specification in
order to achieve their individual goals. A few examples of this type of MAS are
Virtual Organisations, electronic marketplaces, argumentation (dispute resolu-
tion) protocols, and negotiation protocols. MAS of this type are often classified
as ‘open’.

We have been developing executable specifications of open MAS [1, 3]; we
adopt a bird’s eye view of these systems, as opposed to an agent’s own perspec-
tive whereby it reasons about how it should act. Furthermore, we view agent
systems as instances of normative systems [18]. A feature of this type of system
is that actuality, what is the case, and ideality, what ought to be the case, do
not necessarily coincide. Therefore, it is essential to specify what is permitted,
prohibited, and obligatory, and perhaps other more complex normative relations



that may exist between the agents. Amongst these relations, we place consider-
able emphasis on the representation of institutionalised power [19] — a standard
feature of any norm-governed system whereby designated agents, when acting
in specified roles, are empowered by an institution to create specific relations
or states of affairs (such as when an agent is empowered by an institution to
award a contract and thereby create a bundle of normative relations between
the contracting parties). We encode specifications of open MAS in executable
action languages from the field of Artificial Intelligence [12,20].

Our executable specifications may be classified as ‘static’, in the sense that
there is no support for their run-time modification. In some open MAS, however,
environmental, social or other conditions may favour, or even require, specifica-
tions modifiable during the system execution. Consider, for instance, the case
of a malfunction of a large number of sensors in a sensor network, or the case
of manipulation of a voting procedure due to strategic voting, or when an or-
ganisation conducts its business in an inefficient manner. Therefore, we present
in this chapter an infrastructure for ‘dynamic specifications’, that is, specifica-
tions that are developed at design-time but may be modified at run-time by the
members of a system. The presented infrastructure is motivated by Brewka’s
‘dynamic argument systems’ [6] — argument systems in which, at any point in
the disputation, participants may start a meta level debate, that is, the rules of
order can become the current point of discussion, with the intention of altering
these rules.

Our infrastructure for dynamic specifications allows protocol participants to
alter the rules of a protocol P during the protocol execution. P is considered an
‘object’ protocol; at any point in time during the execution of the object protocol
the participants may start a ‘meta’ protocol in order to decide whether the object
protocol rules should be modified: add a new rule-set, delete an existing one, or
replace an existing rule-set with a new one. Moreover, the participants of the
meta protocol may initiate a meta-meta protocol to decide whether to modify
the rules of the meta protocol, or they may initiate a meta-meta-meta protocol
to modify the rules of the meta-meta protocol, and so on.

We chose an argumentation protocol based on Brewka’s reconstruction of a
theory of formal disputation to illustrate our infrastructure for dynamic specifi-
cations: the object and meta protocols are all argumentation protocols. In other
words, at any time during a debate the agents may start a meta level argument
to change the rules that govern their debate. The argumentation protocol was
chosen for the sake of providing a concrete example. In general, the object proto-
col may be any protocol for open MAS, such as a protocol for resource-sharing,
coordination or e-commerce; similarly a meta protocol can be any procedure
for decision-making over rule modification (voting, negotiation, and so on). This
issue is further discussed in the final section of the chapter.

The remainder of this chapter is organised as follows. First, we briefly review
the Event Calculus, the action language that we employ to formalise system
specifications. Second, we review our static specification of an argumentation
protocol (extensively presented in [3]). Third, we present a dynamic specifica-



Table 1. Main Predicates of the Event Calculus.

Predicate Meaning

happens(Act , T ) Action Act occurs at time T

initially(F = V ) The value of fluent F is V at time 0

holdsAt(F = V , T ) The value of fluent F is V at time T

initiates(Act , F = V , T ) The occurrence of action Act at time T
initiates a period of time for which
the value of fluent F is V

terminates(Act , F = V , T ) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F is V

tion of the argumentation protocol and an infrastructure for modifying the ar-
gumentation protocol specification at run-time. Fourth, we present an execution
of the protocol, demonstrating how the agents may alter the protocol specifica-
tion. Finally, we compare our work to Brewka’s account and to other research
on dynamic protocol specifications, and outline directions for further research.

2 The Event Calculus

The Event Calculus (EC), introduced by Kowalski and Sergot [20], is a formalism
for representing and reasoning about actions or events and their effects in a logic
programming framework. In this section we briefly describe the version of the
EC that we employ. EC is based on a many-sorted first-order predicate calculus.
For the version used here, the underlying time model is linear and it may include
real numbers or integers. Where F is a fluent (a property that is allowed to have
different values at different points in time), the term F = V denotes that fluent
F has value V . Boolean fluents are a special case in which the possible values
are true and false. Informally, F = V holds at a particular time-point if F = V
has been initiated by an action at some earlier time-point, and not terminated
by another action in the meantime.

An action description in EC includes axioms that define, amongst other
things, the action occurrences (with the use of happens predicates), the effects
of actions (with the use of initiates and terminates predicates), and the values
of the fluents (with the use of initially and holdsAt predicates). Table 1 sum-
marises the main EC predicates. Variables (starting with an upper-case letter)
are assumed to be universally quantified unless otherwise indicated. Predicates,
function symbols and constants start with a lower-case letter.

The following sections present a logic programming implementation of an EC
action description expressing our argumentation protocol specification.



Table 2. Main Actions of RTFD*.

