
Learning Aspect Models

with Partially Labeled Data

THÈSE
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Doctorat de l’Université Pierre et Marie Curie - Paris 6
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Abstra
tMa
hine learning te
hniques have been used for various information a
-
ess tasks, su
h as 
ategorization, 
lustering or information extra
tion. A
-quiring the annotated data ne
essary to apply supervised learning te
hniquesis a major 
hallenge for these appli
ations, espe
ially in very large 
olle
tions.Annotating the data usually requires humans who 
an read and understandthem, and is therefore very 
ostly, espe
ially in te
hni
al domains.Over the last years, two main approa
hes have been explored towards thisdire
tion, namely semi-supervised (SSL) and a
tive learning. Both paradigmsaddress the issue of annotation 
ost, but from two di�erent perspe
tives. Onthe one hand, semi-supervised learning tries to learn by taking into a

ountboth labeled and unlabeled data. On the other hand, a
tive learning tries to�nd the most informative examples to label, in order to minimize the numberof labeled examples ne
essary for learning. Either methods try to redu
e thehuman labeling e�ort.In this thesis, we address the problem of redu
ing this annotation burden.In parti
ular, we investigate extensions of aspe
t models for the 
lassi�
a-tion task, where the training set is partially labelled. We propose two semi-supervised PLSA algorithms, whi
h in
orporate a mislabeling error model.We then 
ombine these semi-supervised algorithms with two a
tive learningalgorithms. Our models are developped as extensions of the 
lassi�
ationsystem previously developed in Xerox Resear
h Centre Europe. We evaluatethe proposed models in three well-known datasets and in one 
oming from aBusiness Group of Xerox.Keywords: Aspe
t Models, Semi-Supervised Learning, A
tive Learning,Categorization





RésuméL'apprentissage automatique a été utilisé pour diverses tâ
hes d' a

ès à l' in-formation, tels que la 
atégorisation, le 
lustering ou l' extra
tion d' informa-tion. A
quérir les données annotées né
essaires pour appliquer les te
hniquesd' apprentissage supervisé est un dé� majeur pour 
es appli
ations, en par-ti
ulier pour les très grandes 
olle
tions. L'annotation des données né
essitegénéralement l'e�ort humain et 
'est don
 très 
oûteux, en parti
ulier dansles domaines te
hniques.Au 
ours des dernières années, deux grandes appro
hes ont été exploréesdans 
e sens, l'apprentissage semi-supervisé et l'apprentissage a
tif. Les deuxparadigmes abordent la question du 
oût d'annotation, mais de deux points devue di�érents. D'une part, apprentissage semi-supervisé essaie d'apprendreen tenant 
ompte à la fois des données annotées et non-annotées. D'autrepart, l'apprentissage a
tif tente de trouver les meilleurs exemples à annoter,a�n de réduire au minimum le nombre d'exemples annotés ne
essaire. Cha-
une des méthodes tentent de réduire l'e�ort humain d'annotation.Dans 
e travail, nous abordons le problème de la rédu
tion du 
oût an-notation. En parti
ulier, nous étudions des extensions de modèles d'aspe
tpour le tâ
he de la 
lassi�
ation, où les données sont partiellement annotées.Nous proposons deux variants semi-supervisé de l'algorithme PLSA, qui in-
orporent un modéle d'erreur. Nous 
ombinons ensuite 
es algorithmes semi-supervisé ave
 deux algorithmes d'apprentissage a
tif. Nos modèles sont
onçus 
omme des extensions de le système a
tuel pour la 
lassi�
ation deXerox. Nous évaluons les modèles proposés sur quatre bases de données, dontune en provenan
e d'un Business Group de Xerox.Mots-
lés: modéles d'aspe
t, apprentissage semi-supervisé, apprentissagea
tif, 
atégorisation
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1Introdu
tion
Contents 1.1 General . . . . . . . . . . . . . . . . . . . . . . . 11.2 Contributions . . . . . . . . . . . . . . . . . . . 31.3 Outline of this thesis . . . . . . . . . . . . . . . 41.1 GeneralThe explosion of available information during the last years has in
reased theinterest of the Ma
hine Learning (ML) 
ommunity for di�erent learning prob-lems that have been raised in most of the information a

ess appli
ations. Inthis thesis we are interested in the study of two of these problems whi
h arethe ability of algorithms to handle partially labeled data and the 
apa
ity tomodel the generation of textual observations.On the one hand probabilisti
 models (su
h as Naive Bayes) explainingthe generation of observations based entirely on their 
lasses have shown theirlimits in the sense that there are more and more textual do
uments whi
hpotentially 
over di�erent topi
s. New generative aspe
t models have re
entlybeen proposed whi
h aim to take into a

ount data with multiple fa
ets. Inthis 
lass of models, observations are generated by a mixture of aspe
ts, or



2 Chapter 1. Introdu
tiontopi
s, ea
h of whi
h being a distribution over the basi
 features of the ob-servations (su
h as words in a do
ument, or pixels in an image).Aspe
t models have been su

esfully used for various textual informationa

ess and image analysis tasks su
h as do
ument 
lustering and 
ategoriza-tion or s
ene segmentation. In many of these tasks, a
quiring the annotateddata ne
essary to apply supervised learning te
hniques is a major 
hallenge,espe
ially in very large data sets. These annotations require humans who 
anunderstand the s
ene or the text, and are therefore very 
ostly, espe
ially inte
hni
al domains.To this end, the paradigm known as Semi-Supervised Learning, has emergedin the Ma
hine Learning 
ommunity in the late 90′s. Under this framework,the aim is to make a de
ision rule based on both labeled and unlabeled trainingexamples. To a
hieve this goal, the de
ision rule is learned by simultaneouslyoptimizing a supervised empiri
al learner on the labeled set, while respe
tingthe underline stru
ture of the unlabeled training data in the input spa
e.Di�erent 
luster, smoothness and manifold assumptions have been pro-posed to this end and have led to a number of semi-supervised algorithms,su
h as EM-based generative models, graph-based methods and transdu
tivemodels.In the same vein, A
tive Learning addresses also the issue of the an-notation burden, but from a di�erent perspe
tive. Instead of using all theunlabeled data together with the labeled one, it tries to minimize the anno-tation 
ost by labeling as few examples as possible and fo
ussing on the mostuseful examples. Di�erent types of a
tive learning methods have been intro-du
ed in the literature, su
h as un
ertainty-based methods, expe
ted errorminimization methods and query by 
ommittee methods.By 
ombining semi-supervised and a
tive learning, an attempt is madein order to bene�t from both frameworks to address the annotation burden



1.2. Contributions 3problem. The semi-supervised learning 
omponent improves the 
lassi�
ationrule and the measure of its 
on�den
e, while the a
tive learning queries forlabelling the most relevant and potentially useful examples. In this thesis, wemove also towards this dire
tion, that is the 
ombination of semi-supervisedaspe
t models with a
tive learning.In this thesis, we explore the possibility to learn aspe
t models with thehelp of a training set 
ontaining both labeled and unlabeled examples.1.2 ContributionsIn this thesis we address the problem of learning aspe
t models with par-tially labeled examples. We propose di�erent algorithms whi
h bene�t fromboth semi-supervised and a
tive learning frameworks. To the best of ourknowledge, there has been little e�ort so far to extend aspe
t models to theseframeworks. Our models are now in use in the 
ontext of a 
lassi�
ationsystem developed previously in Xerox Resear
h Centre Europe, namely theCategoriX/ClusteriX system. The motivation is to extend the latter underthe semi-supervised and a
tive frameworks, in order to take advantage of thehuge amounts of available unlabeled datasets.In parti
ular we have elaborated:
• Two semi-supervised PLSA algorithms, whi
h in
orporate a mislabelingerror model. The motivation is to redu
e the annotation 
ost by takingadvantage of aspe
t models properties.
• Combining two a
tive learning te
hniques with the two semi-supervisedPLSA methods above. The idea is to bene�t from both the frame-works of Semi-Supervised and A
tive Learning, as they o�er di�erentadvantages.
• Finally, an evaluation of the results in three widely used dataset and in



4 Chapter 1. Introdu
tionone 
oming from a Business Group of Xerox show the e�
ien
y of ourapproa
h.1.3 Outline of this thesisThe �rst part of this manus
ript is 
omposed of two 
hapters presenting aliterature review of semi-supervised and a
tive learning algorithms. The mo-tivation is to give an global view of the di�erent aspe
ts of learning usingpartially labeled data. In 
hapter 2 we present the existing methods in semi-supervised and the mislabeling error models are dis
ussed. In 
hapter 3 thea
tive learning framework is presented.In the se
ond part of this thesis, we present our 
ontributions. We arefo
using on the task of do
ument 
ategorization and we present an extensionof aspe
t models to the 
ase of semi-supervised learning for this task. Morepre
isely, in 
hapter 4 we present the semi-supervised PLSA models thatwe proposed. In 
hapter 5 we 
ombine these methods with two di�erenta
tive learning te
hniques. Then, in 
hapter 6 the evaluation of all the abovemodels is presented in four datasets: the three widely used 
olle
tions of20Newsgroups, Reuters and WebKB and on the Xerox XLS dataset. Finally,in 
hapter 7, the 
on
lusion and the future dire
tions are given.
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2Learning with Partially Labeledand Mislabeled Training Data
Contents 2 .1 Introdu
tion . . . . . . . . . . . . . . . . . . . . 72 .2 Semi-Supervised Learning . . . . . . . . . . . . 92 .2.1 Transdu
tive Learning . . . . . . . . . . . . . 122 .2.2 Indu
tive Learning . . . . . . . . . . . . . . . 262 .3 Mislabeling Error Models . . . . . . . . . . . . 372 .3.1 Semi-Supervised learning with mislabeled data 402 .4 Con
lusion . . . . . . . . . . . . . . . . . . . . . 442 .1 Introdu
tionOne of the major 
hallenges in many Ma
hine Learning (ML) tasks, su
h astextual Information A

ess (IA), Natural Language Pro
essing (NLP) andimage analysis appli
ations, is the 
onstitution of 
onsistent databases, re-quired in order to apply supervised learning te
hniques. Very often, skilledhumans are needed in order to annotate the data, espe
ially, in te
hni
al do-mains (e.g. biologi
al data). In addition, the explosion of information during



8 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datathe last years has led to a 
onsiderable in
rease of the 
ost and the di�
ultyof a
quiring annotated data. The labeling pro
ess is so time-
onsuming thatjust a part of the available data 
ould be labeled. On the other hand, hugeamounts of unlabeled data are available and easy to obtain. The latter hasstirred up the interest of the ML 
ommunity to design new algorithms ableto learn from partially labeled training sets. These algorithms, referred toas Semi-Supervised Learning (SSL) algorithms in the literature, rely on theassumption that unlabeled examples 
arry some useful information about theproblem we try to solve.A representative example is the information retrieval tasks in the WorldWide Web. Due to the perpetual growth of the available web pages, it isimpossible to have a su�
ient and 
onsistent labeled training set. On the
ontrary, billions of (unlabeled) web pages are available. In this 
ase, semi-supervised learning 
ould be of great pra
ti
al value, as it 
ould take advan-tage of the information 
ontained in these data.On the other side, the majority of the indu
tive methods take the qualityof the training dataset for granted. Nevertheless, very often, noise is intro-du
ed in the labeling of the training set. Of 
ourse, the presen
e of noise
an redu
e the system performan
e in terms of 
lassi�
ation a

ura
y. Thisled to several mislabeling learning models whi
h have been introdu
ed in thepattern re
ognition literature in the early 70′s. These studies aim at solv-ing some pra
ti
al appli
ations su
h as remote-sensing, where the presen
e ofnoise is inevitable.In this 
hapter, we start by presenting a synthesis of semi-supervised learn-ing algorithms. We do not present an exhaustive list of all existing methodswhi
h have been presented in the literature. Instead, we refer to the dif-ferent families of semi-supervised learning, their motivation, and the mostrepresentative methods in ea
h of them. We start with a short dis
ussionof the usefulness of unlabeled data. We distinguish transdu
tive from indu
-tive semi-supervised learning, and some transdu
tive methods are presented.



2 .2. Semi-Supervised Learning 9Then, some methods 
oming from the two main families of semi-supervisedlearning models are detailled: the generative and the dis
riminative ones.In the se
ond se
tion of this 
hapter, we present the problem of learningwith the presen
e of noise in the training data. We review some existing te
h-inques and we distinguish random from non-random imperfe
t supervision.We then present some work whi
h 
ombines mislabeling error models andsemi-supervised learning.2 .2 Semi-Supervised LearningSemi-supervised learning 
an be pla
ed in between supervised and unsuper-vised learning. As a result, it 
an be 
on
eived from two di�erent perspe
tives:either as a supervised task with some additional unlabeled data or as an un-supervised task with some additional 
onstraints. The former is 
onsideredas semi-supervised 
lassi�
ation, whether the latter as semi-supervised 
lus-tering.A related family of methods is transdu
tive learning. In this 
ontext,a partially labeled set of examples is available but, in 
ontrast with semi-supervised learning whi
h is indu
tive, the goal is to predi
t the labels onlyfor the unlabeled examples in the given set, and not to derive a fun
tion.In other words, in the transdu
tive setting, we do not have to possibility to
lassify any new data, but only the ones in
luded in the training set.Are unlabeled examples bene�
ial?At this point, the question whi
h arises is if, and under whi
h 
ir
umstan
es,the amount of unlabeled data 
an be proved helpful. The resear
h already
ondu
ted to answer this question has demonstrated, with theoreti
al and ex-perimental results, that unlabeled examples 
ould, under some assumptions,help and improve performan
e in the 
lassi�
ation task. Nevertheless, thereexists also some literature whi
h has put some doubts about the bene�
ial



10 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datarole of unlabeled data under 
ertain 
ir
umstan
es.From a theoreti
al point of view, the 
ru
ial issue to understand in whatsituations the unlabeled may be bene�
ial is still open. Some authors havetried to understand the role of unlabeled examples in the learning pro
ess.A �rst study was realized by (O'Neill, 1978), who 
onsidered the problemof estimating the Fisher linear dis
riminant using additional unlabeled dataand 
on
luded that un
lassi�ed observations should 
ertainly not be dis
arded.(Castelli and Cover, 1995) showed that the 
lassi�
ation error has an exponen-tial 
onvergen
e to the Bayes optimal solution, when the number of unlabeledexamples grows to in�nity. They generalized their �nding to the situationwhere a �nite number of labeled and unlabeled examples are available, the
lass-
onditional densities are known, but the 
lass priors are not (Castelliand Cover, 1996). The role of unlabeled data under the PAC framework wasalso analyzed by (Ratsaby and Venkatesh, 1995). Also, (Cozman et al., 2003)suggests that the unlabeled data 
an degrade the 
lassi�
ation performan
e,when the modelling assumptions are in
orre
t, and it would be better if theyare dis
arded. Finally, (Grandvalet and Bengio, 2005) proposed an estima-tion prin
iple appli
able to any probabilisti
 
lassi�er, whi
h bene�ts fromthe unlabeled data, espe
ially when 
lasses have small overlap.Figure 2 .1 demonstrates a simple example, where we 
an easily noti
e thatunlabeled examples 
an help (b), but sometimes not only they 
annot (
), butthey 
an even mislead the model (d), when the model assumptions are wrong.Taking into a

ount the above, it be
omes apparent that some assump-tions should hold, in order for the unlabeled examples to be meaningful. Themost 
ommon assumptions are:
• Smoothness assumption: if two points are 
lose, then they should belabeled similarly. In other words, data whi
h belong to the same 
luster(i.e. a high-density region) are likely to be in the same 
lass. Thisassumption, does not imply that 
lasses are formed from single 
ompa
t
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lusters. It only requires that obje
ts from two distin
t 
lasses are notpart of the same 
luster.
• Cluster assumption (a.k.a. Low density separation): the sear
h of ade
ision boundary should take pla
e in low-density regions. If we re
allto our example in �gure 2 .1 (b), where the 
luster assumption holds,we 
an see that the de
ision boundary lies on the low-density region.
• Manifold assumption: the high-dimensional data lie on a low- dimen-sional manifold. In other words, the examples whi
h belong to the samemanifold, have the same 
lass. It also does not imply that 
lasses areformed from single 
ompa
t 
lusters. This assumption is related to the
luster assumption, but it inspires di�erent algorithms.

Figure 2 .1: A simple example whi
h demonstrate the usefulness of unlabeledexamples (small dots), in di�erent 
ases. The dotted line shows the 
orre
tde
ision border. The dark line is the estimated border, taking into a

ountthe available data in ea
h 
ase. When the 
luster assumption holds, unlabeleddata 
an help (b). But when it does not (
), they 
annot provide any usefulinformation. When the modelling assumption is in
orre
t, they 
an evendegrade the performan
e (d)In the next se
tions, di�erent te
hniques based on ea
h of these assump-tions are presented. At this point we have to mention that the importan
e ofthe unlabeled data also depends on the 
hoi
e of features or, equivalently, thesimilarity metri
 we use, as the latter plays an important role on the 
lustersthe data form.



12 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataTo sum up, we 
an 
on
lude that unlabeled data are helpful, as long as
ertain assumptions hold. So, before using semi-supervised learning, it wouldbe wise to verify if some of the assumptions mentioned above hold.NotationBefore presenting the existing methods on semi-supervised learning, some no-tation needs to be introdu
ed.We suppose that we have a 
olle
tion of data X = Xl ∪ Xu, where Xland Xu are respe
tively the set of labeled and unlabeled examples in X . Wealso suppose that labeled data are sampled from the real joint distribution
p(x, y) and that unlabeled examples 
ome from the marginal distribution
p(x). All examples from Xl have a 
lass label y ∈ C = {y1, ..., yk}, whilefor the examples from Xu the 
lass label is unknown. Also, we suppose that
Xtest is the test set, whi
h will be used for testing our learner, denoted as
f : X → Y . The test set is not available during the training.2 .2.1 Transdu
tive LearningTransdu
tive learning is 
losely related to semi-supervised learning. It was�rst introdu
ed by (Vapnik, 1982, 1998). In transdu
tion, in 
ontrast withindu
tive learning, no general de
ision rule is inferred. The goal is just toannotate the unlabeled examples of the training set. In other words, it triesto �nd the labels y ∈ C = {y1, ..., yK} of the unlabeled examples Xu. Trans-du
tive learners 
annot handle any unseen data (for example data from thetest set Xtest). This approa
h is more often used for 
onstrained 
lustering.2 .2.1.1 Transdu
tive Support Ve
tor Ma
hineOne of the most popular transdu
tive methods, is the Transdu
tive SupportVe
tor Ma
hine(TSVM) algorithm, whi
h was �rst introdu
ed by (Vapnik,1998). TSVM is the extention of the standard SVM, where additional unla-beled data are available. It uses the information of these unlabeled samples
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ts the optimal labels for them. The goal is to �nd a maximum mar-gin hyperplane 
lassi�er based on the labeled training examples, but at thesame time try to pla
e this hyperplane away from the unlabeled data. TSVMfollows the low density separation, as it tries to pla
e the de
ision boundaryin the less dense regions (e.g. �gure 2 .2).