Action Textual Description

claim(Protag , Q) Protag claims Q

concede(Protag , Q) Protag concedes to Q

retract(Protag , Q) Protag retracts Q

deny(Protag , Q) Protag denies Q

declare(Det , Protag) Det declares Protag the winner of the disputation

objected(Ag) Ag objects to an action

3 An Argumentation Protocol

In this section we briefly present an argumentation (dispute resolution) protocol
based on Brewka’s account [6] of Rescher’s theory of formal disputation [30]. A
detailed description of this protocol, which we call RTFD*, and a formalisation
in the action language C + [12] can be found in [3]. In this chapter we present
a formalisation of RTFD* in the Event Calculus because this action language
has proven to be more appropriate for supporting run-time activities (see [1, 3]
for a discussion about expressing protocol specifications in C + and the Event
Calculus).

There are three roles in the protocol: proponent, opponent and determiner.
The protocol commences when the proponent claims the topic of the argumen-
tation — any other action does not count as the commencement of the protocol.
The protagonists (proponent and opponent) then take it in turn to perform ac-
tions, such as claiming, conceding to, retracting or denying a proposition. Each
turn lasts for a specified time period during which the protagonist may perform
several actions (send several messages) up to some specified limit. After each
such action the other participants are given an opportunity to object within
another specified time period. In other words, Ag ’s action Act is followed by a
time period during which Ag may not perform any actions and the other partici-
pants may object to Act . The determiner may declare the winner only at the end
of the argumentation, that is, when the specified period for the argumentation
elapses. If at the end of the argumentation both the proponent and opponent
have ‘accepted’ the topic of the argumentation (in a sense that will be made
clear later), then the determiner may only declare the proponent the winner.
If, however, the proponent does not accept the topic then the determiner may
only declare the opponent the winner. Finally, if the proponent accepts the topic
and the opponent does not, the determiner has discretion to declare either of
them the winner. It may also have an obligation to decide one way or the other,
depending on which version of the protocol we choose to adopt.

Table 2 displays the main actions of RTFD* whereas Table 3 presents a num-
ber of the fluents of the EC action description expressing the RTFD* specifica-



Table 3. Main Fluents of the RTFD* Specification.

Fluent Domain Textual Description

turn {proponent , opponent , the turn to ‘speak’
determiner}

role of (Ag) {proponent , opponent , the role Ag occupies
determiner}

premise(Protag , Q) {t, u, f} Protag has an explicit, unconfirmed,
or no premise about Q

accepts(Protag , Q) boolean Protag accepts Q

objectionable(Act) boolean Act is objectionable

pow(Ag , Act) boolean Ag is empowered to perform Act

protocol {initial , executing , the protocol is at the initial state,
idle} executing, or idle

tion. Ag is a variable expressing protocol participants, Protag expresses protocol
protagonists, Det denotes the agent occupying the role of determiner, Q denotes
the propositions that protagonists may claim, concede to, retract or deny, and
Act represents a claim, concede, retract or deny action. The fluents of the EC
action description are inertial. The semantics of the actions and the utility of
the fluents will be explained in the following sections.

3.1 Physical Capability

The system events of the RTFD* specification are the timeouts — these are
issued by a global clock. A type of timeout event is used to denote the turn of each
participant. When RTFD* commences (this happens when the proponent claims
the topic of the argumentation) a global clock starts ‘ticking’. The first timeout
signals the end of the proponent’s turn and the beginning of the opponent’s
turn to ‘speak’, by setting turn = opponent (see Table 3 for a description of the
turn fluent). The next timeout signals the end of the opponent’s turn and the
beginning of the proponent’s turn, by setting turn = proponent , and so on.

The remaining actions of the RTFD* specification are those performed by the
protocol participants (see Table 2). It is a feature of RTFD* that an agent may
object to the actions of another participant. The action objected(Ag) represents
that an objection has been made by agent Ag . We abstract away details of how
an objection is transmitted within the specified deadline (recall that every action
Act is followed by a time period during which no action may take place apart
from an objection to Act). Instead, each ‘step’ of RTFD* corresponds to a claim,
concede, retract, deny, or declare action by one of the participants together with
an indication of whether that action was objected to by one or more of the other



participants. For example,

happens(objectedClaim(Protag , Q), T )←
happens(claim(Protag , Q), T ),
happens(objected(Ag), T )

(1)

represents a claim that Q by Protag that has been objected to by some other
participant. Similarly,

happens(notObjectedClaim(Protag , Q), T )←
happens(claim(Protag , Q), T ),
∀Ag not happens(objected(Ag), T )

(2)

expresses a claim that has not been objected to (‘not’ denotes ‘negation by
failure’ [8]). The object mechanism is beyond the scope of this chapter; for an
extensive discussion about this issue see [3].

We have chosen to specify that any protagonist is always capable of signalling
a claim, concede, retract, deny, and object action, and the determiner is always
capable of signalling a declare and object action. The effects of these actions are
presented next.

At the initial protocol state the protagonists have no premises, that is, the
value of every premise(Protag , Q) fluent is f. The protocol commences with the
proponent’s claim of the topic. The effects of a claim are expressed as follows:

initiates(notObjectedClaim(Protag , Q), premise(Protag , Q) = t, T )←
holdsAt(premise(Protag , Q) = f, T ) (3)

Rule (3) expresses that Protag ’s claim of Q leads from a state in which Protag
has no explicit premise that Q (that is, premise(Protag , Q) = f) to a state in
which it does have an explicit premise that Q (that is, premise(Protag , Q) = t),
on the condition that no (other) agent objects to the claim. An objection is only
effective in blocking the effects of a claim if it (the objection) is well-founded (in
a sense to be specified below). If the objection is not well-founded then it does
not block the effects of the claim (though it might have other effects, such as
exposing the objecting agent to sanctions). We therefore add the constraint:

initiates(objectedClaim(Protag , Q), premise(Protag , Q) = t, T )←
holdsAt(objectionable(claim(Protag , Q)) = false, T ),
holdsAt(premise(Protag , Q) = f, T )

(4)

Boolean fluents objectionable(Act) are used to represent that an objection to
Act is well-founded.