Figure 2 .2: In TSVM, the unlabeled examples (small dots) put the de
isionboundary in low density regionsLet us suppose that our hypothesis spa
e H is a set of hyperplanes h(x) =

sign{xw + b}. It tries to predi
t the labels y∗1, . . . , y∗n of the unlabeled data,and to �nd a hyperplane with parameters 〈w, b〉 whi
h separates both labeledand unlabeled data with the maximum margin. In order to a
hieve the above
riterion, we try to minimize the fun
tion
1

2
‖w‖2 + C

k∑

i=0

ξi

︸ ︷︷ ︸
labeled

+C∗
n∑

i=0

ξ∗i

︸ ︷︷ ︸
unlabeled

(2 .1)over (y∗1, . . . , y
∗
n, w, b, ξ1, . . . , ξk, ξ

∗
1 , . . . , ξ

∗
n)and subje
t to

∀k
i=1 : yi [wxi + b] > 1− ξi
∀n

i=1 : y∗i [wx∗i + b] > 1− ξ∗i
∀k

i=1 : ξi > 0

∀n
i=1 : ξ∗i > 0



14 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datawhere ξi are sla
k variables and C,C∗ are parameters, set by the user.This fun
tion 
orresponds to the task of �nding the exa
t solution of antransdu
tive SVM and is 
onsidered as an NP-hard problem. This is thereason why mu
h e�ort has been done in order to �nd some e�
ient approx-imation algorithms.In this 
ontext, (Joa
hims, 1999) introdu
ed a di�erent formulation of theoptimization of TSVM, and proposed his SVMlight software. The idea is tostart by labeling the test data Xu based on the indu
tive SVM 
lassi�
ation.Then, in order to in
rease the in�uen
e of the unlabeled data, we in
rease thevalues of the parameters C∗
−, C

∗
+ (whi
h allow trading o� margin size againstmis
lassifying training examples or ex
luding test examples and whi
h areinitialized to some small number), until the value C∗ de�ned by the user isrea
hed. Then, we swit
h labels of test data in order to de
rease the obje
tivefun
tion. A des
ription of this pro
edure is given in algorithm 1.Algorithm 1: Transdu
tive SVM (Joa
hims, 1999)Input :

• A set of partially labeled data X = Xl ∪ Xu

• parameters C, C∗

• Initialize the 
ost fa
tors C∗
−, C

∗
+ to some small numbersIn
rement the 
ost fa
tors C∗

−, C
∗
+ up to the user de�ned value C∗repeat

• Lo
ate two test examples for whi
h 
hanging the 
lass labelsleads to a de
rease in the 
urrent obje
tive fun
tion 2 .1
• If these two examples exist, swit
h themuntil Obje
tive fun
tion 2 .1 doesn't de
rease anymore ;Output : predi
ted labels of the test examples(Chapelle and Zien, 2005) presented a di�erent implementation whi
h is



2 .2. Semi-Supervised Learning 15based on the optimization of the obje
tive fun
tion using the gradient des
entalgorithm. The ∇TSVM, as it is known, dire
tly optimizes the obje
tive fun
-tion a

ording to the 
luster assumption. The equation 2 .1 
an be rewritten,without the need of 
onstraints, as
1

2
‖w‖2 + C

k∑

i=1

L(yi(w · xi + b)) + C∗
n∑

i=1

L(|w · xi + b|) (2 .2)with L(t) = max(0, 1 − t).Before performing a standard gradient des
ent in the above equation, asit is not di�erentiable, the expression is transformed in
1

2
‖w‖2 + C

k∑

i=1

L(yi(w · xi + b)) + C∗
n∑

i=1

L∗(w · xi + b) (2 .3)with L∗(t) = max(3t2).
∇TSVM uses similar heuristi
s for the C∗, as TSVM of (Joa
hims, 1999)des
ribed above.(De Bie and Cristianini, 2004) proposed a relaxation of the transdu
tiveSVM algorithm, using Semi-De�nite programming (SDP). However, due tothe high dimensionality of the feasible region of the relaxed parameters, the
omputation remains 
omplex and, as a result, it 
annot handle large datasets.They further proposed a spe
tral 
lustering method, whi
h approximates theoriginal SDP method, and shrinks the feasible region of the variables.More re
ently, (Collobert et al., 2006) suggested an algorithm for TSVM,whi
h uses the 
on
ave-
onvex pro
edure (CCCP) (Yuille and Rangarajan,2002). CCCP iteratively optimizes non-
onvex 
ost fun
tions that 
an beexpressed as the sum of a 
onvex fun
tion and a 
on
ave fun
tion. The opti-mization is 
arried out iteratively by solving a sequen
e of 
onvex problemsobtained by linearly approximating the 
on
ave fun
tion in the vi
inity of the



16 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datasolution of the previous 
onvex problem. They report an important in
reasein the training speed using this method.(Sindhwani et al., 2006) used a deterministi
 annealing approa
h in orderto optimize the obje
tive fun
tion. The motivation is to solve the problem oflo
al minima in the TSVM optimization pro
edure. The idea is to start byminimizing a smoothed 
onvex version of the obje
tive fun
tion and graduallydeform it into the TSVM one.In the same vein, (Chapelle et al., 2006) proposed a 
ontinuation approa
h,whi
h also starts by minimizing a 
onvex obje
tive fun
tion, and uses thesolution as initialization of the next less smooth fun
tion. It iterates until itrea
hes the original obje
tive fun
tion.2 .2.1.2 Graph-based methodsAnother family of transdu
tive learning algorithms 
onsists of graph-basedmethods. They rely on the idea of 
reating a graph G = (V,E), where theset of nodes V represents the labeled Xl and unlabeled Xu data, and the setof edges E represents the similarities between the nodes. These similaritiesare de�ned by an adja
en
y (or weight) matrix W , where Wij is the simi-larity between nodes xi and xj. The weights 
an be 
al
ulated in di�erentways. For example, using the k-nearest neighbor method, we 
an assign 1for the k nearest neighbors of a node, and 0 for the others. Another, widelyused, method of assigning the weights in a fully dire
ted graph, is to use theGaussian kernel:
Wij = e

‖xi−xj‖
2

2σ2 (2 .4)These methods suppose that the smoothness assumption holds, in otherwords, they assume that nodes 
onne
ted with heavy weighted edges, tend tohave the same label. This se
tion dis
usses some representative algorithmsand their motivation.At this point, we have to mention that the main drawnba
k of all graph-
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onstru
tion of the graph. The latter is very importantfor the performan
e of the algorithms, even more important than the 
hoi
eof the algorithm itself. Nevertheless, little work has been performed towardsthis dire
tion. A dis
ussion on this matter 
an be found in (Zhu, 2005).Graph Min
uts. (Blum and Chawla, 2001) proposed a method based ongraph 
uts (known as s-t min
ut). The idea is to try to �nd a minimum 
uton the graph (that is the 
ut with the smallest sum of weights), su
h as to sep-arate labeled examples of di�erent 
lasses. Assuming we have a binary 
las-si�
ation problem, the algorithm tries to �nd a minimum 
ut (cut(G+, G−))on the graph G = (V,E), where G+ and G− are the set of examples (ver-ti
es) whi
h in
lude the labeled examples with labels yi = +1 and yi = −1respe
tively. Then, it annotates as positive the unlabeled examples whi
hbelong to G+ and as negative the ones whi
h belong to G−. A summary ofthis algorithm is shown in algorithm 2.Algorithm 2: Graph min
uts (Blum and Chawla, 2001)Input : A weighted graph G = (V,E)

• Find a minimun 
ut of the graph, su
h that G+ 
ontains thepositive labeled examples and G− the negative ones.
• Assign the positive label to the nodes (examples) whi
h belongto G+ and the negative label to the ones of G−Output : predi
ted labels of the unlabeled examplesOne of the problems of the above algorithm is that the predi
tions arebased on hard 
lassi�
ation. This is why an extension of the min
ut approa
his presented in (Blum et al., 2004). The idea is to add some randomness tothe graph. In parti
ular, the algorithm 
reates di�erent versions of the graph,by adding ea
h time, some random noise to the edge weights. Then, thealgorithm of min
ut is applied to ea
h of these graphs and their predi
tionsis 
al
ulated. The �nal predi
tions of the labels is determined by majorityvote. That way, a kind of 
on�den
e on the predi
tions is 
al
ulated.
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3Figure 2 .3: A simple example whi
h demonstrates the minimum 
ut in thegraph, and annotation the unlabeled examples (white nodes) a

ordinglyMarkov RandomWalks. (Szummer and Jaakkola, 2002) proposed a graph-based algorithm, whi
h uses Markov random walks on the graph. The idea isto start from a randomly 
hosen unlabeled node and walk on the graph, withtransition probabilities between nodes i and j de�ned as
pij =

Wij∑

k

Wik

(2 .5)(pij = 0 if i and j are not 
onne
ted).We denote by Pt|0 = (j|i) the t-step transition probabilities, where t is auser de�ned parameter. Supposing that we have a transition matrix A, whi
h
ontains the transition probabilities pij for all the nodes of the graph, we 
anthen 
al
ulate the t-step transition probabilities as
Pt|0(j|i) = [At]ij (2 .6)This is the probability that the Markov pro
ess starts from a given node iand ends in node j after t steps. These 
onditional probabilities P0|t(i|j)de�ne our new representation for the examples. In other words, ea
h point jis asso
iated with a ve
tor of 
onditional probabilities P0|t(i|j), i = 1, . . . , N .Using this representation, the points are 
lose whenever they have nearly thesame distribution over the states.



2 .2. Semi-Supervised Learning 19The 
lassi�
ation model assumes that ea
h data point has a label or adistribution P (y|i) over the 
lass labels. These distributions are unknownand represent the parameters to be estimated. Now, given a point j weinterpret it as a sample for the t step Markov random walk. As labels areasso
iated with the starting points, the posterior probabilisty of the label forpoint j is given by
Ppost(y|j) =

∑

i

P (y|i)P0|t(i|j)To 
lassify the j-th point, we 
hoose the 
lass that maximizes the poste-rior:
cj = argmax

c
Ppost(y = c|j)One of the problem of this algorithm, is the 
hoi
e of the value of t (i.e.the length of the random walk), whi
h is very important for the performan
eof the algorithm. If, for example, its value is very small, then the data aremerged in small 
lusters. On the other hand, if it is very big, all nodes be
omeindistinguishable. In general, the latter is 
al
ulated either by 
ross-validationor heuristi
s.Label Propagation. In the literature, several transdu
tive graph-basedmethods are based on label propagation. The idea is to start by the labelednodes, propagate their labels to their neighbors, and iterate the pro
ess until
onvergen
e.In this 
ontext, (Zhu and Ghahramani, 2002) presented su
h an algo-rithm. The idea is to 
ombine random walks and 
lamping. The weights ofthe nodes and the transition probabilities are de�ned as in the Markov Ran-dom Walks algorithm (equations 2 .5 and 2 .6). The labels are propagateda
ross the graph until 
onvergen
e. The initial labels of the labeled exam-ples are enfor
ed to stay un
hangeable through the iterations, in order not toloose the information they provide. This method is des
ribed in algorithm (3).



20 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 3: Label propagation (Zhu and Ghahramani, 2002)Input :
• A weighted graph G = (V,E), with weights W
• The diagonal matrix Dii =

∑

k

Wik

• Initial labels ŷ(0) = (ŷl, ŷu), with ŷl = yl for the labeled examplesand ŷu = 0 for the unlabeled examplesrepeat
• Propagate label ŷ(t+1) ← D−1Wŷ(t)

• Row-normalize ŷ
• Clamp the labeled data (i.e. ŷl = yl)until 
onvergen
e of ŷ ;Output : predi
ted labels of the unlabeled examples(Zhou et al., 2004) presented a similar method. It uses the normalizedLapla
ian L ← I − D−1/2WD−1/2, where D is the diagonal matrix and Wthe weight matrix. In ea
h iteration, the labels are propagated on the graphtaking into a

ount the neighbors but also the initial value of ea
h node.Supposing we have a parameter γ ∈ [0, 1), the estimation of the labels is
al
ulated as: ŷ(t+1) ← γLŷ(t) + (1 − γ)ŷ(0), where ŷ(t) are the estimatedlabels of the previous iteration and ŷ(0) are the initial labels. The algorithmstops when ŷ 
onverges. An extention of this method in dire
ted graph ispresented in (Zhou et al., 2005).Linear Neighborhood Propagation (LNP). In the same vein, (Wangand Zhang, 2008) presented a method based on a linear neighborhood model,whi
h assumes that ea
h data point 
an be linearly re
onstru
ted from itsneighborhood. This algorithm 
an propagate the labels from the labeledpoints to the whole dataset using these linear neighborhoods with su�
ientsmoothness. It approximates the graph by a series of overlapped linear neigh-
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hes. It then aggregates the weights whi
h are 
al
ulated for ea
hof the above pat
hes, in order to determine the �nal weights of the graph.They proved that the resulting Lapla
ian matrix is an approximation of thestandard Lapla
ian matrix of a weighted undire
ted graph, and as a result,it 
an be 
onsidered as a smoothed version of the latter. The propagation ofthe labels is done using a similar te
hnique as in (Zhou et al., 2004), takinginto a

ount the neighbors labels but also keeping some information of theinitial labels.Gaussian Fields and Harmoni
 fun
tions. (Zhu et al., 2003a) formu-lates the problem in terms of a Gaussian random �eld on the graph. It 
anbe seen as a nearest neighbor approa
h, where the neighbors are 
al
ulatedusing random walks on the graph. The Gaussian random �eld di�ers fromthe Markov random �eld on the fa
t that it is de�ned on a 
ontinuous statespa
e. The goal is to �nd a real-valued fun
tion f : V → R a

ording towhi
h we will assign labels to the unlabeled examples. For the labeled ex-amples we assume that fl = yl (their real values). We de�ne the followingenergy fun
tion:
E(f) =

1

2

∑

i,j

wij (f(xi)− f(xj))
2 (2 .7)As we 
an noti
e, a

ording to the above fun
tion, low energy 
orrespondsto slowly varying fun
tion over the graph. We assume the Gaussian Ran-dom �eld pβ(f) = e−βE(f)

Zβ
where β is an �inverse temperature� parameter and

Zβ =
∫
f |fl=yL

e−βE(f)df 
an be 
onsidered as a normalization over all fun
-tions, under the 
onstraint that labeled examples keep their labels. It 
anbe proved than the minimun energy fun
tion f = argminf |yl=fl
E(f) is Har-moni
. In other terms, the value of the fun
tion f of ea
h unlabeled exampleis averaged over the values of f on the neighboring points in the graph. Also,a

ording to the maximun prin
iple of harmoni
 fun
tions (Doyle and Snell,1984) f is unique and either satis�es the 
onstraints 0 < f(xj) < 1 for Xuor is a 
onstant. As a result, we 
an assign the example xi to 
lass 1 if

f(xi) > 0.5 and to 
lass 0 di�erently. Algorithm 4 des
ribes the solutionusing matrix methods.
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Algorithm 4: Gaussian Fields and Harmoni
 Fun
tionsInput :

• A weighted graph G = (V,E), with weights W (equation 2 .4),and fl the labels of the labeled examples
• The diagonal matrix Dii =

∑

k

Wik

• The 
ombinatorial Lapla
ian matrix L = D −W . We split the matrixa

ordingto labeled and unlabeled examples as: L =

[
Lll Llu

Lul Luu

]Output :
• fu = −L−1

uu ∗ Lul ∗ fl

Spe
tral Graph Transdu
er. (Joa
hims, 2003) presented another trans-du
tive algorithm, whi
h 
an been seen as the transdu
tive version of the knearest-neighbor (kNN) 
lassi�er. This algorithm has three main steps.First, it 
onstru
ts a similarity-weighted k nearest neighbor graph G, wherethe weights are 
al
ulated as
Wij =






sim(xi,xj)∑

xk∈knn(xi)

sim(xi, xk)
if xj ∈ knn(xi)

0 else (2 .8)Then, it de
omposes the G into spe
trum. In order 
al
ulate the latter, ittries to minimize the normalized graph 
ut with 
onstraints:
min

y

cut(G+, G−)

|{xi : yi = +1}‖{xi : yi = −1}|
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t to
yi = +1, if xi ∈ C and positive
yi = −1, if xi ∈ C and negative
y = {+1,−1}nwhere the cut(G+, G−) is the sum of the edges weights a
ross the 
ut of thegraph, and G+ and G− are the set of examples (verti
es) with yi = +1 and

yi = −1 respe
tively. In other words, it tries to minimize the average weightof the 
ut, instead of the sum of weights of the 
ut, as in s− t min
uts algo-rithm des
ribed above. The motivation is to avoid unbalan
ed 
uts. As theminimization is an NP -hard problem, Spe
tral Graph Transdu
er proposesan approximation to this problem, using a spe
tral graph method. The algo-rithm 
an be seen as an extention of the work of (Hagen and Kahng, 1992),who presented a method whi
h uses spe
tral 
lustering for minimizing theratio 
ut of a graph, but in the 
ase of unsupervised learning. In the �nalstep, the unlabeled examples are 
lassi�ed a

ording to the subgraph (G+ or
G−) they belong to.Conditional Harmoni
 Mixing. (Burges and Platt, 2006) presented analgorithm appli
able to dire
ted graph. This method supposes that we havea dire
ted graph and a 
onditional probability matrix asso
iated to ea
h link.The posterior 
lass probability for ea
h node is updated by minimizing theKullba
k-Leibler (KL) divergen
e between the 
urrent distribution and theone predi
ted by its neighbors.2 .2.1.3 Manifold methodsIn the literature high interest has been shown for the knownledge of manifoldlearning. The motivation behind these methods is the fa
t that the stru
tureof data 
an a�e
t the answer, as it 
hanges the notion of similarity. Thesemethods are based on the manifold assumption, mentioned in the previousse
tion: High dimensional data are distributed on some low dimensional man-



24 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Dataifold. The goal is to �nd a low dimensional stru
ture in high dimensional data.In other words, supposing that we have as input the training data X = Xl∪Xuwith xi ∈ R
D, we want to �nd their proje
tion in the d-dimensional spa
e,that is ψi ∈ R

d (where d << D). Originally, the existing methods addressedmanifold learning in the 
ontext of unsupervised learning. The idea is to usethe unlabeled data in order to estimate the geometry of the data. As su
h,they are very 
lose to transdu
tive framework and they are worth mentioning.At this point we have to note that manifold methods do not perform
lassi�
ation, but they rather try to simplify the stru
ture of the data. Nev-ertheless, they 
an use also unlabeled data in order to �nd a lower dimensionalstru
ture of the data, this is why there are worth mentioning.Linear dimensionality redu
tion. The most known methods for lineardimensionality redu
tion, are the Prin
iple Component Analysis (PCA) (Jol-li�e, 1986) and the Multidimensional S
aling (MDS) (Cox and Cox, 1994).Both methods are used in the algorithms for nonlinear dimensionality redu
-tion, des
ribed below.The motivation of Prin
iple Component Analysis is to try to preservethe 
ovarian
e stru
ture of the data set. In other words, it tries to �nd a
d-dimensional proje
tion of the input patterns xi ∈ R

d in su
h way thatdistan
e of examples are presented as:
ǫPCA =

∑

i

‖xi −
m∑

τ=1

(xieτ )eτ‖2where ve
tor eτ , with τ = 1, . . . , d represents a partial orthonormal basis ofthe input spa
e.The solution to this problem is the d eigenve
tors having the highest eigen-values of the 
entered 
ovarian
e matrix (C = 1
Nx

∑

i

xix
T
i ).