Suppose that protagonist Protag claims a proposition Q. Opponent Protag ′

may respond to Protag ’s claim by conceding to, or denying the claim. If Protag ′

does neither then we say that Protag ′ has an ‘unconfirmed’ premise that Q,
denoted by premise(Protag ′, Q) = u. The value of a premise fluent is set to ‘un-



confirmed’ as follows, for every pair of distinct protagonists Protag and Protag ′:

initiates(notObjectedClaim(Protag , Q), premise(Protag ′, Q) = u, T )←
holdsAt(premise(Protag , Q) = f, T ),
holdsAt(premise(Protag ′, Q) = f, T )

(5)

initiates(objectedClaim(Protag , Q), premise(Protag ′, Q) = u, T )←
holdsAt(objectionable(claim(Protag , Q)) = false, T ),
holdsAt(premise(Protag , Q) = f, T ),
holdsAt(premise(Protag ′, Q) = f, T )

(6)

In other words, Protag ’s claim of Q leads (subject to possible objections) to
a state in which Protag ′ has an unconfirmed premise that Q, provided that
Protag ′ does not already have a premise that Q (that is, provided that the value
of premise(Protag ′, Q) is f). If Protag ′ already has a premise that Q (that is,
premise(Protag ′, Q) = t) then its premise does not become unconfirmed, and it
does not need to respond to Protag ’s claim.

A response to claim is a concession or a denial; consider the effects of a
concession:

initiates(notObjectedConcede(Protag , Q), premise(Protag , Q) = t, T )←
holdsAt(premise(Protag , Q) = u, T ) (7)

initiates(objectedConcede(Protag , Q), premise(Protag , Q) = t, T )←
holdsAt(objectionable(concede(Protag , Q)) = false, T ),
holdsAt(premise(Protag , Q) = u, T )

(8)

Similarly we may express the effects of a denial and a retraction in terms of
the protagonists’ premises. Regarding declarations, a declare(Det , Protag) action
signals Protag the winner of the dispute (subject to objections). (For more details
on the effects of the protocol actions see [3]).

We now turn our attention to objections: when is an objection to an action
Act effective in blocking the effects of Act , that is, when is Act objectionable?
When the agent that performed Act did not have the ‘institutional power’ to per-
form Act . An account of institutional power in the context of the argumentation
protocol is given next.

3.2 Institutional Power

The term institutional (or ‘institutionalised’) power refers to the characteristic
feature of organisations/institutions — legal, formal, or informal — whereby
designated agents, often when acting in specific roles, are empowered, by the
institution, to create or modify facts of special significance in that institution —
institutional facts — usually by performing a specified kind of act. Searle [31],
for example, has distinguished between brute facts and institutional facts. Being
in physical possession of an object is an example of a brute fact (it can be
observed); being the owner of that object is an institutional fact.

According to the account given by Jones and Sergot [19], institutional power
can be seen as a special case of a more general phenomenon whereby an action,



or a state of affairs, A — because of the rules and conventions of an institution
— counts, in that institution, as an action or state of affairs B (such as when
sending a letter with a particular form of words counts as making an offer, or
banging the table with a wooden mallet counts as declaring a meeting closed).

We use the concept of institutional power in the argumentation protocol spec-
ification as follows. We say that, for example, sending a claim(Ag , Q) message
while having the institutional power to make a claim, counts, in the argumenta-
tion protocol, as a non-objectionable claim, that is, a claim whose effects cannot
be blocked. If, however, the claim is uttered by an agent without the power to
make the claim, then this action will be objectionable and, therefore, its effects
will be blocked by an objection issued by another agent. The same applies to
the remaining protocol actions.

The institutional power to make a claim, for instance, is formalised as follows:

holdsAt(pow(Protag , claim(Protag , Q)) = true, T )←
holdsAt(premise(Protag , Q) = f, T ),
holdsAt(protocol = executing , T ),
holdsAt(role of (Protag) = Role, T ),
holdsAt(turn = Role, T )

(9)

According to the above rule, Protag is empowered to claim Q if: (i) Protag does
not have a premise that Q, (ii) the protocol is ‘executing’, that is, it is neither
in the initial state nor has it finished, and (iii) it is Protag ’s turn to ‘speak’. The
power to make a claim at the initial protocol state, and, in general, to perform
the remaining protocol actions, is formalised in a similar manner.

As mentioned above, performing an action without the corresponding insti-
tutional power constitutes this action objectionable; an objectionable claim, for
instance, as defined as follows:

holdsAt(objectionable(claim(Protag , Q)) = true, T )←
holdsAt(pow(Protag , claim(Protag , Q)) = false, T ) (10)

Similarly we define when the remaining protocol actions are objectionable.
The specification of the procedural part of the argumentation includes a spec-

ification of permitted and obligatory actions, as well as sanctioning mechanisms
to address the performance of forbidden actions and non-compliance with obli-
gations — see [3]. We do not present here this aspect of the procedural part
of the argumentation, and the logic of disputation (although a brief discussion
about this logic will be presented later). The protocol specification presented
so far is sufficient for illustrating the infrastructure for changing the protocol
specifications at run-time, which is the aim of this chapter.