2 .2. Semi-Supervised Learning 25On the other hand, Multidimensional S
aling, initially designed to pre-serve the distan
e between pairs, tries to preserve the inner produ
t betweenthe input data. In other words, it aims at minimizing the fun
tion:
ǫMDS =

∑

ij

(xixj − ψiψj)
2It starts by 
al
ulating the Gram matrix Gij = xixj. Supposing that vτand λτ are its eigenve
tors and eigenvalues respe
tively, the outputs ψ are
al
ulated as ψτ =

√
λτvτ , with τ = 1, . . . , d.Nonlinear dimensionality redu
tion. Spe
tral methods have played animportant role for nonlinear dimensionality redu
tion and di�erent methodshave been proposed in this 
ontext. The general framework of all proposedmethods is:1. Create a k nearest neighbor graph2. Derive a matrix from the graph weights3. Yield low dimensional embedding from eigenve
torsAt this point we have to mention that graph-based methods are nothingelse than one-dimension spe
tral methods.(Tenenbaum et al., 2000) proposed the Isomap algorithm. It 
an be seenas a variant of Multidimensional S
aling (MDS), where instead of Eu
lideandistan
es, it uses the geodesis ones. For the latter, it 
al
ulates the pairwisedistan
es between all nodes along the shortest paths through the k nearestneighbor graph. It therefore uses Djikstra's algorithm. In step 3, it feedsMDS with the matrix 
ontaining the distan
es of the previous step.In the same vein, Maximum varian
e unfolding has been proposed by(Weinberger and Saul, 2006; Sun et al., 2006). Like Isomap, it starts againwith a k nearest neighbor graph, and it uses the top eigenve
tors of the learnedinner produ
t matrix in order to 
al
ulate the low-dimensional embedding.



26 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataNevertheless, it does not use the geodesi
 distan
es. Instead, it attempts to�unfold� the graph, with the help of semide�nite programming (SDP) (Van-denberghe and Boyd, 1996). Instead of learning the output ve
tors dire
tly,the semide�nite programming aims to �nd an inner produ
t matrix that max-imizes the pairwise distan
es between any two inputs that are not 
onne
tedin the neighborhood graph, that is Kij = ψi · ψj .(Roweis and Saul, 2000; Saul and Roweis, 2003) presented an algorithmknown as Lo
ally Linear Embedding (LLE). It starts also by 
reating a k near-est neighbor graph, but this time dire
ted. It then 
reates a sparse matrix,whi
h tries to 
apture the lo
al geometri
 properties. The idea is to �nd alinear 
ombination for ea
h xi and ea
h neighbors, and then try to representthe same linear 
ombination for ψi and its neighbors. This latter is expressedby the matrix (I −W )T (I −W ), where the weight matrix W is 
omputedby re
onstru
ting ea
h xi from its neighbors. Finally, in order to 
al
ulatethe d-dimensional embedding, it uses the d bottom eigenve
tors of the abovesparse matrix.Lapla
ian eigenmaps (Belkin and Niyogi, 2003) as the Lo
ally Linear Em-bedding, uses sparse matrix methods for the derivation of the matrix of thegraph weights. The weight matrix W 
an be 
omputed by the Gaussian ker-nel (equation 2 .4). Then it derives the matrix L = I−D−1/2WD−1/2, whi
his the normalized and symmetrized form of the Lapla
ian matrix. The ideais to preserve proximity relations between data. As in LLE, we 
hoose the dbottom eigenve
tors for yielding the low-dimensional stru
ture.2 .2.2 Indu
tive LearningIn semi-supervised learning, the idea is to learn a de
ision rule based onlabeled and unlabeled data, in su
h a way that this de
ision rule 
an be usedfor the annotation of other unseen data. The semi-supervised algorithms 
anbe separated in two main families: Generative and Dis
riminative methods.



2 .2. Semi-Supervised Learning 272 .2.2.1 Generative MethodsIn these algorithms, the goal is to start from a generative model and try toestimate the density P (x). These methods are making assumptions on thenature of the data and their density.Most generative SSL methods rely on mixture models. These ap-proa
hes follow the 
luster assumption. The mixture model is used to modelboth the input distribution and the labeling pro
ess. The labeled examplesare used jointly with the unlabeled examples to estimate the mixture model,for example using the EM algorithm, and the labeled examples are used asa basis to assign labels to the mixture 
omponents (i.e. unlabeled data are
onsidered as missing values in the EM algorithm (we 
al
ulate P (x|y). Thenwe use the Bayes rule to 
al
ulate P (y|x)). As a 
onsequen
e, the de
isionboundary falls in between 
lusters of data, and therefore in low density re-gions.The introdu
tion of the Expe
tation-Maximization (EM) algorithm for learn-ing from in
omplete data, was �rst proposed and formalized by (Dempsteret al., 1977). The idea is quite simple. The method starts by initializing themodel parameters using the labeled data. Then, the model is re-estimatedbased on unlabeled data using the EM algorithm. The pro
ess repeats untilEM 
onverges. The �nal model 
an be used to measure the performan
e ontest data.The idea of using EM algorithm to learn from labeled and unlabeled datahas been brought to the attention of the Ma
hine learning 
ommunity by(Miller and Uyar, 1997), and has been applied to do
ument 
lassi�
ationtask by (Nigam et al., 2000).Semi-Supervised Naive Bayes. (Nigam et al., 2000) proposed a semi-supervised version of the Naive Bayes 
lassi�er1 for do
ument 
lassi�
ation.1A ni
e review of di�erent variants of Naive Bayes 
lassi�er 
an be found in (Lewis,



28 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataThe Naive Bayes 
lassi�er assumes that ea
h example is generated by amixture model, where ea
h mixture 
omponent 
orresponds to a 
lass y ∈ C:
p(x,Θ) =

K∑

k=1

p(yk | Θ)p(x | yk,Θ) (2 .9)In this model, ea
h mixture 
omponent yk may be sele
ted with probability
p(yk | Θ), and do
ument x is generated entirely from the sele
ted mixture
omponent, with probability p(x | yk,Θ). For examples with no known label,the probability is given by the sum over all mixture 
omponents (equation2 .9). In this 
ase, ea
h do
ument is represented as a ve
tor x = 〈n(w, x)〉w∈WThe Naive Bayes assumption is that the features of a do
ument are gener-ated independently, without taking order into a

ount. Under this assumptionthe probability of an example x given the 
lass yk is given by

p(x | yk,Θ) ∝
Nw∏

j=1

p
n(wj ,x)
jk (2 .10)Where, pjk is the probability of generating feature wj ∈ W in 
lass yk. Thus,the 
omplete model parameters, Θ, is a set of 
lass priors and a set of multi-nomial parameters:

Θ = {p(yk) : yk ∈ C; pjk : wj ∈ W, yk ∈ C}.Parameter estimation in a semi-supervised learning 
ontext is 
arried out us-ing an EM algorithm, as detailed in algorithm 5. Parameters are �rst initializedusing Maximum Likelihood estimates over the labelled data Xl ⊂ X only. Itthen iteratively estimates the probability that ea
h mixture 
omponent yk ∈ Cgenerates ea
h example x ∈ X using the 
urrent parameters Θ(j) (E-step),and updates the parameters Θ(j+1) by maximizing the 
omplete-data log-likelihood (M-step). During the M-step, a parameter λ ∈ [0, 1] is introdu
ed.The motivation is to weight the e�e
t of unlabeled data. In other words, its1998)



2 .2. Semi-Supervised Learning 29Algorithm 5: Semi-supervised Naive-Bayes algorithmInput :
• A set of partially labeled data X = Xl ∪ Xu

• Initial model parameters Θ(0) estimated over the labeled set Xl.
• j ← 0repeat
• E-step: Estimate the posterior 
lass probability that ea
hexample x ∈ X belongs to ea
h mixture 
omponent
yk : ∀x ∈ X ,∀yk ∈ C,

p(yk | x,Θ(j)) =
p(yk | Θ(j))p(x | yk,Θ

(j))

p(x | Θ(j))

• M-step: Estimate the new parameters Θ(j+1) whi
h maximizethe 
omplete-data log-likelihood:
p(yk | Θ(j+1)) =

1 +
∑

x∈X

δ(x)p(yk | x,Θ(j))

C + |Xl|+ λ|Xu|

pΘ(j+1)

jk =

1 +
∑

x∈X

δ(x)n(wj , x)p(yk | x,Θ(j))

|W|+
|W|∑

l=1

∑

x∈X

δ(x)n(wl, x)p(yk | x,Θ(j))where, δ(x) = 1 if x ∈ Xl and δ(x) = λ if x ∈ Xu

• j ← j + 1until 
onvergen
e of the 
omplete-data log-likelihood ;Output : A Naive Bayes 
lassi�er with parameters Θ(j)goal is to 
ontrol the in�uen
e of unlabeled data over labelled examples.Semi-supervised 
lustering with 
onstraints. At this point, it is worthmentioning another family of approa
hes, namely the semi-supervised 
luster-



30 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Dataing with 
onstraints, whi
h 
an be 
onsidered as semi-supervised generativemethods. The idea is to perform 
lustering on the data in order to de�nethe 
lusters they rely on, and use the labeled examples in order to de�ne
onstraints whi
h 
lusters should respe
t.Di�erent methods have been presented in the literature. They 
an be dis-tinguished in two main families: the 
onstraint-based and the distan
e-based.In the former the idea is to perform 
lustering by in
orporating some kind ofpenalties for the violation of the 
onstraints. Su
h methods have been pro-posed by (Demiriz et al., 1999; Wagsta� et al., 2001; Basu et al., 2002). Inthe distan
e-based methods, the idea is to perform 
lustering using a distan
efun
tion whi
h is parametrized using the labeled examples. Methods of this
ategory in
lude (Cohn et al., 2003; Xing et al., 2003).As 
lustering is out of the s
ope of this thesis, for more details of theabove methods, the reader 
an refer to (Basu et al., 2006).2 .2.2.2 Dis
riminative MethodsDis
riminative approa
hes fo
us on dire
tly estimating the de
ision boundarybetween 
lasses, that is the probability P (y|x), without implementing the
luster assumption. Note that, although dis
riminative training is knownto be asymptoti
ally better than generative approa
hes, the latter may bepreferable when the number of annotated data is limited. They make fewassumptions on the nature of the data, and these hypotheses are generallyweak.Self-training. The probably earliest idea of SSL is based on the prin
ipleof self training. It has appeared early in the literature (S
udder, 1965; Spra-gins, 1966; Agrawala, 1970) and has been applied to di�erent problems su
has adaptive signal pro
essing (Widrow and Stearns, 1985), natural languagepro
essing (Yarowsky, 1995), obje
t dete
tion systems from images (Rosen-berg et al., 2005), gene identi�
ation (Lomsadze et al., 2005) and others.
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Figure 2 .4: Self-Training algorithmThe pro
ess of self-training begins with building a 
lassi�er that is trainedwith few labeled examples. The trained 
lassi�er is used to annotate the unla-beled examples. The ones among them with the highest 
on�den
e are addedto the training set together with their predi
ted labels. The 
lassi�er is re-trained and this pro
edure is repeated until there no unlabeled examples left.Another variant of self-training proposes to train the model until there is no
hanges in the label predi
tions, when a margin-based 
riterion is used labelthe unlabeled examples. This method �nds the de
ision boundary followingthe low density separation assumption, as it tends to push the boundary farfrom the unlabeled data.One of the drawba
ks of self-training is the fa
t that it reinfor
es its
lassi�
ation errors.Co-training. Based on the idea of self-supervised learning, (Blum andMit
hell, 1998) presented the 
o-training algorithm. This method supposesthat we have two di�erent modalities of the data set, under the assumptionthat ea
h of them is ri
h enough to learn the parameters of a 
lassi�er. Thatis, ea
h example xi has two di�erent views xi,1 and xi,2. It also supposes that



32 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 6: Self TrainingInput : A partially labeled dataset X = Xl ∪ Xurepeat
• Train the 
lassi�er with the labeled examples X (i)

l

• Annotate the unlabeled examples X (i)
u using the trained
lassi�er

• Add the most 
on�dent unlabeled examples (X ′

u) withtheir predi
ted labels to the labeled set (X (i+1)
l = X (i)

l ∪ X
′

uand X (i+1)
u = X (i)

u \ X ′

u)until all unlabeled data have been labeled ;Output : The model parametersthe two views of the data are 
onsistent:
∃h1, h2, xi : hopt(xi) = sgn(h1(x1,i)) = sgn(h2(x2,i))It is also assumes that the two views are independent given the label:

p(x1,i|x2,i, yi) = p(x1,i|yi)

p(x2,i|x1,i, yi) = p(x2,i|yi)

Figure 2 .5: Co-Training algorithm
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lassi�ers h1 and h2 are trained with the labeledset, ea
h using one view. Then, they 
lassify the unlabeled examples, and asubset of these examples 
lassi�ed with 
lassi�er h1 are 
hosen randomly andused as input to 
lassi�er h2, 
onsidering that the labels predi
ted by h1 arethe 
orre
t ones. Ea
h 
lassi�er is retrained with the additional examples andtheir labels predi
ted by the other 
lassi�er. This pro
ess repeats for a givennumber of iterations. A more detailed des
ription of the 
o-training methodis given in algorithm 7.(Nigam and Ghani, 2000) proposed a similar semi-supervised, multi-viewalgorithm (the algorithm Co-EM) whi
h 
an be seen as a probabilisti
 versionof the Co-training. The algorithm runs EM in ea
h view and, before ea
h it-eration, it inter-
hanges the probabilisti
 labels generated in ea
h view. Thebasi
 idea of both Co-EM and 
o-Training, is to use the knowledge learned inone view to train the other one. The di�eren
e between them is that Co-EM uses probabilisti
 labels for the labeled examples that may 
hange fromone iteration to the other.The assumption of 
onsisten
e and independen
e between the two viewsof the data that 
o-training (and Co-EM) is making is very strong, and it isdi�
ult to be met in real-world appli
ations. And this 
an even result a de-
rease in performan
e (Nigam and Ghani, 2000). This is why an e�ort hasbeen made in order to relax these assumptions. (Goldman and Zhou, 2000)proposed a variant of 
o-training whi
h does not suppose independen
e and
onsisten
y of the data views. Instead, it learns two di�erent 
lassi�ers onthe labeled set. Then, they annotate the unlabeled examples and they enri
hthe labeled sets of ea
h other. The motivation is that the two 
lassi�ers willlearn two di�erent models whi
h 
an eventually 
omplement ea
h other. Adi�erent way to relax this assumption is presented by (Bal
an et al., 2004). Inthe latter, an expansion property on the underlying distribution of the datais proposed, in order to repla
e the 
onditional independen
e assumption of
o-training.



34 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataThe idea of using two 
lassi�ers has appeared earlier than 
o-training inthe literature. For example, in the work of (De Sa, 1993, 1994) a similaralgorithm is presented. The so-
alled self-supervision algorithm uses twodi�erent 
lassi�ers, whi
h play alternatively the role of tea
her and student.The output of the one is used as desired input for the other. This pro
edure
ontinues until the 
onvergen
e of the output.Algorithm 7: Co-Training (Blum and Mit
hell, 1998)Input :
• A partially labeled dataset X = Xl ∪ Xu,where Xl = {(x1,i, x2,i}i=1,...,m and Xu = {(x1,i, x2,i}i=m+1,...,m+n

• Two 
lassi�ers h1 and h2

• Create a set X ′
u, by 
hoosing randomly N examples from Xurepeat

• Train 
lassi�er h1 with the labeled examples Xl

• Train 
lassi�er h2 with the labeled examples Xl

• Annotate p positive and n negative unlabeled examplesfrom X ′
u using the trained 
lassi�er h1

• Annotate p positive and n negative unlabeled examplesfrom X ′
u using the trained 
lassi�er h2

• Add the above examples with their predi
ted labels tothe labeled set
• Add 2p + 2n examples from the Xu to X ′

uuntil a �xed number of iterations ;Output : The predi
ted labels and the 
lassi�ers h1 and h2Co-boosting. (Collins and Singer, 1999) proposed the 
o-boosting algo-rithm, whi
h is based on the algorithm of Adaboost (Freund and S
hapire,1997; S
hapire and Singer, 1999). It builds two additive models in parallel,



2 .2. Semi-Supervised Learning 35with an obje
tive fun
tion that bounds the rate of agreement. It 
an be 
on-sidered as a variant of 
o-training.We suppose that ea
h example xi is an instan
e pair (x1,i, x2,i), whi
hrepresents the two modalities of the example. We also suppose that we havea partially labeled dataset of size m+ n, where the �rst m pairs have labels
yi, for i = 1, . . . ,m and the rest n are unlabeled. The algorithm makes thefairly strong assumption, that ea
h of the two modalities of ea
h example x1,iand x2,i is su�
ient in order to determine its label.Let us denote with g1 and g2 the two 
lassi�ers. For the labeled data wesuppose that sign(g1(x1,i)) = sign(g2(x2,i)) = yi. For the unlabeled data,we suppose that sign(g1(x1,i)) = sign(g2(x2,i)). The two 
lassi�ers, are builtduring the iterations of the algorithm, by updating ea
h time the equation:

∀i, gt
j(xj,i) = gt−1

j (xj,i) + αth
j
t (xj,i) (2 .11)The αt 
orresponds to the 
on�den
e value and is 
al
ulated also during theiterations as follows:

αt =
1

2
ln

(
W+ + ǫ

W− + ǫ

) (2 .12)where W+ and W− are 
omputed for ea
h possible hypothesis ht(xi) (see al-gorithm 8 for details).The ǫ 
orresponds to a smoothing parameter, and it is introdu
ed in orderto avoid the extreme 
on�den
e values, whi
h may appear when, for example,a feature is present in very few examples.The algorithm tries to minimize the sum of the 
lassi�
ation error on thelabeled examples and the number of disagreements between the two 
lassi�erson the unlabeled data. In other words, on ea
h step, the algorithm sear
hes



36 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 8: Co-boosting (Collins and Singer, 1999)Input : {(x1,i, . . . , x2,i)}i=1,...,n+m and (yi)i=1,...,mInitialize: ∀i, j : g
(0)
j (xi) = 0repeat

• Set pseudo-labels:
ỹi =

{
yi if 1 ≤ i ≤ m
sign

(
gt−1
3−j(x3−j,i)

) if m < i ≤ n+m

• Set virtual distribution:
Dj

t (i) =
1

Zj
t

e(−ỹig
t−1
j (xj,i))where Zj

t is the normalization term, i.e. Zj
t =

n+m∑

i=1

e(−ỹig
t−1
j (xj,i))

• Train the 
lassi�er hj
t using the distribution Dj

t(i.e. ea
h observation is weighted di�erently for di�erent t)
• Choose the weights αt ∈ R of the obtained 
lassi�er αt = 1

2 ln
(

W++ǫ
W−+ǫ

),where W+ =
∑

i:ht(xi)=yi

Dj
t (i) and W− =

∑

i:ht(xi)=−yi

Dj
t (i)