4 A Dynamic Argumentation Protocol

Being motivated by Brewka [6], we present an infrastructure that allows protocol
participants to modify (a subset of) the rules of an argumentation protocol at
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Fig. 1. An Infrastructure for Run-Time Protocol Modification.

run-time. More precisely, we consider the argumentation protocol as an ‘object’
protocol; at any point in time during the execution of the object protocol the
participants may start a ‘meta’ argumentation protocol in order to potentially
modify the object protocol rules: add a new rule-set, delete an existing one, or
replace an existing rule-set with a new one. The topic of the dispute of the meta
protocol is the proposed rule modification of the object protocol. Moreover, the
participants of the meta protocol may initiate a meta-meta protocol to modify
the rules of the meta protocol, or they may initiate a meta-meta-meta protocol
to modify the rules of the meta-meta protocol, and so on — see Figure 1. In
general, in a k-level infrastructure, level 0 corresponds to the main (argumenta-
tion) protocol while a protocol of level n, 0 < n ≤ k, is created, by the protocol
participants of level m, 0 ≤ m < n, in order to debate over the protocol rules of
level n−1.

Each protocol level has its own protocol state; for instance, agent Ag1 may
occupy the role of proponent in level 0 and the role of opponent in level 1
(role-assignment in meta protocols will be discussed in the following section),
Ag2 may be empowered to claim q in level 0 but have no powers in level 2,
it may be the opponent’s turn to ‘speak’ in level 1 and the determiner’s turn
to ‘speak’ in level 3, and so on. In order to distinguish between the protocol
states of different protocol levels, we relativise the protocol rules according to the
protocol level. More precisely, we add a parameter in the representation of actions
and fluents, expressing the protocol level PL, as follows: claim(Protag , Q , PL),
objected(Ag , PL), and so on for actions, turn(PL), objectionable(Act , PL), and
so on for fluents.

The rules of an argumentation protocol are divided into two categories: ‘core’
rules, that is, rules that are always part of the protocol specification, and ‘re-
placeable’ rules, that is, rules that may be deleted, or replaced by other rules,
under certain circumstances, during the protocol execution by means of a meta
protocol. Consider, for example, the ‘silence implies consent’ property of the pre-
sented argumentation protocol. This property can be summarised as follows: a
protagonist that does not explicitly respond to a claim by the other protagonist
is assumed to concede to the claim. We may specify the rules expressing this



property as replaceable, that is, the protocol participants may choose to include
this property in, or exclude it from, the protocol specification at any point in
time during the protocol execution.

The rules that are part of a protocol at a given time are called ‘active’ (clearly,
core rules are always active during a protocol execution) whereas all other rules
are called ‘inactive’ (this is similar to what is called ‘external time of norms’ —
see, for example, [22]). Protocols of different levels may not have the same set of
active rules. For example, at a particular point in time t a replaceable rule-set
tagged as ‘sic’, expressing the silence implies consent property, may be active in
level 0 and level 2 but inactive in level 1; this is expressed as follows:

holdsAt(active(sic) =[0 , 2 ], t)

The active(R) fluent expresses the protocol levels in which a rule-set R is active.
To illustrate the meaning of the active fluent consider the following example:

holdsAt(accepts(Protag , P , PL) = true, T )←
holdsAt(active(accept) = List , T ),
PL ∈ List ,
holdsAt(premise(Protag , Q , PL) = t, T ),
implies(Q , P)

(11)

holdsAt(accepts(Protag , P , PL) = true, T )←
holdsAt(active(sic) = List , T ),
PL ∈ List ,
( holdsAt(premise(Protag , Q , PL) = t, T ) ;

holdsAt(premise(Protag , Q , PL) = u, T ) ),
implies(Q , P)

(11′)

Rules (11) and (11′) provide simple, alternative formalisations of the conditions
in which a protagonist ‘accepts’ a proposition — the determiner declares the
winner of the dispute according to what is accepted by both protagonists. The
first two conditions of these rules express whether these rules are active in a
protocol level. Rule (11) is tagged as ‘accept’; according to this rule, Protag
accepts P in a protocol of level PL if: (i) the ‘accept’ rule is active in level PL,
(ii) Protag has an explicit premise that Q in level PL, and (iii) P is a (classi-
cal) logical implication of Q. The implies are simply suitably chosen atemporal
predicates3. Rule (11′) incorporates the silence implies consent property: a pro-
tagonist accepts all logical implications of each of its explicit and unconfirmed
premises — recall that premise(Protag , Q , PL) = u expresses that Protag has an
unconfirmed premise that Q in a protocol of level PL, that is, Protag has not
responded to a claim that Q made by the other protagonist in level PL. (‘;’ ex-
presses disjunction.) Given rules (11) and (11′), a protocol of level n exhibits the
silence implies consent property if the rule tagged as ‘sic’ is active in this level;
3 This is a very simple formalisation of the logic of disputation that suffices, however,

for presenting a simple example; more complicated formalisations of this logic are
out of the scope of this chapter.



if the ‘accept’ rule is active, on the other hand, this property is not incorporated
in the protocol level.

Apart from adding, deleting and replacing rule-sets, protocol participants
may also modify the values of certain components of the protocol specification.
In the argumentation protocol example, participants may change at run-time
the number of turns that each protagonist may take, and the duration of a turn.

In order to modify the protocol rules of level n (for example, to replace the
‘accept’ rule with the ‘sic’ rule), that is, in order to start a protocol of level n+1 ,
the protocol participants of level n need to follow a ‘transition protocol’ — see
Figure 1. We present an example specification of a transition protocol next.