• Update the global 
lassi�er taking into a

ount the 
lassi�erof step t ∀i, gt
j(xj,i) = gt−1

j (xj,i) + αth
j
t (xj,i)until a �xed number of iterations t and for j = 1, 2 ;Output : Final hypothesis: f(x) = sign




2∑

j=1

gT
j (xj)



to minimize the fun
tion:
Zco

def
=

m∑

i=1

[
e(−yig1(x1,i)) + e(−yig2(x2,i))

]

+

m+n∑

i=m+1

[
e(−sign(g2(x2,i))g1(x1,i)) + e(−sign(g1(x1,i))g2(x2,i))

]



2 .3. Mislabeling Error Models 37As we 
an see for the above fun
tion, small values of Zco means that thetwo 
lassi�ers have low error rate on labeled examples and there is also lowdisagreement in the predi
tions of labels for unlabeled examples.Ea
h iteration of the algorithm is 
omposed by two rounds: in ea
h ofthem, one of the 
lassi�er is updated while the other remains �xed. Thispro
edure 
ontinues for T iterations, by alternating the two 
lassi�ers.2 .3 Mislabeling Error ModelsAs we mentioned in the introdu
tion of this 
hapter, very often, noise 
anbe introdu
ed in the labeling of the training set whi
h 
an redu
e the sys-tem performan
e in terms of 
lassi�
ation a

ura
y. Some proposed solutionstry to 
apture the mislabelings within the learning algorithm. That is, theylearn with the noisy data, by using me
hanisms in order to 
apture the mis-labelings. The existing studies distinguish between random and no-randomimperfe
t supervisions: the probability of mis
lassi�
ation of an observationdoes depend on its feature ve
tor while it does not for the former.Random imperfe
t supervision. It 
an o

ur when the noise in the datadepends on their feature ve
tor. In the 
ontext of medi
al diagnosis for ex-ample, this 
ould be the labeling of test blood results (Ait
hison and Begg,1976). (M
La
hlan, 1972) studied 
onditional error rates using their asymp-toti
 expansions for the 
ase where one group does not get mislabeled sample.(Chittineni, 1980) 
onsidered the problem of learning from imperfe
tlylabeled data. He used noisy data in order to analyse the Bayes 
lassi�er errorand to 
al
ulate the error bounds on the performan
e of nearest neighbor
lassi�ers. In the same vein, (Lugosi, 1992) investigated the asymptoti
 be-havior of the error probability of two methods under very general 
onditions:the nearest neighbor algorithm and a method based on the maximization ofthe estimated a posteriori probabilities. In (Chhikara and M
Keon, 1984),an analysis of the importan
e of mislabeled training data is done, and it is



38 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Dataproved that the training of 
lassi�ers by ignoring mislabeling in the trainingset 
an degrade 
lassi�
ation performan
e. (Krishnan and Nandy, 1987) pre-sented the derivation of the likelihood estimation of parameters for two groupmultivariate normal mixtures with a 
ommon 
ovarian
e matrix using themaximum likelihood prin
iple, for a binary 
lassi�
ation problem. Followingthis work, Krishnan 
ompared an imperfe
t and a perfe
t supervision s
hemeby measuring the Asymptoti
 Relative E�
ien
y, that is the number of sam-ples needed in ea
h of the s
hemes in order to a
hieve the same performan
e(Krishnan, 1988).More re
ently, (Karmaker and Kwek, 2005) presented a boosting ap-proa
h, namely the ORBoost (Outlier Removal Boosting). It is based onthe well-known AdaBoost algorithm (Freund and S
hapire, 1997; S
hapireand Singer, 1999). The idea is to introdu
e a threshold whi
h puts an up-per bound on the weights of the noisy examples. During the iterations, theexamples whi
h are identi�ed as outliers (that is, the examples with weightslarger than the limit bound) are eliminated. As the iterations in
rease, theremained examples have hopefully the 
orre
t labels and the 
lassi�er havebetter performan
e.In (Lawren
e and S
holkopf, 2001), an algorithm for 
onstru
ting a ker-nel Fisher dis
riminant from noisy training data is presented. The idea is toassign to ea
h example a probability of its label being �ipped. They use thenthe EM algorithm in order to update these probabilities. They assume that the
lass 
onditional densities are Gaussian distributions. (Li et al., 2006), basedon the latter algorithm, presented two extensions to non-Gaussian datasets,namely the Clustering-based Probabilisti
 Algorithm (CPA) and the Prob-abilisti
 Kernel Fisher (PKF): the former applies the algorithm introdu
edby (Lawren
e and S
holkopf, 2001) to a Mixture-of-Gaussians (MoG) in theinput spa
e (algorithm 9), while the latter gives a similar framework to theiralgorithm, but this time no distribution assumption is made.In the �rst step of algorithm (9), the optimal number of mixture 
om-



2 .3. Mislabeling Error Models 39Algorithm 9: The sequential steps in the Clustering-based Probabilis-ti
 Algorithm (CPA)1. Estimate the number of mixture 
omponents K2. Estimate the mixture density parameters and priors by theMixture-of-Gaussians3. Map 
lusters to 
lasses4. Optimize the mixture parameters by applying the modi�edalgorithm of (Lawren
e and S
holkopf, 2001) to ea
h of the
omponents5. Map updated 
lusters to 
lasses6. Create a Bayes 
lassi�erponents must be 
al
ulated. In (Li et al., 2006) the latter is determined asthe K value that produ
es the highest total log-likelihood on the test set. Intheir paper, more details on alternative te
hniques for estimating the numberof mixtures 
an be found.No-random imperfe
t supervision. The imperfe
t supervision 
an beno-random in the 
ase where the noise is not uniform in the features spa
e.In other words, the noise depends on the feature ve
tor. In the 
ontext ofmedi
al diagnosis (if we want to 
ompare with the example given in the previ-ous se
tion) a no-random imperfe
t supervision 
an o

ur when humans labela patient disease by its symptoms. As in the 
ase of random imperfe
t super-vision, di�erent te
hniques have been proposed in order to deal with this kindof data. (La
henbrun
h, 1974) presented su
h a te
hnique, by 
al
ulating the
onditional error rates using Monte Carlo methods. Also, (Titterington, 1989)used an EM algorithm in order to estimate the parameters of a logisti
-normaldistribution.



40 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Data(Ambroise and Govaert, 2000) proposed an EM algorithm whi
h estimatesthe posterior distribution of the true label 
lass with respe
t to the in
ompletedata. They are based on the 
on
ept of Maximum Likelihood Estimators(MLE) 
omputed on observations whi
h may be either labeled, unlabeledor partially labeled. The idea is to introdu
e a distribution whi
h indi
atesthe subset of 
lasses an example 
ould belong, in
luding the true 
lass. Inother words, it tries to identi
ally distribute its doubts about the label of anexample in the other possibles 
lasses. They 
ompared this method with thetransferable belief model (TBM), �rst introdu
ed by (Denoeux, 1995): thelatter is a non-probabilisti
 approa
h, based on the �Dempster-Shafer� theory(Smets, 1994), and 
an also handle mislabeling data.2 .3.1 Semi-Supervised learning with mislabeled dataThe methods we presented above were all proposed in the 
ontext of super-vised learning. (Amini and Gallinari, 2003) introdu
ed another method whi
htakes into a

ount the mislabelings, but in addition performs semi-supervisedlearning. Their method 
ould be pla
ed in the random imperfe
t supervisionframework, as the mislabeling of an example does not depend on its featureve
tor. In 
ontrast with the other methods of this framework, this methoddoes not assume that the label errors 
ome from the manual labeling of thedata. Instead, it assumes that the mislabeling errors o

ur by the 
lassi�
a-tion algorithm itself and it uses the label error model to 
orre
t them. Theiralgorithm is based on the Logisti
-CEM �rst introdu
ed in (Vittaut et al.,2002). The idea is to in
orporate in the latter a mislabeling error model.The algorithm is �rst trained on the labeled part of the training set and ititeratively assigns 
lass labels to unlabeled training examples. These newlylabeled examples, together with the labeled part of the training set, are thenused to re-train the 
lassi�er. At ea
h iteration, the semi-supervised learningsystem is a
ting as an imperfe
t supervisor on unlabeled training examples.In order to model the mislabeling errors, supposing there is a set of nlabeled and a set of m unlabeled examples, they introdu
ed the following



2 .3. Mislabeling Error Models 41probability, where yi and ỹi are the perfe
t (i.e. the real but unknown) andthe imperfe
t (i.e. the predi
ted by the 
lassi�er) labels of the unlabeledexample xi ∈ Xu:
∀k,∀h, αkh = p(ỹ = k|y = h)subje
t to the 
onstraints:

∀h,
∑

k

αkh = 1They assume that the density of an example, given its true label, doesnot depend on its imperfe
t label:
p(xi|ỹ = k, y = k) = p(xi|y = h)In order to train their model, they use the CEM2 algorithm. The lattertries to maximize the following log-likelihood:

Lc =

n∑

i=1

c∑

k=1

tki logP (y = k|xi, β)

+
n+m∑

i=n+1

c∑

k=1

[
t̃ki log

(
c∑

h=1

αkhP (ỹ = h|xi, β)

)] (2 .13)where ti = {tki}k is the indi
ator ve
tor 
lass asso
iated with the labeledexamples xi:
∀i ∈ {1, . . . , n} ,∀yi = k ⇔ tki = 1 and ∀h 6= k, thi = 0The t̃kj 
orresponds to the respe
tive indi
ator ve
tor 
lass, based on theestimated labels ỹj for the unlabeled examples xj. The parameters β are theparameters of the logisti
 
lassi�er.2CEM refers to Classi�
ation EM. The latter was introdu
ed by (Symons, 1981) andwas applied to semi-supervised learning by (M
La
hlan, 1992). The idea is to introdu
ean additional step (C-step) in the EM algorithm. During this step, ea
h of the examples isassigned to the most likely 
lass.



42 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 10: SSL with an expli
it label-error model for mis
lassi�eddataInput : A partially labeled dataset X = Xl ∪ XuA logisti
 
lassi�er fInitialize:
• Train f with the labeled examples.We denote with β(0) the obtained parameters
• Initialize α(0) by random
• j ← 0repeat
• C-step: Estimate the imperfe
t 
lass posterior probabilitiesusing the output of the 
lassi�er, and get an imperfe
t labelfor ea
h xi ∈ Xu:

∀xi ∈ Xu, ỹ(j+1)
i = argmax

k

c∑

h=1

α
(j)
khp(ỹ

(j) = h|xi)Let π(j+1) be the new partition obtained from this 
lassi�erfor the unlabeled data
• M-step: Estimate the new parameters β(j+1), α(j+1)whi
h maximize Lc(π

(j+1), β(j), α(j)) (eq. 2 .13):� β(j+1) = argmax
β(j)

Lc(π
(j+1), β(j), α(j))� Find the parameters α(j+1) whi
h maximize

Lc(π
(j+1), β(j+1), α(j)),subje
t to 
onstraints ∀k,∀h, α(j+1)

kh ∈ [0, 1]and ∀h,∑
k

α
(j+1)
kh = 1

• j ← j + 1until 
onvergen
e of Lc ;Output : The labels of the examples x ∈ Xu



2 .3. Mislabeling Error Models 43In algorithm (10) the di�erent steps of the method are des
ribed. TheE-step does not appear expli
itly in the algorithm, as it is trivial, sin
e theposterior estimates are given by the 
lassi�er outputs dire
tly.Additional methods. It is worth mentioning that in the literature thereexist some methods whi
h try to solve the problem of noisy data from adi�erent perspe
tive. Istead of modeling the mislabeling errors, they try to�
lean� the data, by �nding and removing the mislabeled data. In other words,they employ some prepro
essing me
hanisms to handle noisy instan
es beforea learner is formed. These �ltering te
hniques (as they are known) usuallyresult in a redu
ed training set. Su
h methods in
lude (Brodley and Friedl,1999) who used 
ross-validation over the training data to �nd mislabeledinstan
es. Also, (John, 1995) tried removing the training instan
es that arepruned by the C4.5 algorithm (Quinlan, 1993). In ea
h iteration the tree wasrebuilt from the �ltered set of training instan
es. This pro
edure was repeateduntil no further pruning 
ould be done. (Van Hulse et al., 2007) introdu
edan approa
h (
alled Pairwise Attribute Noise Dete
tion Algorithm (PANDA))whi
h tries to identify the most noisy examples. Due to the potential risk ofdata 
leaning when noisy examples are retained while good examples areremoved, in whi
h 
ases the redu
ed training set 
an be mu
h less a

uratethan the full training set, e�orts have been taken to 
onstru
t noise tolerant
lassi�ers dire
tly.
FILTER

Initial Training set "Cleaned’’ Training set

Trash

MIslabeled data

Classifier

Figure 2 .6: Filtering Te
hniques: They try to 
lean the dataset by removingthe mislabeling data (the small dots and lines) and keeping only the 
orre
tlabeled examples (big 
ir
les and lines)



44 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Data2 .4 Con
lusionIn this 
hapter we have �rst introdu
ed the idea of semi-supervised learningand the motivation behind this 
on
ept. The huge amount of available unla-beled data and the 
ost of labeling these examples have led to the design ofalgorithms whi
h try to take advantage of both labeled the unlabeled data.Several of these methods have been inspired from te
hniques presented �rstin the statisti
al 
ommunity. Before presenting the di�erent families of semi-supervised learning te
hniques, we have dis
ussed the assumptions in whi
hthey rely on. A distin
tion between transdu
tive and semi-supervised learn-ing has been made and a synthesis of di�erent methods in ea
h of the twoapproa
hes has been presented.In the se
ond part of this 
hapter, we dis
ussed the presen
e of noise in atraining dataset. Very often there are mislabelings in the training data andthat 
an lead to a de
rease of the performan
e. This is why di�erent methodshave been introdu
ed in the literature, whi
h try to deal with this problem.The goal was not to present an exhaustive list of all existing methods.Instead, the 
on
epts of semi-supervised learning and mislabeling error mod-els have been presented. Some representative methods, together with theirmotivation, from ea
h of the di�erent frameworks have been dis
ussed.
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tionA
tive learning (AL), as semi-supervised learning, addresses the issue of an-notation 
ost. In 
ontrast with semi-supervised learning whi
h, as mentionedin the previous 
hapter, uses the unlabeled data in addition with the labeledones, a
tive learning suggests to 
hoose the most informative examples amongthe unlabeled ones to annotate, in order to obtain better performan
e than,if unlabeled examples are not taken into a

ount in the learning pro
ess orif they are labeled at random. This form of a
tive learning is also known as



46 Chapter 3 . A
tive Learningsele
tive sampling (Cohn et al., 1994).The typi
al a
tive learning setting 
onsists of a partially labeled dataset
X = Xl ∪ Xu, a 
lassi�er f and a query module q. The 
lassi�er is ini-tially trained with the labeled subset Xl. Then, using the query module q, it
hooses the unlabeled examples X ′

u ⊂ Xu whi
h 
an bring more informationin our 
lassi�er. These examples are labeled by the user and the 
lassi�er isretrained with the enri
hed labeled set Xl ∪ X ′
u (�gure 3 .1). The measure ofe�
ien
y for an a
tive learner 
an be either the redu
tion of the labeled setsize needed to a
hieve a 
ertain performan
e, or the performan
e a
hieved fora 
ertain size of the labeled set.

Figure 3 .1: A
tive learning: The 
lassi�er is trained with the labeled exam-ples. Then, using a sele
tion strategy, it 
hooses and demand the annotationof the most informative examples among the unlabeled ones. This pro
edure
ontinues until a 
ertain performan
e or a 
ertain size of the labeled setA
tive learning has been applied in various tasks. For example, (S
hohnand Cohn, 2000) presented very good results for text 
lassi�
ation using a
-



3 .2. A
tive Learning Te
hniques 47tive learning. (Vogiatzis and Tsapatsoulis, 2008) proposed an a
tive learningmethod in the �eld of bioinformati
s and they presented results on DNA mi-
roarray data sets. (Kuo et al., 2008) presented an adaptive learning frame-work for Phoneti
 Similarity Modeling (PSM) that supports the automati

onstru
tion of transliteration lexi
ons. (Cooper et al., 2007) used a
tivelearning to identify whi
h motion sequen
e the user should perform next,in order to improve the quality and responsiveness of a kinemati
 
hara
ter
ontroller. (Hakkani-Tür et al., 2006) applied a
tive learning in the task ofspoken language understanding.(Chawla and Bowyer, 2007) proposed a learn-ing framework for the fa
e re
ognition task. They proposed to a
tively learnthe fa
e spa
e in order to a
hieve a good performan
e using just a subset ofthe training set.3 .2 A
tive Learning Te
hniquesThe existing a
tive learning algorithms 
an be pla
ed in three main 
ategories:the 
ertainty-based sampling, the query by 
ommittee and the expe
ted errorminimization. In the following se
tions the motivation of these 
ategories aredis
ussed and some well known methods are presented.3 .2.1 Certainty-based samplingCertainty-based sampling is based on the 
on�den
e of the 
urrent 
lassi�eron unlabeled data. This method was �rst introdu
ed by (Lewis and Gale,1994), where a probabilisti
 
lassi�er is used (Naive Bayes), whi
h assigns allpossible labels to the unlabeled data with 
ertain probabilities. Then, basedon these probabilities, the most ambiguous examples are 
hosen for annota-tion, i.e. the examples with the highest entropy (high entropy suggests highun
ertainty for an example).In (Tong and Koller, 2000) a similar idea is presented. In their method,the un
ertainty of the unlabeled data is measured as the 
loseness to thede
ision boundary of an SVM 
lassi�er. Also, (Campbell et al., 2000) pro-



48 Chapter 3 . A
tive Learningposed an algorithm for the training of support ve
tor ma
hines using instan
esele
tion. In ea
h iteration the example whi
h is the 
losest to the 
urrenthyperplane of the SVM algorithm is 
hosen.In the same vein, (Ertekin et al., 2007) proposed an a
tive learning methodwhi
h sele
ts informative examples from a randomly pi
ked small pool ofexamples rather than making a full sear
h in the entire training set. Thatway, the a
tive learning method 
an be appli
able to very large datasets. Theyused the SVM algorithm, but instead of using a traditional SVM solvers (e.g.SVMlight (Joa
hims, 1999)), they used an online SVM algorithm, LASVM(Bordes et al., 2005). LASVM works in an online setting, where its model is
ontinually modi�ed as it pro
esses the training examples one by one. Theproposed a
tive learning method sele
ts the examples 
losest to the marginas in (Tong and Koller, 2000; Campbell et al., 2000). They used the proposeda
tive learning strategy in order to address the 
lass imbalan
e problem, andthey presented some en
ouraging results. The intuition is that we 
an a
hievemore balan
ed 
lass distributions in the earlier steps of the learning, if wefo
us the learning on the examples around the 
lassi�
ation boundary.3 .2.2 Query By CommitteeA se
ond type of a
tive learning whi
h is met in the literature is the queryby 
ommittee (QBC). It was �rst introdu
ed by (Seung et al., 1992; Freundet al., 1997). The idea here is to measure the agreement among a 
ommittee of
lassi�ers. The 
lassi�ers are trained with the labeled data and they 
lassifythen the unlabeled examples. The algorithm 
hooses the examples with thebiggest disagreement among the 
lassi�ers. These examples are annotated bythe user and they are in
orporated in the labeled examples. The intuitionbehind this method is that if di�erent 
lassi�ers disagree about the label ofan example, it means that the later is di�
ult to label. Here we must notethat in order this method to be e�
ient, the results of the 
lassi�ers shouldnot be 
orrelated.