4.1 Transition Protocol

For the sake of an example we have specified a very simple transition protocol:
a protocol protagonist of level n proposes a modification of the rules of this
protocol level (or of the rules of level n+m). If the protagonist is empowered
to propose such a change then the protocol of level n+1 (or n+m+1 ) begins;
otherwise the proposal is ignored. Clearly, in more realistic scenarios the transi-
tion protocol would be more complicated. For instance, a protagonist’s proposal
for rule modification should be seconded by another participant, say the deter-
miner, before the meta protocol commences, or a protagonist’s proposal could
initiate a meta protocol even if the protagonist is not empowered to make the
proposal, provided that no other agent objects. Moreover, a proposal for rule
modification may not necessarily initiate a meta protocol — the proposal may
be accepted by the participants resulting in the immediate application of the
rule modification. Such transition protocols could be formalised similar to the
argumentation protocol presented so far, or other interaction protocols presented
elsewhere [1, Chapters 4 and 6].

In this simple example we have specified the power to propose a rule-set
replacement as follows:

holdsAt(pow(Ag , propose(Ag , replace(OldRule, NewRule), PL′, PL)) = true, T )←
PL′ ≥ PL,
( holdsAt(role of (Ag , PL) = proponent , T ) ;

holdsAt(role of (Ag , PL) = opponent , T ) ),
holdsAt(protocol(PL′+1 ) = idle, T ),
holdsAt(active(OldRule) = List , T ),
PL′ ∈ List ,
holdsAt(active(NewRule) = List2 , T ),
PL′ /∈ List2

(12)
The above rule states that a protocol participant Ag of level PL is empowered
to propose to replace an OldRule rule-set, from level PL′, with a NewRule one
if:



– PL′ = PL, that is, Ag proposes a rule modification in the protocol that cur-
rently participates, or PL′ > PL, that is, Ag proposes a rule modification in
a meta protocol.

– Ag occupies the role of proponent or that of opponent in level PL. In other
words, in this example specification the determiner is not empowered to
propose a modification of the protocol rules.

– There is no protocol taking place in level PL′+1 . In this example, only one
protocol may take place in each level. Therefore, an argumentation protocol
for modifying the rules of level PL′, that is, a protocol of level PL′+1 , may
commence only if there is no other protocol of level PL′+1 taking place.

– The OldRule rule-set is active in level PL′.
– The NewRule rule-set is inactive in level PL′.

The power to propose the addition or deletion of a rule-set is formalised in a
similar manner.

In a more realistic scenario the power to propose a rule modification would
probably have additional conditions. For instance, a rule-set should only be
replaced by an ‘interchangeable’ rule-set (it should not be possible, for example,
to replace a rule-set expressing the conditions in which an agent is permitted to
perform an action with a rule-set expressing the conditions in which a proposition
is accepted by a protagonist). In some systems an agent would not have the
power to propose a rule modification (or the power to accept or second a rule
modification, in more complex transition protocols) that would create a (type of)
protocol inconsistency. In other systems an agent may be empowered to propose
a rule modification that leads to a protocol inconsistency — the acceptance
or not of the proposed modification would be decided based on the arguments
of the proposing agent presented in the meta level. Moreover, inactive rule-
sets proposed to become active may come from a specified rule library, thus
allowing only for pre-determined protocol changes, or agents may propose the
addition of completely new rule-sets. (Vreeswijk [33], for instance, allows for pre-
determined protocol changes whereas Brewka [6] allows for any type of protocol
change. There is no comment, however, in the latter approach on the issue of
creating protocol inconsistencies.) The formalisation of examples taking under
consideration these issues is an area of current research.

The effect of a ‘successful’ proposal for rule modification in level n, that is,
the effect of proposing a rule modification in level n while having the power to
make the proposal, is the initiation of a protocol of level n+1. The topic of the
latter protocol is the proposed rule modification (for example, which rule-set
should be replaced by which), the agent that made the proposal occupies the
role of proponent, the other protagonist occupies the role of opponent, and the
determiner remains the same. The fact that an agent may successfully start a
protocol of level n+1 by proposing a modification of the protocol rules of level
n, however, does not necessarily imply that the rules of level n will be modified.
It is only if the agent that successfully proposed the modification is declared the
winner of the argument of level n+1 that the rules of level n will be modified.
Consider the following rules expressing the outcome of a protocol of level n+1



that took place in order to replace the OldRule rule-set with the NewRule rule-
set in level n:

initiates(endTimeout(PL), active(NewRule) = NewList , T )←
holdsAt(topic(PL) = replace(OldRule, NewRule), T ),
holdsAt(winner(PL) = Winner , T ),
holdsAt(role of (Winner , PL) = proponent , T ),
holdsAt(active(NewRule) = List , T ),
NewList : = List ∪ {PL−1}

(13)

initiates(endTimeout(PL), active(OldRule) = NewList , T )←
holdsAt(topic(PL) = replace(OldRule, NewRule), T ),
holdsAt(winner(PL) = Winner , T ),
holdsAt(role of (Winner , PL) = proponent , T ),
holdsAt(active(OldRule) = List , T ),
NewList : = List \ {PL−1}

(14)

Rule (13) states that an endTimeout(PL), that is, the last timeout of level PL,
results in activating the NewRule rule-set in level PL−1 if: (i) the topic of the
argument of level PL was the replacement of the OldRule rule-set with the
NewRule one, and (ii) the winner of the argument of level PL was the agent
occupying the role of proponent. If the winner was the opponent or there was
no declared winner, then the NewRule rule-set would not have been activated
in level PL−1. Similarly, rule (14) states that an endTimeout(PL) results in
making the OldRule rule-set inactive in level PL−1 if the two aforementioned
conditions hold.

5 Animation

In order to illustrate the proposed infrastructure for dynamic specifications, in
this section we animate an example run of a 2-level argument system. A part
of the narrative of events of this run is displayed in Table 4 (oTimeout(PL)
denotes a timeout initiating the opponent’s turn to ‘speak’ in level PL; similarly
pTimeout(PL) and dTimeout(PL) denote, respectively, timeouts initiating the
proponent’s and the determiner’s turn to ‘speak’ in level PL). This narrative
is motivated by Brewka’s case study of a dynamic argument system [6, Section
7]. In the example presented here the argumentation protocol includes a single
replaceable component, rule (11′), expressing that the propositions a protagonist
accepts are determined by the silence implies consent property (see Section 4).
Rule (11′) is initially active in all protocol levels.

Given that the RTFD* specification is expressed as a logic program, we may
query our implementation to determine the system state current at each time
and protocol level (for instance, which roles each participant occupies, what
premises each protagonist has, what powers each participant has, which actions
are objectionable, and so on). We will discuss next the system states of the run
displayed in Table 4.



Table 4. A Sample Run of RTFD*

Time Action

0 claim(agent1 , murderer(jack), 0 )
...

14 claim(agent1 , on(blood , shoe), 0 )
14 objected(agent2 , 0 )
15 oTimeout(0 )
18 claim(agent2 , illegal info(on(blood , shoe)), 0 )
30 pTimeout(0 )
31 concede(agent1 , illegal info(on(blood , shoe)), 0 )
45 oTimeout(0 )
46 propose(agent2 , replace(sic, sic ill info), 0 , 0 )
49 claim(agent2 , replace(sic, sic ill info), 1 )

...
77 dTimeout(1 )
78 declare(det , agent2 , 1 )
93 endTimeout(1 )

...
135 endTimeout(0 )

The protocol of level 0 commences with the claim of agent1 , occupying the
role of proponent, that Jack is a murderer, that is, the topic of the argument of
level 0 — see time-point 0 in Table 4 (recall that the last parameter of an action
is the protocol level in which the action is performed). At time-point 14 agent1
makes a claim that there is evidence, victim’s blood on Jack’s shoe, that convicts
Jack as the murderer. The evidence, however, was obtained illegally. Therefore,
at the same time agent2 , occupying the role of opponent, objects to agent1 ’s
claim. agent2 ’s objection is unsuccessful in blocking the effects of agent1 ’s claim
because the claim is not objectionable: agent1 is empowered to make the claim at
that time since it does not have an explicit premise that there is victim’s blood on
Jack’s shoe, the protocol is executing, and it is agent1 ’s turn to ‘speak’ (see rule
(9)). The effects of agent1 ’s claim are that premise(agent1 , on(blood , shoe), 0 ) = t
and premise(agent2 , on(blood , shoe), 0 ) = u (see rules (4) and (6)). Consequently,
according to rule (11′), currently active in level 0, expressing the conditions in
which a proposition is accepted, both protagonists accept on(blood , shoe). At
time-point 15 a timeout takes place initiating agent2 ’s turn to ‘speak’. agent2
does not deny agent1 ’s claim that there is victim’s blood on Jack’s shoe; however,
agent2 claims that the presented evidence was obtained illegally. agent1 concedes
to this claim when it is its turn to ‘speak’ (at time-point 31) since, according to
rule (11′), agent1 ’s concession does not change the fact that on(blood , shoe) is
accepted by both protagonists.

In order to change what is accepted, agent2 proposes a modification of the
rules of level 0; it proposes to replace rule (11′) tagged as ‘sic’ with the rule



below, tagged as ‘sic ill info’:

holdsAt(accepts(Protag , P , PL) = true, T )←
holdsAt(active(sic ill info) = List , T ),
PL ∈ List ,
( holdsAt(premise(Protag , Q , PL) = t, T ) ;

holdsAt(premise(Protag , Q , PL) = u, T ) ),
holdsAt(illegal info(Q) = false, T ),
implies(Q , P)

(11′′)

Rule (11′′) is a variation of the silence implies consent property that considers
illegally obtained evidence: Protag accepts evidence and its implications, put
forward by itself or by the other protagonist Protag ′ (and not challenged by
Protag), provided that the evidence is not illegally obtained. illegal info are
suitably chosen fluents.

agent2 ’s proposal, at time 46, for modifying the rules of level 0 is ‘successful’
because agent2 is empowered to make the proposal at that time (see rule (12)):
the modification concerns the protocol level in which agent2 currently partici-
pates, agent2 occupies the role of opponent in level 0, the ‘sic’ rule is active and
the ‘sic ill info’ rule is inactive in that level. The result of the ‘successful’ proposal
is the commencement of a protocol of level 1, in which agent2 occupies the role of
proponent (since it initiated this protocol), agent1 occupies the role of opponent,
and the determiner remains the same. (Notice that, at the same time, agent2
occupies the role of opponent and agent1 that of proponent in level 0.) At time-
point 49 agent2 claims the topic of the protocol of level 1 which is the replacement
of the ‘sic’ rule with the ‘sic ill info’ one. Following the argument in level 1 (on
the modification of the rules of level 0), the determiner of level 1 declares agent2
the winner; since agent2 is the proponent of level 1 the proposed rule modifica-
tion is applied in level 0, that is, the ‘sic ill info’ rule becomes active and the ‘sic’
one becomes inactive in level 0 (see rules (13) and (14)). (Notice, however, that
the ‘sic’ rule is still active in level 1.) As a result, at time-point 94, after the last
timeout of level 1, the values of the fluents accepts(agent1 , on(blood , shoe), 0 )
and accepts(agent2 , on(blood , shoe), 0 ) are not true, that is, no protagonist ac-
cepts that there is victim’s blood on Jack’s shoe.