3 .2. A
tive Learning Te
hniques 49(Muslea et al., 2000) presented the 
o-Testing algorithm whi
h 
an beapplied in multi-view tasks, that is the tasks where there are more than onesignal to des
ribe observations (like in 
o-training, des
ribed in the previous
hapter). The idea is to use di�erent 
lassi�ers for the di�erent views of thedata and to query the unlabeled examples on whi
h the views predi
t di�er-ent labels.

Figure 3 .2: Query By Committee. The a
tive learner 
hooses the examplewith the biggest disagreement among the di�erent 
lassi�ers(Dagan and Engelson, 1995) presented a general 
ommittee-based a
tivelearning method for sele
tive sampling, whi
h is appi
able to probabilisti

lassi�ers. In their work, they fo
used on the task of tagging, where anexample is a word sequen
e and ea
h word w is labeled with a tag t by ea
h
ommittee member. In order to quantify the 
ommittee disagreement for a



50 Chapter 3 . A
tive Learningword, they use the vote entropy de�ned as:
V E(w) = −

∑

t

V (t, w)

k
log

V (t, w)

kwhere V (t, w) is the number of 
ommittee members (out of k members) vot-ing for tag t for the word w. The vote entropy 
an be seen as a measureof 
lassi�
ation un
ertainty based on the training data. They then measurethe disagreement over an a word sequen
e by averaging the voting entropyof all words in the sequen
e. They applied their method to training HiddenMarkov Models (HMM) (Rabiner, 1990).(Davy and Luz, 2007) proposes the History Kullba
k-Leibler Divergen
e(HKLD) algorithm. The idea is to in
orporate the predi
tions made in pre-vious iteration of a
tive learning into the sele
tion of informative unlabelledexamples. The past k predi
tions, of the previous k iterations, 
an be thoughtof as the output of a 
ommittee of size k. In this 
ontext we 
an measureun
ertainty as the disagreement among 
ommittee members using Kullba
k-Leibler divergen
e to the mean (M
Callum and Nigam, 1998). KL divergen
eto the mean is an average of the KL divergen
e between ea
h distribution andthe mean of all the distributions.3 .2.3 Expe
ted error minimizationThe third type of a
tive learning algorithms tries to minimize the expe
tederror (for example (Iyengar et al., 2000)). A

ording to this paradigm, theunlabeled data whi
h redu
e the expe
ted 
lassi�
ation error are 
hosen forannotation. This last type of a
tive learning methods is the most sophisti-
ated, as it is based on a statisti
ally optimal solution. The idea is to 
onsiderea
h of the unlabeled examples as the next query. Then the redu
tion of the
lassi�
ation error is 
al
ulated. The unlabeled data with the largest esti-mated redu
tion is asked to be annotated by the system. For example, in(Roy and M
Callum, 2001) a sample estimation method is used for the Naive



3 .3. Theoreti
al views of A
tive learning 51Bayes 
lassi�er. The idea is to train the 
lassi�er using the 
urrent labeledexamples and then produ
e an estimated output distribution P̃D(y|x) for theunlabeled examples whi
h are 
andidates (as the true output distribution isunknown). The best 
andidate is the one for whi
h the knowledge of thetrue label will 
ause the largest redu
tion of the risk (expe
ted loss). Usingthis estimated distribution, they 
al
ulate the expe
ted loss for an 
andidateunlabeled example x∗ by either a log loss (as the real labels are not knownwe use the estimated ones):
ẼP̃D∗

=
1

|X |
∑

x∈X

∑

y∈Y

P̃D∗(y|x) log(P̃D∗(y|x)) (3 .1)or a 0/1 loss:
ẼP̃D∗

=
1

|X |
∑

x∈X

(
1−max

y∈Y
P̃D∗(y|x)

) (3 .2)where D∗ = D + (x∗, y∗). Of 
ourse, before making the query, the true labelof x∗ is also unknown. Again, the 
urrent learned 
lassi�er gives an estimateof the distribution P̃D(y|x∗) from whi
h the estimated label of the x∗ wouldbe 
hosen. The latter is used in order to 
al
ulate the estimated error forea
h possible label y ∈ Y . Algorithm (11) presents the above method.Also (Dönmez et al., 2007) proposed a similar approa
h (the so-
alled�dual�) where the strategy sele
tion parameters are adaptively updated basedon estimated future residual error redu
tion after ea
h a
tively sampled point.3 .3 Theoreti
al views of A
tive learningEx
ept the di�erent te
hniques of a
tive learning presented in the previousse
tions, some e�ort has been made in a theoreti
al basis, and some interrest-ing works have appeared in the literature.In this 
ontext, (Cohn et al., 1995) 
onsidered the problem of a
tivelysele
ing examples as a the statisti
ally optimal manner. They studied two



52 Chapter 3 . A
tive LearningAlgorithm 11: A
tive Learning by expe
ted Error Minimization (Royand M
Callum, 2001)1. train a 
lassi�er using the 
urrent labeled examples X
• 
onsider ea
h unlabeled example x in the pool as a 
andidate forthe next labeling request� 
onsider ea
h possible label y for x and add the pair (x, y) tothe training set� re-train the 
lassi�er with the enlarged training set X + (x, y)� estimate the resulting expe
ted loss using equation (3 .1 or3 .2)
• Assign to x the average expe
ted losses for ea
h possible labeling
y weighted a

ording to the 
urrent 
lassi�er's posterior, P̃D(y|x)2. Sele
t for labeling the unlabeled example x that generated the lowestexpe
ted error on all other examples.well known statisti
al models, Mixtures of Gaussians and Lo
ally WeightedRegression and they derived a greedy optimality 
riterion for the sele
tion ofexamples.More re
ently, (Castro and Nowak, 2007) tried to 
ome up with some lim-its in a
tive learning. Using minimax analysis te
hniques, they a
hieved somebounds under whi
h one 
an expe
t signi�
ant gains through a
tive learning.(Hanneke, 2007b) studied the label 
omplexity of pool-based a
tive learn-ing in the PAC model with noise. They derived upper and lower boundson the label 
omplexity in terms of generalizations of extended tea
hing di-mension. They 
laimed that their bound is the �rst nontrivial general upperbound on label 
omplexity in the presen
e of persistent 
lassi�
ation noise.(Bal
an et al., 2006) presented an algorithm, the so-
alled Agnosti
 A
tivelearning or A2 learning (whi
h is essentially the a
tive learning algorithm of



3 .4. Combining SSL and A
tive Learning 53(Cohn et al., 1994)), and they provided a label-
omplexity upper bound forlearning linear separators under the uniform input distribution. (Hanneke,2007a) extended this work by deriving a general bound on the number of labelrequests, appli
able to any 
on
ept spa
e and distribution. Also, in (Bal
anet al., 2007a) presented a framework for margin based a
tive learning of linearseparators.In (Bal
an et al., 2007b) the problem is 
onsidered from a di�erent angleand the asymptoti
 
omplexity of a
tive learning is analyzed. They provedthat in many interesting 
ases a
tive learning does help asymptoti
ally.(Krause and Guestrin, 2007) 
ame up with a theoreti
al bound on howmu
h better a sequential algorithm 
an perform than an a priori design strate-gies. They 
onsidered Gaussian Pro
esses (GPs) with unknown parametersand they presented some bounds whi
h motivate the swit
h between explo-ration and exploitation approa
hes to a
tive learning. They extended theiralgorithm to handle nonstationary Gaussian Pro
esses, exploiting lo
al stru
-ture in the model.3 .4 Combining SSL and A
tive LearningThe idea of 
ombining a
tive and semi-supervised learning was �rst intro-du
ed by (M
Callum and Nigam, 1998). The idea is to integrate an EM algo-rithm with unlabeled data into an a
tive learning framework, and more par-ti
ularly in a query by 
ommittee (QBC) method. The 
ommitee membersare 
reated by sampling 
lassi�ers a

ording to the distribution of 
lassi�erparameters spe
i�ed by the training data (algorithm 12).In (Muslea et al., 2002), Co-EMT is proposed. This algorithm 
ombinesCo-Testing and Co-EM. As opposed to Co-Testing algorithm, whi
h learns hy-potheses h1 and h2 based only on the labeled examples, Co-EMT learns thetwo hypotheses by running Co-EM on both labeled and unlabeled examples.Then, in the a
tive learning step, it annotates the example on whi
h the pre-
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tive Learningdi
tions of h1 and h2 are the most divergent, that is, the example for whi
h
h1 and h2 have an equally strong 
on�den
e at predi
ting a di�erent label.Algorithm 12: Combining a
tive learning and semi-supervised learn-ing using EM (M
Callum and Nigam, 1998)Input : The labeled and unlabeled training do
umentswhile more labeled data are required doBuild an initial estimate of the model parameters from the labeleddo
uments onlyfor ea
h of the k 
ommittee members (i.e. for ea
h 
lassi�er) do

• Create a 
ommittee member by sampling a 
lassi�er forea
h 
lass from the appropriate Diri
hlet distribution
• Starting with the sampled 
lassi�er apply EM withthe unlabeled data:
• repeat� Use the 
urrent 
lassi�er to probabilisti
ally labelthe unlabeled do
uments� Re
al
ulate the 
lassi�er parameters given theprobabilisti
ally-weighted labelsuntil parameters 
onvergen
e ;
• Use the 
urrent 
lassi�er to probabilisti
ally labelall unlabeled do
umentsendCal
ulate the disagreement for ea
h unlabeled do
ument, multiplyby its density, and request the 
lass label for the one with thehighest s
ore.endOutput : The new labeled set and all the predi
ted labels(Zhu et al., 2003b) also present a 
ombination of semi-supervised and a
-tive learning using Gaussian �elds and harmoni
 fun
tions (the semi-supervisedmethod is des
ribed analyti
ally in the previous 
hapter 2 .2.1.2). In brief,under this semi-supervised framework, the expe
ted generalization error after



3 .4. Combining SSL and A
tive Learning 55querying a point is 
al
ulated, and the one whi
h gives the largest redu
tionis 
hosen for annotation (algorithm 13). The estimated risk R̂(f) 
an be 
al-
ulated as follows (here, the fi values are 
onsidered as �proxy� for the 
lassprobabilities:
R̂(f) =

n∑

i=1

[sign(fi − 0.5) 6= −1] (1− fi) + [sign(fi − 0.5) 6= 1] fi

=

n∑

i=1

min(fi, 1− fi)We then retrain the 
lassi�er on the new labeled training set (augmentedby the annotated unlabeled example). If we denote by f+(xk,yk) the newharmoni
 fun
tion, the estimated risk be
omes:
R̂(f+(xk,yk)) =

n∑

i=1

min(f
+(xk,yk)
i , 1− f+(xk,yk)

i )As we do not know the value of yk, in order to estimate the expe
ted risk,after querying the example k, we use the following equation:
R̂(f+xk) = (1− fk)R̂(f+(xk,−1)) + fkR̂(f+(xk,1))In ea
h iteration, we 
hoose the next example k that minimizes the ex-pe
ted estimated risk:

k = argmink′R̂(f+xk′ ) (3 .3)(Zhou et al., 2006) presented the so-
alled method Semi-Supervised A
-tive Image Retrieval (SSAIR) for a di�erent task of relevan
e feedba
k. Themethod was inspired by 
o-training (Blum and Mit
hell, 1998) and 
o-testing(Muslea et al., 2000), but instead of using two su�
ient but redundant viewsof the dataset, it employs two di�erent learners on the same data. Initially,the two learners are trained on the labeled data. Then, ea
h of them ranksthe unlabeled data by giving them a value between {−1, 1}, where negativeand positive indi
ates whether the learner believes that the example is ir-relevant or relevant rese
tively. The bigger the absolute value is, the more
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tive LearningAlgorithm 13: Combining a
tive learning and semi-supervised learn-ing using Gaussian �elds and harmoni
 fun
tionsInput :
• A graph G = (V,E) and weight matrix W
• The labels of the labeled examples fl

• The diagonal matrix Dij =
∑

k

Wik

• The 
ombinatorial Lapla
ian matrix L = D −W.We split the matrix a

ording to labeled andunlabeled examples as: L =

[
Lll Llu

Lul Luu

]while more labeled data are required do
• Compute harmoni
 fun
tion fu = −L−1

uu ∗ Lul ∗ fl

• Find best example to annotate, using equation (3 .3)
• Query point xk, and re
eive answer yk

• Add (xk, yk) in Xl, and remove xk from XuendOutput :
• The new labeled set and the 
lassi�er f


on�dent the learner is about its de
ision. A

ording to this ranking ea
hlearner passes the most relevant images to the other one. After re-trainingwith the additional labeled data, the learners rank the data again and thentheir rankings are merged by summation, whi
h gives the �nal ranking for theunlabeled data. The examples for whi
h the learners are 
on�dent to be rele-vant are returned as the retrieval result. The ones whi
h have low 
on�den
eare pla
ed into the pool whi
h is used in the next round of relevan
e feedba
k.
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Figure 3 .3: Combining semi-supervised and A
tive learningIn the 
ontext of multi-view a
tive learning, (Probst and Ghani, 2007)proposed a method whi
h 
ombines semi-supervised and a
tive learning. The�rst step uses 
o-EM with naive Bayes as the semi-supervised algorithm. Theypresent an approximation to 
o-EM with naive Bayes that 
an in
orporate userfeedba
k almost instantly and 
an use any sample-sele
tion strategy for a
tivelearning.Why the 
ombination should work? Intuitively, the 
ombination ofboth semi-supervised and a
tive learning appears to be parti
ularly bene�
ialin redu
ing the annotation burden. Semi-supervised learning is more fo
usedon exploitation, while a
tive learning is more dedi
ated to exploration of thedata. As a result, used alone, it 
an lead to poor performan
e in 
ertain
ases, as semi-supervised strongly su�ers from poorly represented 
lasses,while being very sensitive to noise. On the other hand, a
tive learning 
ouldbe too slow, as it does not really exploit the information given by unlabeled
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tive Learningdata. In the same vein, semi-supervised learning tends to over-weight easy-to-
lassify examples that will dominate the pro
ess, while a
tive learning hasthe opposite strategy, resulting in exploring more deeply the hard-to-
lassifyexamples. Also, a
tive learning based on the 
on�den
e s
ores 
al
ulated onthe whole dataset and not only on the labeled examples, 
an be expe
tedto be more e�
ient. The reason is that the 
on�den
e s
ore will be morea

urate based on both label and unlabeled data.3 .5 Con
lusionIn this 
hapter, we presented the existing methods in a
tive learning. Thelatter, as semi-supervised learning, tries to redu
e the annotation burden.The general idea of the latter is to annotate a
tively the most informativeexamples in order to ameliorate the performan
e of the 
lassi�er. We havepresented the main types of a
tive learners and representative algorithmsin ea
h of them. In the last se
tion, the 
ombination with semi-supervisedlearning has been dis
ussed. The reasons that the 
ombination is interestingand promising have been demonstrated, together with some works towardsthis dire
tion.



IIA
tive and Semi-SupervisedAspe
t Models





In the �rst part of this thesis, we have presented three frameworks thataim to redu
e the annotation burden and to model possible mislabelings in atraining set. In parti
ular, we �rst presented semi-supervised paradigm andmislabeling error models. Then, we fo
used on the e�ort that has been madeto 
ombine these two frameworks. Finally, we presented the paradigm of a
-tive learning and the 
ombination of the latter with semi-supervised learning.In this se
ond part, we 
ombine these three frameworks. We are fo
usingon the task of text 
ategorization and we present an extension of the aspe
tmodels to the 
ase of semi-supervised learning for this task. This study ismotivated by the 
ost of labeling do
ument 
olle
tions and the ability ofaspe
t models to explain the generation of textual observations. In this part,we propose two semi-supervised variants of aspe
t models, espe
ially of thePLSA algorithm, whi
h in
orporate a mislabeling error model. We furtherextend these semi-supervised models by 
ombining them with two di�erenta
tive learning strategies.





4Semi-Supervised Aspe
t Models
Contents 4 .1 Introdu
tion . . . . . . . . . . . . . . . . . . . . 634 .2 Aspe
t Models for Do
ument Classi�
ation . 644 .3 Probabilisti
 Latent Semanti
 Analysis . . . . 654 .4 ssPLSA with a �missing values� model . . . . 684 .5 ssPLSA with a fake label model . . . . . . . . 704 .6 ssPLSA-mislabeling with hard 
lustering . . . 734 .7 ssPLSA-mislabeling with soft 
lustering . . . 784 .8 Con
lusion . . . . . . . . . . . . . . . . . . . . . 814 .1 Introdu
tionIn this 
hapter, we start by presenting the framework of aspe
t models. Then,we des
ribe the Probabilisti
 Latent Semanti
 Analysis (PLSA) algorithmintrodu
ed by (Hofmann, 2001). We 
ontinue by introdu
ing our three semi-supervised variants of the PLSA model.The motivation of the �rst variant is to try to handle the un
ertaintyposed by the unlabeled data 
lusters. In the se
ond and third variants, we
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t Modelstry to 
apture the possible mislabeled data whi
h o

ur during the training ofour model. The idea is to iteratively assign 
lass labels to unlabeled examplesand estimate the probabilities of the mislabeling errors. These probabilitiesare taken into a

ount in the estimation of the new model parameters beforethe next round. In the third variant, as opposed to the se
ond one, we performsoft 
lustering on the unlabeled data.4 .2 Aspe
t Models for Do
ument Classi�
ationAs we saw in 
hapter 2, semi-supervised methods relying on a generativemodel usually implement a lo
al independan
e assumption (similar to theNaive Bayes assumption), whi
h is unlikely to be met in pra
ti
e. In addi-tion, some simple models (su
h as the Naive Bayes model) assume that anobservation is generated in its entirety from the 
lass it belongs to. Thismakes it in
onvenient to model data that may 
omprise several aspe
ts, forexample textual do
uments whi
h potentially 
over di�erent topi
s. This hasled to the development of Aspe
t Models (Hofmann, 2001), whi
h 
an takeinto a

ount su
h data with multiple fa
ets. The aspe
t models di�er in thestatisti
al assumptions they impose on the model: They are based on the as-sumption that examples 
over one or more di�erent topi
s. In other words, anexample 
an be modeled as a mixture of topi
s. They spe
ify a simple prob-abilisti
 pro
edure by whi
h theses examples 
an be generated. In this way,examples are now 
hara
terized in terms of topi
s instead of simple features.Observations are generated by a mixture of aspe
ts, or topi
s, ea
h of whi
hbeing a distribution over the basi
 features of the observations (su
h as wordsin a do
ument, or pixels in an image et
). Interestingly, these models allow to
apture interesting appli
ation-dependent phenomena. When modeling tex-tual 
ontent, for example, they take into a

ount linguisti
s properties3 su
has synonymy (di�erent terms with the same meaning) and polysemy (di�er-ent meanings of the same term). Both may have a 
ru
ial in�uen
e on themodelling of the relationship between do
uments.3Further details on these linguisti
s properties are given in the evaluation 
hapter, wherethe representation of the data is dis
ussed



4 .3. Probabilisti
 Latent Semanti
 Analysis 654 .3 Probabilisti
 Latent Semanti
 AnalysisOne of the �rst aspe
t models introdu
ed in the literature, is the Probabilisti
Latent Semanti
 Analysis (PLSA), proposed by Hofmann (Hofmann, 2001).The latter has been presented in terms of do
ument 
lassi�
ation, but it 
anbe appli
able to di�erent tasks, su
h as image 
lassi�
ation. It has beenpresented as a probabilisti
 version of the Latent Semanti
 Analysis (LSA)method (Deerwester et al., 1990).PLSA is a probabilisti
 model whi
h 
hara
terizes ea
h word in a do
-ument as a sample from a mixture model, where mixture 
omponents are
onditionally-independent multinomial distributions. This model, also knownas the aspe
t model (Saul and Pereira, 1997), asso
iates an unobserved latentvariable (
alled aspe
t, topi
 or 
omponent) α ∈ {α1, ..., αA} to ea
h obser-vation 
orresponding to the o

urren
e of a word w ∈ W within a do
ument
x ∈ X . One 
omponent or topi
 
an 
oin
ide with one 
lass or, in anothersetting, a 
lass 
an be asso
iated to more than one 
omponent. Although orig-inally proposed in an unsupervised setting, this latent variable model is easilyextended to 
lassi�
ation with the following underlying generation pro
ess:
• Pi
k a do
ument x with probability P (x),
• Choose a latent variable α a

ording to its 
onditional probability P (α |
x)

• Generate a feature w with probability P (w | α)

• Generate the example's 
lass y a

ording to the probability P (y | α).The probability P (y | α) is �xed, by for
ing to zero the 
omponent α thatdo not belong to a 
ertain 
lass y, i.e. P (y|α) =

{
1, if α ∈ y
0, otherwise (as weknow how many 
omponents per 
lass we have).Hen
e, the model parameters are

Ξ = {P (α | x), P (w | α) : α ∈ A,x ∈ X , w ∈ W}
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Figure 4 .1: Graphi
al model representation of the PLSA model. Latentvariables are double 
ir
led.The generation of a feature w within an example x 
an then be translatedby the following joint probability model:
P (w, x) = P (x)

∑

α∈A

P (w | α)P (α | x) (4 .1)So, the log-likelihood of the model 
an be estimated as:
L =

∑

w∈W

∑

x∈X

n(x,w) log P (x,w) (4 .2)where n(w, x) denotes the frequen
y of the word w in instan
e x. At thispoint we have to note that y appears in the log-likelihood indire
tly, through
α. In algorithm (14) the training of this model is des
ribed. The idea is toperform one 
lustering per 
lass by �xing the number of 
omponents per 
lass.The latter is done during the initialization of the model (Ξ(0)), where we for
eto zero the P (α | x) for an example x whi
h does not belong to a parti
ulartopi
 α (that is the labeled training examples). The algorithm used ensure
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 Latent Semanti
 Analysis 67to maintain the for
ed zeros during the iterations. The P (w | α) is initializedby giving random values for all w and α.After the training of the model, we run the PLSA for the test set,(algorithm(15)) using the 
al
ulated model (i.e. P (w|α)), in order to learn the P (α|x)and we 
lassify the examples of the test set with the maximum posteriorprobability using 
hain rule:
P (y|x) ∝

∑

α

P (α|x)P (y|α)We 
hoose as label for ea
h example, the one with the highest probability.
In 
hapter 2, we presented (together with its semi-supervised variant) theNaive Bayes model (Lewis, 1998). In the latter, some simplifying assump-tions are 
onsidered, whi
h PLSA over
omes in two important ways. First,it relaxes the assumption that a 
lass y is asso
iated to a single topi
. InPLSA, the number of topi
s |A| may be larger than the number of 
lasses K.The se
ond and 
ru
ial di�eren
e is that in Naive Bayes, all features mustbe generated from the same topi
. This requires the use of 
lever smoothingstrategies to 
ounter the fa
t that some features that are unrelated to a topi
may appear by 
oin
iden
e in an example from that topi
. On the otherhand, in PLSA, a topi
 is drawn independently from P (α | x) ea
h time anew feature is generated in an example. This provides a mu
h more naturalway to handle unusual features or multi-topi
ality.
The 
omplexity of PLSA is O(|A| ×M), where M = #{(w, x)|n(w, x) >

0}, is the number of pairs (w, x) 
o-o

uring at least on
e in the 
olle
tion(or, in other words, the number of non-zero entries in the example-featurematrix).
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t ModelsAlgorithm 14: Probabilisti
 Latent Semanti
 Analysis (PLSA) forDo
ument Classi�
ation: TrainingInput :
• A labeled set X = Xl,
• Random initial model parameters Ξ(0).
• j ← 0repeat
• E-step: Estimate the latent 
lass posteriors:
∀x ∈ X ,∀w ∈ W,∀α ∈ A of the 
lass y(x)

P (α|w, x) = π(j)
α (w, x) =

P (j)(α|x)P (j)(w|α)∑

α′∈A

P (j)(α′|x)P (j)(w|α′)

• M-step: Estimate the new model parameters Ξ(j+1)by maximizing the 
omplete-data log-likelihood:
P (j+1)(w|α) ∝

∑

x

n(w, x)π(j)
α (w, x)

P (j+1)(α|x) ∝
∑

w

n(w, x)π(j)
α (w, x)

• j ← j + 1until 
onvergen
e of the 
omplete-data log-likelihood ;Output : A generative 
lassi�er with parameters Ξ(j)4 .4 Semi-Supervised PLSA with a �missing values�modelThe most straight forward semi-supervised variant of the PLSA algorithm isto treat it as a �missing values� model. The latter 
an be seen as a 
luster-ing with 
onstraints. In this 
ase, our model will be identi
al with the onepresented in the previous se
tion and in algorithm (14). The di�eren
e lies



4 .4. ssPLSA with a �missing values� model 69Algorithm 15: Probabilisti
 Latent Semanti
 Analysis (PLSA) forDo
ument Classi�
ation: TestingInput :
• A test set X ′

• the learned model P (w|α)repeat
• E-step: Estimate the latent 
lass posteriors:
∀x ∈ X ′,∀w ∈ W,∀α ∈ A

P (α|w, x) = π(j)
α (w, x) =

P (j)(α|x)P (w|α)∑

α′∈A

P (j)(α′|x)P (w|α′)

• M-step:
P (j+1)(α|x) ∝

∑

w

n(w, x)π(j)
α (w, x)until 
onvergen
e of the 
omplete-data log-likelihood ;Cal
ulate the labels of the test set:

P (y|x) ∝
∑

α

P (j)(α|x)P (y|α)Output : The labels of the test setto the initialization pro
ess: instead of for
ing to zero the P (α | x) for allexamples x of the training set whi
h do not belong to a parti
ular topi
 α,this time we for
e P (α | x) only for the labeled examples and we give randomvalues for all the unlabeled examples of the training set, under the 
onstraintto sum up to 1. This happens be
ause we do not know the labels of the un-labeled examples, and as a result, we 
annot �nd in whi
h topi
 they belong(by P (y|α)), as we do with the labeled data.This �missing values� model is the simplest way to perform semi-supervisedlearning with the PLSA model. The drawba
k is that it does not 
apture any
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t Modelsof the problems 
reated be
ause of the very low ratio of labeled and un-labeled examples. This is why we will fo
us on the three semi-supervisedvariants des
ribed in the next se
tions, whi
h are more sophisti
ated. The�rst one (with the �fake label� model) solves the problem of the unlabeled
omponents, while the other two variants (with the mislabeling error model)
apture and modelize the mislabelings produ
ed by the 
lassi�er during theiterations.
4 .5 Semi-Supervised PLSA with a fake label modelAs the aspe
t PLSA model 
hara
terizes the generation of the 
o-o

urren
ebetween a feature w and an example x, for learning the semi-supervised mod-els we have to form two labeled Ql and unlabeled Qu training sets fromXl and
Xu. We 
onsider now ea
h observation as a pair q = (w, x) su
h that observa-tions in Ql are assigned to the same 
lass label as the example x they 
ontain.We re
all that we still 
hara
terize the data using a mixture model with
|A| latent topi
 variables α, under the graphi
al assumption of aspe
t mod-els (that x and w are independent 
onditionally to a latent topi
 variable α).(Krithara et al., 2006), following the work of (Gaussier and Goutte, 2005), pre-sented a semi-supervised variant of PLSA, where additional �fake� labels wereintrodu
ed for the unlabeled data (namely the ssPLSA-fake). The motivationfor the latter was to try to solve the problem of the unlabeled 
omponents(whi
h 
ontain only unlabeled examples and for whi
h a 
lass assignation isrisky). Indeed, the la
k of labeled examples in these 
omponents 
an lead toarbitrary 
lass probabilities, and as a result, to arbitrary 
lassi�
ation de
i-sions. So all labeled examples in Ql (where Ql are the 
o-o

urren
es for thelabeled data) are kept with their real 
lass labels and all unlabeled examplesin Qu (the 
o-o

urren
es for the unlabeled data) are assigned a new fakelabel y = y0.



4 .5. ssPLSA with a fake label model 71In this 
ase the model parameters are
Λ = {P (α | x), P (z = y0 | α), P (w | α) : α ∈ A,x ∈ X , w ∈ W, z ∈ {y + y0}}The above model parameters Λ are obtained by maximizing the 
ompletedata log-likelihood

L1 =
∑

x∈Ql,w∈W

logP (w, x, z) (4 .3)using the Expe
tation-Maximization EM algorithm. In algorithm 16, thetraining of this model is summarized.

Figure 4 .2: Graphi
al model representation of the ssPLSA model with a fakelabel model.z ∈ {y + y0}At this point we have to note that the values of P (z|α) depend on thevalue of latent topi
 variable α. The 
ardinal of α is given, and in addition,the repartition of the α in di�erent 
lasses is also known, that is, the numberof latent topi
 variables per 
lass. So, in order to initialize, for the true 
lasses(i.e. for all z 6= y0) we for
e to zero the P (z|α) for the latent topi
 variables αwhi
h do not belong to the parti
ular 
lass z, and for z = y0 we give randomvalues for all α.
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t ModelsThe 
omplexity of this algorithm is O(|A| ×M) where, as before, M =

#{(w, x)|n(w, x) > 0}.On
e the model parameters are obtained, if we want to assign the unla-beled data used in the learning stage to a 
lass (i.e. transdu
tive learning),for ea
h example x, we distribute the probability obtained for the "fake" label
z = y0, on the "true" labels using the following equation:

P (y|x) ∝
∑

α

P (α|x) [P (y|α) + λP (z=y0|α)] (4 .4)where λ ∈ [0, 1
K

] (where λ = 1
K 
orresponds to a uniform repartition ofun
ertain �fake� label on the other labels) and y = 1, . . . ,K.The ssPLSA-fake, 
an be seen as a 
on�den
e measure for ea
h unlabeledexample to belong to a given 
lass. That is, after training, unlabeled examplesfor whi
h the model is more 
on�dent, are assigned to one of the real 
lasses.On the other hand, examples for whi
h the 
lassi�er has no 
on�den
e willkeep their fake labels and, from the above equation, their in�uen
e will bedownweighted.A new example x is assigned to the 
lass with maximum posterior prob-ability using the same rule as before (equation 4 .4), using the P (z = y0|α)estimated during the training of the model.If we want to test our model on new data, after having trained the model,we assign a new example x to the 
lass with maximum posterior probabilityusing the equation (4 .4) above (as in the 
ase of the unlabeled examples inthe training set).



4 .6. ssPLSA-mislabeling with hard 
lustering 73Algorithm 16: Semi-Supervised PLSA (ssPLSA) with fake labelsInput :
• A set of partially labeled data X = Xl ∪Xu,
• Random initial model parameters Λ(0).
• j ← 0repeat
• E-step: Estimate the latent 
lass posteriors:
∀x ∈ X ,∀z ∈ C̃ = C + y0 , ∀w ∈ W,∀α ∈ A

π(j)
α (w, x, z) =

P (j)(α|x)P (j)(w|α)P (j)(z|α)

P (j)(w, z|x)where P (j)(w, z|x) =
∑

α∈A

P (j)(α|x)P (j)(w|α)P (j)(z|α)

• M-step: Estimate the new model parameters Λ(j+1)by maximizing the 
omplete-data log-likelihood:
P (j+1)(w|α) ∝

∑

x

n(w, x)π(j)
α (w, x, z(x))

P (j+1)(α|x) ∝
∑

w

n(w, x)π(j)
α (w, x, z(x))

P (j+1)(z|α) ∝
∑

w

∑

x,z

n(w, x)π(j)
α (w, x, z)

• j ← j + 1until 
onvergen
e of the 
omplete-data log-likelihood ;Output : A generative 
lassi�er with parameters Λ(j)4 .6 Semi-Supervised PLSA with a mislabeling er-ror model - hard 
lusteringIn this se
tion we introdu
e a semi-supervised variant of the PLSA modelin whi
h a mis
lassi�
ation error is in
orporated (namely the ssPLSA-mem
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t Modelshard). We assume that the labeling errors made by the generative modelfor unlabeled data 
ome from a sto
hasti
 pro
ess and that these errors areinherent to semi-supervised learning algorithms. The idea here is to 
hara
-terize this sto
hasti
 pro
ess in order to redu
e the labeling errors 
omputedby the 
lassi�er for unlabeled data in the training set.We assume that for ea
h unlabeled example x ∈ Xu, there exists a perfe
t,true label y, and an imperfe
t label ỹ, estimated by the 
lassi�er. Assumingalso that the estimated label is dependent on the true one, we 
an modelthese labels by the following probabilities:
∀(k, h) ∈ C × C, βkh = P (ỹ = k|y = h) (4 .5)subje
t to the 
onstraint that ∀h,∑k βkh = 1.In �gure 4 .3 below the graphi
al representation of this model for bothlabeled and unlabeled data is given.

Figure 4 .3: Graphi
al model representation of the semi-supervised PLSAwith a mislabeling error model, for labeled (left) and unlabeled (right) do
u-ments.
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lustering 75The underlying generation pro
ess asso
iated to this latent variable modelfor unlabeled data is:
• Pi
k an example x with probability P (x),
• Choose a latent variable α a

ording to its 
onditional probability P (α |
x)

• Generate a feature w with probability P (w | α)

• Generate the latent do
ument 
lass y a

ording to the probability P (y |
α)

• The imperfe
t 
lass label ỹ is generated with probability βỹ|y = P (ỹ | y)As in the ssPLSA-fake presented in the previous se
tion, the values of
P (y|α) depend on the value of the latent topi
 variable α. The 
ardinal of
α is given (as is 
onsidered as a hyper-parameter). The repartition of the
α in the 
lasses is also known for both labeled and unlabeled examples. Weinitialize by for
ing to zero the P (y|α) for the latent topi
 variables α whi
hdo not belong to the parti
ular 
lass y. These values remain �xed. In otherwords, we perform hard 
lustering. We have to note that the hard 
lusteringis done in terms of 
lasses, as an example 
an be a mix of several 
omponents,as far as these 
omponents are related to the same 
lass (y).With this new graphi
al model, the joint probability between an unlabeledexample q ∈ Qu and its imperfe
t 
lass label estimated by the 
lassi�er 
anbe expressed as

∀q ∈ Qu, P (w, x, ỹ) =
∑

α∈A

P (w|α)P (α|x)
∑

y∈C

βỹ|yP (y|α)The model parameters are in this 
ase:
Φ = {P (α | x), P (w | α), βỹ|y : x ∈ X , w ∈ W, α ∈ A, y ∈ C, ỹ ∈ C}and they are estimated by maximizing the 
omplete data log-likelihood:
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L2 =

∑

x∈Xl

∑

w

n(w, x) log
∑

α

P (x)P (w|α)P (α|x)P (y|α)

+
∑

x∈Xu

∑

w

n(w, x) log
∑

α

P (x)P (w|α)P (α|x)
∑

y

βỹ|yP (y|α)
(4 .6)The Maximum likelihood estimates of model parameters are:

P (j+1)(w|α) ∝
∑

x∈Xl

n(w, x)π(j)
α (w, x, y(x)) +

∑

x∈Xu

n(w, x)π̃(j)
α (w, x, ỹ(x))(4 .7)where

πα(w, x, y) =
P (α|x)P (w|α)P (y|α)∑
α P (α|x)P (w|α)P (y|α)

(4 .8)and
π̃α(w, x, ỹ) =

P (α|x)P (w|α)
∑

y P (y|α)βỹ|y∑
α P (α|x)P (w|α)

∑
y P (y|α)βỹ|y

(4 .9)are the latent topi
 posteriors for respe
tively the labeled and unlabeled data.
P (j+1)(α|x) ∝

∑

w

n(w, x)×






π
(j)
α (w, x, y(x)), for x ∈ Xl

π̃
(j)
α (w, x, ỹ(x)), for x ∈ Xu

(4 .10)The mislabeling probabilities are estimated over the unlabeled trainingset:
β

(j+1)
ỹ|y ∝

∑

w

∑

x∈Xu

n(w, x)
∑

α|α∈y

π̃(j)
α (w, x, ỹ) (4 .11)In algorithm 17 the estimation of model parameters Φ is des
ribed. Thisalgorithm is also an EM-like algorithm as the previous semi-supervised model.For the initialization of the model parameters Φ(0) are assigned random valuesby respe
ting the 
onstraints. Then, at ea
h iteration j during the E-step ,latent topi
 posteriors are estimated for labeled and unlabeled data using the
urrent parameters Φ(j). During the M-step, new parameters Φ(j+1) are es-
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lustering 77timated by maximizing the 
omplete data log-likelihood (equation 4 .6). Wealternate these two step until the 
onvergen
e of the 
omplete data likelihoodto a lo
al maximum.Algorithm 17: ssPLSA-mem hardInput :
• A set of partially labeled data X = Xl ∪Xu,
• Random initial model parameters Φ(0).
• j ← 0

• Run a simple PLSA algorithm for the estimation of the initial ỹrepeatE-step: Estimate the latent 
lass posteriors
πα(w, x, y) =

P (α|x)P (w|α)P (y|α)∑
α P (α|x)P (w|α)P (y|α)

, if x ∈ Xl

π̃α(w, x, ỹ) =
P (α|x)P (w|α)

∑
y P (y|α)βỹ|y∑

α P (α|x)P (w|α)
∑

y P (y|α)βỹ|y
, if x ∈ XuM-step: Estimate the new model parameters Φ(j+1)by maximizing the 
omplete-data log-likelihood

P (j+1)(w|α) ∝
∑

x∈Xl

n(w, x)π(j)
α (w, x, y(x)) +

∑

x∈Xu

n(w, x)π̃(j)
α (w, x, ỹ(x))

P (j+1)(α|x) ∝
∑

w

n(w, x) ×
{
π

(j)
α (w, x, y(x)), for x ∈ Xl

π̃
(j)
α (w, x, ỹ(x)), for x ∈ Xu

β
(j+1)
ỹ|y ∝

∑

w

∑

x∈Xu

n(w, x)
∑

α|α∈y

π̃(j)
α (w, x, ỹ)

j ← j + 1until 
onvergen
e of the 
omplete-data log-likelihood ;Output : A generative 
lassi�er with parameters Φ(j)The 
omplexity of this algorithm is O(|A| ×M ×C), whi
h is 
omparableto the one of PLSA and ssPLSA-fake.