It should be noted that the example presented above, in which the rule
modification had retroactive effects, was chosen simply for illustration purposes.
Clearly, there exist other examples in which the effects of a rule modification need
to be applied only after the modification. Both alternatives may be expressed
with the use of the Event Calculus.

In Brewka’s example argument system [6, Section 7] the protocol of level 0 is
modified in the following way in order to deal with illegal evidence: every action
performed by a protagonist that has put forward illegally obtained evidence is
considered objectionable as long as the protagonist does not retract the illegal
evidence. This constraint may be incorporated in our formalisation by modifying
our specication of objectionable actions. In general, there are several ways to deal
with illegal evidence; the presented formalisation is but one example.



6 Conclusions and Future Research Directions

We presented a specification of an argumentation protocol in which the logic of
disputation/argumentation (from which inferences are made to determine the
winner) and the procedural part of the argumentation (that defines the condi-
tions in which an agent is empowered, permitted, obliged to perform an action)
were separated out from the mechanism by which either the argumentation logic
or the argumentation procedure can be changed.

In the development of the static specification of the argumentation proto-
col [3] we were mainly concerned with the formalisation of the procedural part
of the argumentation. Like Brewka [6] and [13, 14, 26, 28] we adopted a ‘public
protocol semantics’ [29, Section 6], that is, we made no assumptions about the
participants’ internal architectures. We refined Brewka’s distinction of possible
and legal actions — we distinguished between physical capability, institutional
power, and permission (and obligation). Moreover, unlike Brewka, we have been
concerned with the execution of our protocol specifications. Indeed, in Section
5 we presented an execution of an example protocol specification; protocol par-
ticipants may query at any point in time our executable specification in order
to inform their decision-making. A more detailed comparison of our work with
Brewka’s account and related research from the argumentation field, from the
standpoint of static argument systems, however, may be found in [3].

In this chapter we were concerned with the run-time modification of the pro-
tocol specification. As Brewka [6] points out, the need to allow for argumentation
protocol rule modification at run-time by means of argumentation has already
been identified in the literature (see, for example, [21]). A main difference of our
work from Brewka’s dynamic argument systems lies in the fact that we place
emphasis on the transition protocol that is used to move from an object protocol
to a meta protocol. We provided a concrete formalisation of a simple example
transition protocol, distinguishing between successful and unsuccessful attempts
to initiate a meta protocol. Moreover, we outlined alternative formalisations of
more complex transition protocols and formalised a simple procedure for role-
assignment in a meta level. In Brewka’s simple example of a dynamic argument
system a protocol participant may always successfully initiate a meta protocol;
furthermore, there is no discussion about role-assignment in the meta level.

Vreeswijk [33] has also investigated forms of meta argumentation. The start-
ing point for this work was two basic observations. Firstly, that there are different
protocols appropriate for different contexts (for example, quick and shallow rea-
soning when time is a constraint; restricted number of counter-arguments when
there are many rules and cases; etc). Secondly, that ‘points of order’, by which a
participant may steer the protocol to a desired direction, are standard practice
in dispute resolution meetings. Vreeswijk then defined a formal protocol for dis-
putes in which points of order can be raised to allow (partial) protocol changes
to be debated. A successful ‘defence’ meant that the parties in the dispute agreed
to adopt a change in the protocol, and the rules of dispute were correspondingly
changed.



As already mentioned in Section 4.1, Vreeswijk allowed only for pre-determined
protocol changes. Unlike our work (and Brewka’s work), meta argumentation was
restricted to a single meta level. Moreover, there was no treatment of a ‘transi-
tion protocol’, that is, there was no formalisation of a procedure with which a
participant could (attempt to) initiate a meta argument.

The example presented in our chapter included a single replaceable compo-
nent — a ‘partial protocol specification’ in the terminology of Vreeswijk [33]. We
could have formalised as replaceable other types of rule-set, such as the rule-sets
expressing objectionable actions, permitted actions, obligatory actions, and so
on. The decision concerning the classification of a rule-set as replaceable or core
is application-specific.

When deciding to classify a rule-set as replaceable, one should consider the
possible effects of making this rule-set inactive. As discussed in Section 4.1, the
replacement of a rule-set with another one may create a type of protocol in-
consistency — for instance, objecting to an objectionable action may no longer
block the effects of this action, a participant may be forbidden and obliged to
perform an action, and so on. Moreover, it may be required that a rule modifica-
tion respects a set of protocol properties, such as ‘soundness’ and ‘fairness’ (see,
for example, [24, 27, 33] for definitions of argumentation protocol properties). A
way of verifying the effects of rule modification, by means of proving protocol
properties, can be found in [3, Section 8].