78 Chapter 4 . Semi-Supervised Aspe
t Models4 .7 Semi-Supervised PLSA with a mislabeling er-ror model - Soft 
lusteringIn this se
tion we present an extention of the previous model, namely thessPLSA-mem soft. We mentioned that in ssPLSA-mem hard we performhard 
lustering by �xing the values of P (y|α). The idea here is to performsoft 
lustering for the unlabeled data. In other words, the repartition for theunlabeled data is not �xed. We denote by P̃ (y|α) the values for the unlabeleddata, whi
h are obtained during the training of the model. For the labeledexamples, we initialize, as before, by for
ing to zero the P (y|α) for the latenttopi
 variables α whi
h do not belong to the parti
ular 
lass y.We de
ided to perform hard 
lustering for the labeled examples, be
ause,as dis
ussed in (Gaussier and Goutte, 2005), the soft 
lustering potentiallyfa
es the problem of 
luster impurity : all 
omponents 
ontain examples fromseveral 
lasses instead of �spe
ialising� to one or few 
lasses. As a 
onse-quen
e, even if we use the unlabelled data to better model these 
omponents,this will not help to dis
riminate the di�erent 
lasses. On the other hand, byallowing soft 
lustering only on the unlabeled examples, we do not fa
e thisproblem and in addition we give the possibility to the unlabeled examples tobe distributed over all 
omponents.Hen
e, in this 
ase the joint probability between an unlabeled example q ∈
Qu and its imperfe
t 
lass label estimated by the 
lassi�er 
an be expressedas

P (w, x, ỹ) = P (x)
∑

α∈A

P (w|α)P (α|x)
∑

y∈C

βỹ|yP̃ (y|α)The model parameters
Ψ = {P (α | x), P (w | α), βỹ|y, P̃ (y|α) : x ∈ X , w ∈ W, α ∈ A, y ∈ C, ỹ ∈ C}are estimated by maximizing the 
omplete data log-likelihood:
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L3 =

∑

x∈Xl

∑

w

n(w, x) log
∑

α

P (x)P (w|α)P (α|x)P (y|α)

+
∑

x∈Xu

∑

w

n(w, x) log
∑

α

p(x)p(w|α)p(α|x)
∑

y

βỹ|yP̃ (y|α)
(4 .12)As we 
an noti
e, the di�eren
e with the ssPLSA-hard strategy, relieson the introdu
tion of P̃ (y|α) for unlabeled data, whi
h is not �xed, butis estimated during the EM algorithm. In order to initialize this parameter,we do not for
e to zero any of its values, but nevertheless, we favorize the
omponents for whi
h the P (y|α) of the labeled examples is not zero, bygiving them bigger values. In other words, we initialize this parameter insu
h a way so that it is not very far from the P (y|α) (but on the other handwe do not for
ed to zero any value, as we want to perform soft 
lustering).We de
ided to initialize that way in order to avoid identi�ability problemswhi
h 
an o

ur. For the training of the 
urrent model, we use again theequations (4 .7), (4 .10), (4 .11) and (4 .8), but this time the latent topi
posterior π̃α(w, x, ỹ) for the unlabeled data is de�ned as follows:

π̃α(w, x, ỹ) =
P (α|x)P (w|α)

∑
y P̃ (y|α)βỹ|y∑

α P (α|x)P (w|α)
∑

y P̃ (y|α)βỹ|y

(4 .13)In addition, the P̃ (y|α) is estimated over the unlabeled training set:
P̃ (j+1)(y|α) = P̃ (j)(y|α)

∑

w

∑

x∈Xu

n(w, x)
P (j)(α|x)P (j)(w|α)β

(j)
ỹ(x)|y

∑
α P

(j)(α|x)P (j)(w|α)
∑

y P̃
(j)(y|α)β

(j)
ỹ|y(4 .14)The pro
edure for estimating model parameters Ψ is des
ribed in algo-rithm 18.The 
omplexity of this algorithm is O(|A| ×M ×C), whi
h is 
omparablewith the one of the semi-supervised Naive Bayes (as presented in 
hapter 2)and ssPLSA-fake algorithms.
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t ModelsAlgorithm 18: ssPLSA-mem softInput :
• A set of partially labeled data X = Xl ∪Xu,
• Random initial model parameters Ψ(0).
• j ← 0

• Run a simple PLSA algorithm for the estimation of the initial ỹrepeatE-step: Estimate the latent 
lass posteriors
πα(w, x, y) =

P (α|x)P (w|α)P (y|α)∑
α P (α|x)P (w|α)P (y|α)

, if x ∈ Xl

π̃α(w, x, ỹ) =
P (α|x)P (w|α)

∑
y P̃ (y|α)βỹ|y∑

α P (α|x)P (w|α)
∑

y P̃ (y|α)βỹ|y

, if x ∈ XuM-step: Estimate the new model parameters Ψ(j+1)by maximizing the 
omplete-data log-likelihood
P (j+1)(w|α) ∝

∑

x∈Xl

n(w, x)π(j)
α (w, x, y(x)) +

∑

x∈Xu

n(w, x)π̃(j)
α (w, x, ỹ(x))

P (j+1)(α|x) ∝
∑

w

n(w, x)×
{
π

(j)
α (w, x, y(x)), for x ∈ Xl

π̃
(j)
α (w, x, ỹ(x)), for x ∈ Xu

β
(j+1)
ỹ|y ∝

∑

w

∑

x∈Xu

n(w, x)
∑

α|α∈y

π̃(j)
α (w, x, ỹ)

P̃ (j+1)(y|α) = P̃ (j)(y|α)
∑

w

∑

x∈Xu

n(w, x)
P (j)(α|x)P (j)(w|α)β

(j)
ỹ(x)|y

∑
α P

(j)(α|x)P (j)(w|α)
∑

y P̃
(j)(y|α)β

(j)
ỹ|y

j ← j + 1until 
onvergen
e of the 
omplete-data log-likelihood ;Output : A generative 
lassi�er with parameters Ψ(j)

The experiments in 
hapter 6 will prove that the soft 
lustering in the un-



4 .8. Con
lusion 81labeled training data is really bene�
ial, espe
ially when the ratio of labeled-unlabeled data is very low.Remarks The following matrix sums up the models presented in this 
hap-ter, 
omparing the parameters they 
ontrol and their 
omplexity. As we 
ansee the 
omplexity of all four is 
omparable. In 
hapter 6, we test these meth-ods and dis
uss how the di�erent parameters 
an a�e
t their performan
es.All the above models 
an be performed dire
tly in multi
lass 
lassi�
ationtasks, without any modi�
ation. And this 
an be proved a great advantagewith respe
t to binary 
lassi�
ation semi-supervised models, as in may realworld 
lassi�
ation problems are multi
lass, and many of the existing meth-ods 
annot handle multi
lass problem easily.Parameters ComplexityModels P (w|α) P (α|x) P (ỹ|y) P (y|α) O()PLSA √ √
O(|A| ×M)ssPLSA-fake √ √ √
O(|A| ×M)ssPLSA-mem hard √ √ √

O(C × |A| ×M)ssPLSA-mem soft √ √ √ √
O(C × |A| ×M)Table 4 .1: Comparison of the di�erent variants of the semi-supervised PLSAmodel. For the 
omplexities M = #{(w, x)|n(w, x) > 0}4 .8 Con
lusionIn this 
hapter we presented three semi-supervised variants of the Probabilis-ti
 Latent Semanti
 Analysis. These aspe
t models use both label and unla-beled data and at the same time, they model the possible mislabeling errors.First a variant (ssPLSA-fake) whi
h uses fake labels is presented and thentwo slightly di�erent models were proposed (ssPLSA-mem hard and ssPLSA-mem soft). In the next 
hapter, we extend these models by 
ombining themwith two di�erent a
tive learning te
hniques.





5A
tive Semi-supervised Aspe
tModels
Contents 5 .1 Introdu
tion . . . . . . . . . . . . . . . . . . . . 835 .2 Margin-Based Method . . . . . . . . . . . . . . 855 .3 Entropy-Based Method . . . . . . . . . . . . . 865 .4 Con
lusion . . . . . . . . . . . . . . . . . . . . . 885 .1 Introdu
tionIn this 
hapter, we extend the presented semi-supervised models, by 
ombin-ing them with two a
tive learning methods. The motivation is to try to takeadvantage of the 
hara
teristi
s of both frameworks.As dis
ussed in 
hapter 3, the 
ombination of both semi-supervised anda
tive learning appears to be parti
ularly bene�
ial in redu
ing the annotationburden for the following reasons:1. It 
onstitutes an e�
ient way of solving the exploitation/explorationproblem: semi-supervised learning is more fo
used on exploitation, while
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Figure 5 .1: Combining semi-supervised and A
tive learninga
tive learning is more dedi
ated to exploration. Semi-supervised learn-ing alone may lead to poor performan
e in the 
ase of very s
ar
e initialannotation. It then strongly su�ers from poorly represented 
lasses,while being very sensitive to noise and potentially instability. On theother hand, a
tive learning alone may spend too mu
h time queryinguseless examples, as it 
an not exploit the information given by theunlabeled data.2. In the same vein, it may alleviate the data imbalan
e problem due toea
h method separately. Semi-supervised learning tends to over-weighteasy-to-
lassify examples that will dominate the pro
ess, while a
tivelearning has the opposite strategy, resulting in exploring more deeplythe hard-to-
lassify examples (Tür et al., 2005).3. Semi-supervised learning is able to provide a more motivated estima-tion of the 
on�den
e s
ore asso
iated to the 
lass predi
tion for ea
h



5 .2. Margin-Based Method 85example, taking into a

ount the whole data set, in
luding the unla-belled data. As a 
onsequen
e, a
tive learning based on these better
on�den
e s
ores 
an be expe
ted to be more e�
ient.In the next two se
tions, we present two di�erent a
tive learning methodswhi
h 
an be performed on the top of the semi-supervised models presentedin the previous 
hapter. These model 
an be also used with any other semi-supervised probabilisti
 model. In both methods, we 
hoose to annotate theless 
on�dent example. Their di�eren
e lies on the measure of 
on�den
ethey use.5 .2 Margin-Based MethodThe �rst a
tive learning method (the so-
alled margin method) 
hooses toannotate the example whi
h is 
loser to the 
lasses' boundaries (Kritharaet al., 2006). The latter gives us a notion of 
on�den
e the 
lassi�er has onthe 
lassi�
ation of these examples. In order to measure this 
on�den
e weuse the following 
lass-entropy measure for ea
h unlabeled example:
B(x) = −

∑

y

P (y|x) log P (y|x), where x ∈ Xu (5 .1)The bigger the B is, the less 
on�dent the 
lassi�er is about the labeling ofthe example. After having sele
ted an example, we annotate it and we add itto the initial labeled set Xl. More than one examples 
an be sele
ted at ea
hiteration. The reason is that, espe
ially for 
lassi�
ation problems with a bigamount of examples and many 
lasses, the annotation of only one exampleat a time, 
an be proved time-
onsuming, as a respe
tful amount of labeledexamples will be needed in order to a
hieve good performan
es. If we 
hooseto do the latter, it is not wise to 
hoose examples that are next to ea
h other,as they 
annot give us more information than ea
h of them does. As a result,it is better to 
hoose, for instan
e, examples with big 
lass-entropy whi
hhave been given di�erent labels. That way the 
lassi�er 
an get informationabout di�erent 
lasses and not only one.
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tive Semi-supervised Aspe
t ModelsAlgorithm 19 gives us the general framework under whi
h the above a
tivelearning method 
an be 
ombined with any semi-supervised variant of thePLSA model.Algorithm 19: Combining ssPLSA and A
tive LearningInput : A set of partially labeled do
uments X = Xl ∪ Xurepeat
• Run the ssPLSA algorithm (and 
al
ulate the P (y|x))
• Estimate the 
on�den
e of the 
lassi�er on the unlabeledexamples: ∀x ∈ Xu, B(x) = −∑y P (y|x) log P (y|x)

• Choose the example(s) with low 
on�den
e, i.e. higher value of B(if we 
hoose more than one example to label, we 
hoose exampleswith have been 
lassi�ed into di�erent 
lasses )and add them in the labeled dataset Xluntil a given number of queries or a 
ertain performan
e ;Output : A generative 
lassi�er
5 .3 Entropy-Based MethodIn this se
tion, we present another a
tive learning method, whi
h 
an be 
om-bined with the semi-supervised framework. Based on the method presentedby (Dagan and Engelson, 1995), we 
al
ulate the entropy of the annotationof the unlabeled data, during the iterations of the algorithm. This method
an be seen as a query by 
ommittee approa
h, where, in 
ontrast to themethod of (Dagan and Engelson, 1995), the 
ommittees here are the di�erentiterations of the same model.In 
ontrast to the margin based method presented previously, the 
urrentone does not use the probabilities P (y|x) of an example x to be assigned thelabel y but, instead, is uses the deterministi
 votes of the 
lassi�er during thedi�erent iterations. We denote by V (y, x) the number of times that the label



5 .3. Entropy-Based Method 87
y was assigned in the example x during the previous iterations.Then, we denote as Vote Entropy of an example x as:

V E(x) = −
∑

y

V (y, x)

iters
log

V (y, x)

iters
(5 .2)where iters refers to the number of iterations.The examples to be labeled are 
hosen using equation (5 .2), that is, ex-amples with higher entropies are sele
ted. As long as we add new examplesduring the iterations, the labeling of some examples will 
hange as, new infor-mation will be given to the 
lassi�er. Thus, the strategy 
hooses the examplesfor whi
h the 
lassi�er 
hanges its de
ision more often during the iterations.We have to note, that during the �rst 2-3 iterations, we do not have enoughinformation in order to 
hoose the best examples to label, but very qui
klythe a
tive learner manage to identify these examples. The intuition behindthis model is that examples whi
h tend to 
hange labels are those for whi
hthe 
lassi�er seems more unde
ided. In algorithm (20) the 
ombination ofthis method with the semi-supervised PLSA is des
ribed.Algorithm 20: Combining ssPLSA and A
tive LearningInput : A set of partially labeled do
uments X = Xl ∪ Xurepeat

• Run the ssPLSA algorithm
• Update the V E for ea
h of the examples, a

ording to thede
ision of the 
lassi�er in the 
urrent iteration
• Choose the example(s) with the highest entropy and add themin the labeled dataset Xluntil a 
ertain number of queries or a 
ertain performan
e ;Output : A generative 
lassi�er



88 Chapter 5 . A
tive Semi-supervised Aspe
t Models5 .4 Con
lusionIn this 
hapter, we propose the 
ombination of the semi-supervised PLSAmodels presented in the previous 
hapter with two a
tive learning methods.Both try to measure the 
on�den
e of the 
lassi�er by using two di�erentstrategies. The less 
on�dent examples are 
hosen for annotation and the
lassi�er is retrained with the updated training set. In the next 
hapter wedis
uss the performan
e of these models, and the bene�ts they 
an o�er tothe semi-supervised learning.



6Evaluation
Contents 6 .1 Introdu
tion . . . . . . . . . . . . . . . . . . . . 896 .2 Do
ument Categorization . . . . . . . . . . . . 906 .2.1 Data Representation . . . . . . . . . . . . . . 916 .3 Datasets . . . . . . . . . . . . . . . . . . . . . . 936 .4 Evaluation Measures . . . . . . . . . . . . . . . 966 .5 Experiments . . . . . . . . . . . . . . . . . . . . 966 .5.1 ssPLSA Results . . . . . . . . . . . . . . . . . 1016 .5.2 A
tive ssPLSA Results . . . . . . . . . . . . . 1066 .6 Con
lusion . . . . . . . . . . . . . . . . . . . . . 1116 .1 Introdu
tionIn the two previous 
hapters, di�erent methods for semi-supervised and a
tivelearning have been presented. In the 
urrent 
hapter, we try to evaluate allthese models and 
ompare their performan
e with some well known state-of-the-art te
hniques. We are fo
using on do
ument 
lassi�
ation, that westart to des
ribe. Then, we present the datasets we used for the 
ompqrisons.Then, an evaluation with a real-world dataset, provided by a Xerox BusinessGroup, is performed.



90 Chapter 6 . Evaluation6 .2 Do
ument CategorizationDo
ument Categorization (or 
lassi�
ation) refers to the task of assigning 
at-egories, to a given set of do
uments. The automated 
ategorization frameworkdates from the early 60's when knowledge engineering te
hniques were used inorder to built manually 
lassi�ers, by de�ning a set of rules en
oding expertknowledge (for example (Hayes et al., 1990)). But it was only in the beginningof the 90's that do
ument 
ategorization has started to draw the attentionof the Ma
hine Learning 
ommunity. The motivation was both the appli
a-tive interests, and the in
reasing amounts of available data (Sebastiani, 2002).

Figure 6 .1: The pro
edure of 
ategorization: given some training examplesalready labeled (for example a set of do
uments or a set of images) and thespe
i�ed 
ategories, a 
lassi�er is trained. Then, the latter is able to 
lassifynew unlabeled instan
es to the respe
tive 
ategories.Categorizing data into themati
 
ategories usually follows the supervisedlearning paradigm: we train a learner using some already 
lassi�ed instan
esand then this trained learner is used to 
lassify new un
lassi�ed instan
es(�gure 6 .1).