The infrastructure presented here for dynamic specifications included an ar-
gumentation protocol in each level (see Figure 1). In principle, any protocol of
level n, n > 0, could be any procedure for deciding whether or not to apply
a rule modification (the protocol of level 0 is the main (argumentation) proto-
col). We could have, for instance, an infrastructure for dynamic argumentation
protocol specifications in which some or all n level protocols (n > 0) are voting
protocols, that is, agents take a vote on, instead of debating about, a proposed
rule modification. The realisation of such an infrastructure (see [25] for a pre-
liminary voting protocol formalisation), and in particular, the formalisation of a
transition protocol leading from an argumentation protocol to a voting protocol,
is an area of current work.

Apart from replacing an argumentation protocol of level n (n > 0) with a
voting protocol, say, one could even replace the main argumentation protocol,
that is, the protocol of level 0, with any type of protocol for open MAS (resource-
sharing, negotiation, coordination, and so on). In this way it would be possible to
have an infrastructure for dynamic resource-sharing protocol specifications, for
instance. Such a setting requires suitable transition protocols that lead from level
0 (resource-sharing, for example) to level n, n > 0 (argumentation or voting).

On the topic of dynamic specifications for MAS, Bou and colleagues [4, 5]
have presented a mechanism for the run-time modification of the norms of an
‘electronic institution’. These researchers have proposed a ‘normative transition
function’ that maps a set of norms (and goals) into a new set of norms: changing
a norm requires changing its parameters, or its effect, or both. The ‘institutional
agents’, representing the institution, are observing the members’ interactions in



order to learn, with the use of case based reasoning, the normative transition
function, so that the norms that will enable the achievement of the ‘institutional
goals’ in a given scenario will be enacted.

Unlike Bou and colleagues, we do not necessarily rely on specific agents to
(learn and) apply the modification of norms. In our case, any agent may (attempt
to) adapt the system specification via meta protocols (argumentation, voting,
negotiation or some other protocol). This does not exclude the possibility, how-
ever, that, in some applications, specific agents are given the institutional power
to directly modify the system specification (without argumentation, voting, etc).

Chopra and Singh [7] present a way of adapting protocols according to con-
text, or the preferences of agents in a given context. They formalise, in the action
language C + [12], protocols and ‘transformers’, that is, additions/enhancements
to an existing protocol specification that handle some aspect of context or pref-
erence. Depending on the context or preference, a protocol specification is com-
plemented, at design-time, by the appropriate transformer thus resulting in a
new specification.

Like Chopra and Singh, we have used the action language C + to express
protocol specifications for open MAS (see, for instance, [1–3]). Unlike these re-
searchers, we are concerned here with the run-time adaptation of a protocol
specification and, therefore, we have developed an infrastructure (meta proto-
cols, transition protocols) to achieve that.

Chopra and Singh, and Bou and colleagues, express protocols in terms of
‘commitments’ or obligations (here the term ‘commitment’ refers to a form of
(directed) obligation between agents, and is not used as an alternative term for
‘premise’). It is difficult to see how an interaction protocol for open MAS can
be specified simply in terms of commitments in this sense. At the very least, a
specification of a protocol’s constitutive norms is also required.

The OMACS (Organisational Model for Adaptive Computational Systems)
model [10, 11] is another approach for dynamic MAS. In OMACS, an agent-
based organisation is represented by sets of agents, goals, roles, capabilities, and
constraints, an assignment of goals and roles to agents, and a set of evaluative
functions (for instance, achieves, capable, possesses and potential), that define
how well a role achieves a goal, how well an agent can play a role, and so on. Given
a trigger event, such as a change in the agents’ capabilities, agents employ pre-
compiled strategies or on-the-fly computed strategies, to adapt various aspects of
an organisation, such as the assignment of roles to agents. The aim of adaptation
is the maximisation of the value of the organisation assignment function that
expresses the quality/efficiency of an organisation.

OMACS concentrates mainly on re-organisation from the perspective of a
functional assignment — the assignment of goals and roles to agents — whereas
we emphasise, like Bou and colleagues, a different perspective, aimed at a achiev-
ing a mapping form norms to norms, that is, the rules which regulate, among
other things, the process of performing such a functional assignment. The out-
come of the mapping still needs to be evaluated, though, as re-organisation is
evaluated in OMACS. One way of evaluating our dynamic specifications is by ex-



amining whether certain protocol properties (such as the ones mentioned earlier)
hold. Another way is discussed at the end of this section.

Identifying when to adapt a system specification during the system execution,
as done in OMACS, for instance, with respect to agent availability, preferences,
goals, capabilities, and so on, and in the work of Bou and colleagues with respect
to the ‘institutional goals’, is a fundamental requirement for adaptive systems.
This requirement has not been addressed by our work.

We have been concerned with a particular aspect of ‘adaptation’: the run-
time modification of the ‘rules of the game’ of norm-governed systems. Clearly,
there are other aspects of adaptive/dynamic systems, such as, for instance, the
run-time modification of the (trading, and other) relationships between agents,
the members of a system, the assignment of roles to agents (as done, for instance,
in OMACS), and the goals of a system. [9,15–17,23,32] are but a few examples
of studies of adaptive systems.

To aid the evaluation process of a system with dynamic specifications, we
have been working towards the development of a model, based upon the mathe-
matical theory of Metric Spaces, that allows for quantification of a system’s ‘de-
grees of freedom’, that is, the replaceable rule-sets. Use of the model allows for
a human or machine evaluator to evaluate a system by considering the distance
of the system’s ‘specification position’, calculated with the use of the system’s
degrees of freedom, to a given point in the specification space (say, a desirable
specification point or subspace). The distance is calculated with the use of a
metric function. In addition to the model, we are developing software tools that
largely automate the application of the model on a given system.
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