6 .2. Do
ument Categorization 916 .2.1 Data RepresentationIn order for a learning algorithm to interpret a dataset, the latter has to bepro
essed to a form whi
h the algorithm 
an pro
ess. One of the most widelyused representations is a multidimensional feature ve
tor. The intuition be-hind this representation is simple: examples whi
h 
ontain the same featuresprobably belong to the same topi
s.
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Figure 6 .2: The do
uments are represented as a term-do
ument matrix,where the frequen
y of a term within a do
ument is given.In the 
ase of do
ument 
lassi�
ation, this representation 
orresponds tothe so-
alled bag-of-words. In the latter, features are words o

uring in thedo
uments. It is 
ommon to do some additional pre-pro
essing before 
reat-ing the multidimensional feature ve
tor. That in
ludes stemming, removal ofvery 
ommon words and 
ollapsing of multiple o

urren
es of words into one.That way we are able to de
rease the dimensionality of the data and, as aresult, we 
an gain in terms of time and performan
e.After determining the features whi
h are going to be used (i.e. the wordsremaining after the pre-pro
essing), we 
al
ulate the matrix of the featurefrequen
ies, that is, the number of times a given word appears in ea
h do
u-
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olle
tion (�gure 6 .2). In other terms, we denote ea
h do
ument
x ∈ X as a ve
tor x =< n(w, x) >w∈W , where w indi
ates the features fromthe set of features W = {w1, . . . , wNw}, and n(wi, x) the number of times theword wi o

urs in the do
ument x. This 
ount is sometimes normalized toprevent a bias towards longer do
uments and results in values in the rangebetween 0 and 1.As a parti
ular 
ase, some authors (Lewis and Ringuette, 1994; Koller andSahami, 1997; S
hapire and Singer, 2000) have used a binary matrix to rep-resent their datasets, where 1 denotes the presen
e of a word in a do
umentand 0 its absen
e. In general, su
h a representation is used when the appliedalgorithm 
an only handle symboli
 or non-numeri
 values.Another very 
ommon te
hnique is the weighting of the features, by usingthe tf · idf s
ore (for example (Salton and Bu
kley, 1988)). The latter refersto the �term frequen
y-inverse do
ument frequen
y� weighting fun
tion. Inother words, instead of just 
ounting the words in the do
uments, we weightthe features' frequen
ies by using the following transformation:

tfidf(wj, xi) = n(wj, xi) log
|X |

#X (wj)
(6 .1)where |X | denotes the total number of do
uments in the 
olle
tion and #X (wj)the number of do
uments in whi
h wj o

urs at least on
e (also known asdo
ument frequen
y of term wj).Di�erent variants of the bag-of-words representation 
an be used, a

ord-ing to the needs of the learning algorithm used. For example, in graphi
almethods, an adja
en
y (weight) matrix is usually used. The weights repre-sent the similarity between the examples and 
an be 
al
ulated using di�erentfun
tions (e.g. the Gaussian kernel).Nevertheless, the use of the bag-of-words representation has some draw-ba
ks. In the 
ase of do
ument 
lassi�
ation for example, problems 
an be
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aused by the properties of the human languages: polysemy and synonymy.A

ording to the former, there exist words whi
h have more than one meaning.As a result, if two do
uments 
ontain su
h a word, they will be 
ategorizedin a similar way, even if they talk about 
ompletely di�erent topi
s. For ex-ample, let us 
onsider two do
uments whi
h 
ontain the word �apple�: usingthe bag-of-words representation they will be 
lassi�ed in the same way, evenif the one talks about fruits and the other about ma
 
omputers. The se
ondproperty, synonymy, 
an lead to the opposite situation: if two do
uments
ontain two di�erent words with the same meaning (for example, �
ar� and�automobile�) they will not be 
lassi�ed in the same 
ategory even if they talkabout the same topi
. As we des
ribed in 
hapter 4, we have 
hosen to useAspe
t models, in order to over
ome these problems.6 .3 DatasetsIn our experiments we used four di�erent datasets: two 
olle
tions from theCMU World Wide Knowledge Base proje
t - WebKB and 20Newsgroups, thewidely used text 
olle
tion of Reuters (Reuters − 21578) and a real-worlddataset from Xerox. As mentioned before, we are 
on
entrated in do
ument
lassi�
ation; nevertheless, the algorithms des
ribed in the previous 
hapters
an be also used for di�erent appli
ations in whi
h there is a relation of 
o-o

ren
e between obje
ts and variables su
h as image 
lassi�
ation.The 20Newsgroups dataset4 is a state-of-the-art do
ument 
olle
tion fortext 
lassi�
ation. The data set is a 
olle
tion of approximately 20000 news-group do
uments, organized into 20 di�erent newsgroups, ea
h 
orrespondingto a di�erent topi
. Some of the newsgroups are very 
losely related to ea
hother (e.g. 
omp.sys.ibm.p
.hardware / 
omp.sys.ma
.hardware), while oth-ers are highly unrelated (e.g mis
.forsale / so
.religion.
hristian). In �gure6 .3 all the di�erent 20 newsgroups are presented, partitioned (more or less)a

ording to subje
t matter.4http://people.
sail.mit.edu/jrennie/20Newsgroups/
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20 Newsgroups

comp.graphics

comp.os.ms−windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

COMPUTERS

rec.autos

rec.motorcycles

rec.sport.baseball

SPORTS

sci.crypt

sci.electronics

sci.med

SCIENCE

talk.politics.misc

talk.politic.guns

talk.politics.mideast

POLITICS

talk.religion.misc

alt.atheism

soc.religion.christian

RELIGION

misc.forsale

MISCFigure 6 .3: The stru
ture of the 20 Newsgroups dataset.The WebKB dataset5 (Craven et al., 1998) 
ontains web pages gatheredfrom 4 di�erent university 
omputer s
ien
e departments (Cornell, Texas,Washington and Wis
onsin). The pages are divided into seven 
ategories. Inour evaluation, we use the four most used entity-representing 
ategories inthe literature (Nigam et al., 2000): student, fa
ulty, 
ourse and proje
t, alltogether 
ontaining 4196 pages.The Reuters dataset6 
onsists of 21578 arti
les and 90 topi
 
ategoriesfrom the Reuters newswire. We sele
ted the do
uments whi
h belong only toone 
lass, and in addition we only kept the 
lasses whi
h 
ontain at least 100do
uments. This gave as a base of 4381 do
uments 
lassi�ed in 7 di�erent
lasses: ACQ (1084), EARN (2052), CRUDE (296), GRAIN (286), INTER-EST (106), MONEY (377) and TRADE (207).These three datasets were pre-pro
essed as follows:
• Email tags as well as other non-alpha numeri
 terms were removed
• All do
uments were tokenized on white spa
e and pun
tuation
• tokens in less than 5 do
uments in ea
h test 
olle
tion were dis
arded
• A total of 608 stopwords from the CACM stoplist7 were removed fromea
h do
ument.5http://www.
s.
mu.edu/afs/
s.
mu.edu/proje
t/theo-20/www/data/6http://www.daviddlewis.
om/resour
es/test
olle
tions/reuters21578/7http://ir.d
s.gla.a
.uk/resour
es/test_
olle
tions/
a
m/
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essing (stemming, multi-word re
ognition et
.) wasused on the do
uments. Table 6 .1 summarizes the 
hara
teristi
s of thesedatasets. Dataset 20Newsgroups WebKB ReutersColle
tion size 20000 4196 4381
# of 
lasses, K 20 4 7Vo
abulary size, |W| 38300 9400 4749Training set size, |Xl ∪Xu| 16000 3257 3504Test set size 4000 839 876Table 6 .1: Chara
teristi
s of the datasetsXLS datasetApart from the datasets above whi
h, as we mentioned, are widely used forevaluation of di�erent 
lassi�
ation algorithms in the Ma
hine Learning 
om-munity, we used a real world dataset (
alled XLS) whi
h was provided by aXerox Business Group (XLS). As we mentioned in the introdu
tion of thisthesis, the developpement of our models was done in the framework of re-sear
h proje
t 
ondu
ted in Xerox Resear
h Centre Europe. The motivationwas to extend a previously developed 
lassi�
ation system by adding the as-pe
ts of semi-supervised and a
tive learning that we developped here. As aresult, we 
ompared our models, with the previous 
lassi�
ation system (Cat-egoriX), in order to evaluate the amelioration they 
ould o�er.The Xerox Litigation Servi
es (XLS) business group is looking to improvetheir operations by integrating the Xerox CategoriX Te
hnology into their on-line portal. XLS te
hnology is intended to provide 
ustomers an e�
ient andse
ure way to 
ollaborate with law �rms, partners and government agen
ies onlitigation and regulatory 
omplian
e matters. It provides the identi�
ation,�ltering, produ
tion and storage of relevant data in the form of paper andele
troni
 do
uments. Examples of ele
troni
 do
uments in
lude: email, text�les, memos, databases, presentations and spreadsheets. XLS have provideda sample of do
uments as well as a list of 
ategories on whi
h we performed
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ontains 20000 do
uments in the training set and 34770in the test set. The do
uments 
onsist of approximately 40% emails, 20%Mi
rosoft Word do
uments; 20% Mi
rosoft Ex
el do
uments, 10% Mi
rosoftPower point do
uments and 10% PDF and other do
uments. We want to
lassify the do
uments as Responsive and Non-Responsive to a parti
ulargiven 
ase. The two 
ategories are balan
ed (50%/50%). We 
ompared ourresults, with the ones of the 
urrent version of CategoriX.6 .4 Evaluation MeasuresIn order to evaluate the performan
e of the models, we used the mi
roaverageF-s
ore measure for all experiments.For ea
h 
lassi�er, Gf , we �rst 
ompute its mi
roaverage pre
ision P andre
all R by summing over all the individual de
isions it made on the test set:
R(Gf ) =

∑K
k=1 θ(k,Gf )

∑K
k=1(θ(k,Gf ) + ψ(k,Gf ))

P (Gf ) =

∑K
k=1 θ(k,Gf )

∑K
k=1(θ(k,Gf ) + φ(k,Gf ))Where, θ(k,Gf ), φ(k,Gf ) and ψ(k,Gf ) respe
tively denote the true posi-tive, false positive and false negative do
uments in 
lass k found by Gf . TheF-s
ore measure is then de�ned as (Lewis and Ringuette, 1994):

F (Gf ) =
2P (Gf )R(Gf )

P (Gf ) +R(Gf )6 .5 ExperimentsWe 
ompared the performan
e of the models on the 4 datasets by varyingthe per
entage of labeled examples in the training set and using 10-fold 
ross



6 .5. Experiments 97validation. We performed 10 runs for ea
h of the folds and we 
al
ulatedthe average F-s
ore (as we initialize some of the variables by random, wewanted to ensure that the obtained results do not depend on this randominitialization). In order to evaluate the signi�
an
e of the obtained results,we perfomed a t-test at the 5% signi�
an
e level.For the three well-known datasets (WebKB, Reuters and 20Newsgroups),we 
ompared our models with two state-of-the-art methods in text 
lassi�
a-tion: the semi-supervised Naive Bayes 
lassi�er (Nigam et al., 2000) and thetransdu
tive SVM 
lassi�er (SVM-light pa
kage (Joa
hims, 1999)). For thelatter, we used a linear kernel and we optimized the 
ost parameter, using anested 
ross-validation. We performed the one vs. all strategy (we fusion theresults by 
hoosing, for ea
h example, the 
lass with the maximum s
ore). We
ould pssibly obtain better results from TSVM if we had used a non-linearkernel, but the latter was 
omputationaly intra
table, 
omparing with the
omputational time of the other models.For the XLS dataset, we 
ompared our models with the supervised PLSAmodel, as used for the CategoriX system.For all four datasets, we �xed the value of λ = 0.01 of the ssPLA-fakealgorithm (we have tried di�erent values of lambda, but 0.01 gave us the bestresults).In order to have an upper bound on the performan
e of the 
ompared 
las-si�ers,we �rst 
ompare the systems in a fully supervised way, that is when
100% of the do
uments in the training set have their true labels and are usedfor training the 
lassi�ers. Table (6 .2) sums up these results. As we 
annoti
e, all PLSA models behave identi
ally, whi
h is expe
ted, if we 
onsiderthat there are no unlabeled training do
uments, and as a result, no fakes ormislabeling errors to 
hara
terize.In order to evaluate empiri
ally the e�e
t of unlabeled do
uments for
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ore (%) F-s
ore (%) F-s
ore (%)Naive Bayes 88.23 84.32 93.89PLSA |A| = 40 |A| = 16 |A| = 1489.72 85.54 94.29SVM 88.98 85.15 89.50Table 6 .2: Comparison of the F-s
ore measures between the NaiveBayes and PLSA generative models as well as the SVM 
lassi�er on20Newsgroups, WebKB and Reuters test sets, where |A| is the number of
omponents. All 
lassi�ers are trained in a fully supervised way.training the models we have also trained the PLSA model in a purely super-vised way (with the 
orresponding per
entage of randomly sele
ted labeleddo
uments). We used the supervised PLSA model des
ribed in 
hapter 4.Number of Components. As we mentioned in the des
ription of the mod-els, the number of latent variables |A| (i.e. the number of 
omponents) mustbe de�ned by the user, during the initialization. The latter depends mostlyon the dataset and its distribution. As a result, the issue of how to 
hoose thisnumber o

urs, as this parameter is quite important for the performan
e ofthe models (espe
ially in the semi-supervised framework). We tried di�erentte
hniques, in order to �nd whi
h is the most 
onvenient one.We �rstly tried to �nd the best number of 
omponents empiri
ally, i.e.by doing 
ross-validation using di�erent number of 
omponents and 
ompar-ing the results. In this framework, we perfomed some experiments undertwo di�erent s
enarios: In the �rst, we 
onsidered that all 
lasses have anequal number of 
omponents (Method 1). In the se
ond, we 
onsider that wehave at least one 
omponent per 
lass, and in addition, we have a number of
omponents that we do not know in whi
h 
lass they belong, i.e. we let thealgorithm to assign them in the di�erent 
lasses during the training pro
ess(Method 2). Table (6 .3) presents some representative results obtained forthe 20Newsgroups dataset for di�erent numbers of 
omponents and for 10-



6 .5. Experiments 99fold 
ross-validation. 20NewsgroupsMethod 1 Method 2

|A| F-s
ore (%) |A| F-s
ore (%)
20 (1 per 
lass) 88.93 ± 0.51 20 (0 additional) 88.93 ± 0.51

40 (2 per 
lass) 89.72± 0.46 25 (5 additional) 88.52 ± 0.63

60 (3 per 
lass) 89.21 ± 0.30 30 (10 additional) 89.13 ± 0.18

80 (4 per 
lass) 88.77 ± 0.21 40 (20 additional) 89.32± 0.36
100 (5 per 
lass) 87.34 ± 0.49 50 (30 additional) 88.83 ± 0.43

120 (6 per 
lass) 87.73 ± 0.65 60 (40 additional) 88.49 ± 0.21Table 6 .3: Comparison of the F-s
ore measures on 20Newsgroups for thesupervised PLSA. The �rst variant we have |A| 
omponents, equally splitedin the 
lasses and the se
ond one supposes we have one 
omponent per 
lassplus a number of additional 
omponentsWe also tried to de�ne the number of 
omponents using a more sophis-ti
ated way: the idea was to start with one 
omponent per 
lass, and theniteratively �nd and split the most heterogeneous 
omponents. In order to
al
ulate the heterogeneity of a 
omponent we used the following equation:
volume(α) =

∑
x P (α|x)KL(P (w|x), P (w|α))∑

x P (α|x)where KL() refers to the Kullba
k-Leibler divergen
e (Kullba
k and Leibler,1951). The above equation is a
tually measuring the average distan
e of theexamples and the 
omponent they belong to: the 
loser the examples are inthe pro�le of the 
omponent, the more homogeneous the 
omponent is. Theresults of this method are presented in table (6 .4).As we 
an see from both tables (6 .3,6 .4), this method do not seem toobtain better results than the previous one, and in addition is more 
omplexin terms of 
omputation. The results we obtained for the other datasets in-di
ate the same 
on
lusion. By simply �xing the number of 
omponents per
lass we obtain good performan
e for PLSA. We have performed the same
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|A| F-s
ore (%) |A| F-s
ore (%)

20 (0 splits) 88.93 ± 0.51 50 (30 splits) 89.11 ± 0.35

25 (5 splits) 88.72 ± 0.29 60 (40 splits) 88.21 ± 0.72

30 (10 splits) 89.03 ± 0.11 100 (60 splits) 88.27 ± 0.51

40 (20 splits) 89.73± 0.67 120 (100 splits) 87.86 ± 0.55Table 6 .4: F-s
ore on 20Newsgroups for the supervised PLSA. We start withone 
omponent per 
lass. We 
al
ulate the heterogeneity of the 
omponentsand we split them approprietily. The |A| indi
ates the �nal number of 
om-ponents after di�erent splits. In the se
ond one we 
al
ulate the AIC and we
hoose the number for whi
h the latter is bigger.kind of experiments for the semi-supervised 
ase (espe
ially when the numberof labeled examples is really small). The results we obtained by performingthe above methods indi
ated also that the 
ross-validation seems to be moste�
ient for the 
hoi
e of |A|. The infuen
e of |A| in the semi-supervised 
aseis dis
ussed in more details in the next se
tion, as the ssPLSA is more sensi-tive to the initialization.For our datasets we obtained the best results by using |A| = 40 for the20Newsgroups, |A| = 16 for the WebKB, |A| = 14 for the Reuters, and |A| = 4for the XLS.All these experiments, were performed in a non nested 
ross validation.That is, we performed the methods above in a supervised way, in order to�nd the best number of 
omponents for ea
h dataset, and then we performedthe experiments with our methods. We have 
hosen this pro
edure, for onemain reason: in the semi-supervised setting, and espe
ially when the ratio oflabeled and unlabeled examples is very low, we do not have enough data todetermine the best number of 
omponets.To sum up, we 
an 
on
lude that by simply supposing that the 
lasseshave an equal number of 
omponents and 
al
ulating it using 
ross-validation,
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an obtain tquite good performa
es, at least for the datasets we used inour evaluation. As a result, we de
ided to use this method instead of a moresophisti
ated one.6 .5.1 ssPLSA ResultsIn this se
tion, we present the results obtained for the semi-supervised mod-els alone. Figures (6 .4) and (6 .5) show the F-s
ore measure over the testsets on the three data 
olle
tions (20Newsgroups, WebKB and Reuters) forsemi-supervised learning for di�erent ratio of labeled-unlabeled do
umentsin the training set. 5% in the x-axis means that 5% of the labeled do
u-ments (|Xl|) in the training sets were used for training, the 95% remain-ing being used as unlabeled training do
uments (|Xu|). We 
ompared thethree semi-supervised variants of PLSA, as presented in 
hapter 4, with theTSVM and semi-supervised Naive Bayes. The ssPLSA-mem soft uniformlyoutperforms the other models on these datasets. This is parti
ularly 
lear for20Newsgroups whi
h is a more 
omplex 
lassi�
ation problem. With only
5% of labeled do
uments in the training set, the F-s
ore of the ssPLSAwith mislabeling algorithm is about 8% over the ssPLSA with fake labelson 20Newsgroups. Using only 10% allows to rea
h 80% of the maximum F-s
ore on 20Newsgroups while the 90% remaining labeled do
uments allowsto rea
h the maximum performan
e level. The semi-supervised Naive Bayesmodel outperforms on the other hand the ssPLSA-fake labels on all datasets.This might be due to the fa
t that the ssPLSA-fake algorithm tries to measurethe 
on�den
e of the results, rather than dire
tly ameliorate the performan
e.As we 
an noti
e, the results of the TSVM are bad in these experiments.This 
an be explained by the fa
t that the model was initially designed for2-
lass 
lassi�
ation problems and the one vs. all strategy does not give ade-quate re
ognition of 
lasses.In order to evaluate empiri
ally the e�e
t of unlabeled do
uments fortraining the models we have also trained the PLSA model in a supervised
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ore (y-axis) versus, the per
entage of labeled examples in thetraining set |Xl|, (x-axis) graphs for the various algorithms on 20Newsgroups(left) and WebKB (right).manner using only the per
entage of labeled do
uments in the training set.We 
an see that semi-supervised algorithms are able to take advantage fromunlabeled data. For example, for the 20Newsgroups dataset (�gure 6 .6), with
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ore (y-axis) versus, the per
entage of labeled examples inthe training set |Xl|, (x-axis) graphs for the various algorithms on Reutersdataset.
5% labeled data, the fully supervised PLSA rea
hes 52.5% F-s
ore a

ura
ywhile ssPLSA-fake a
hieve 63% and ssPLSA-mem Hard ssPLSA-mem Softa
hieve 79%. As we 
an noti
e on the �gure 6 .6, the gain with the use of theunlabeled data is similar for the other two datasets (WebKB and Reuters).One interesting aspe
t of our experimental results is that the behavior ofthe three ssPLSA variants is very di�erent when the number of latent vari-ables per 
lass in
reases. As we mentioned in the previous se
tion, the latteris de�ned during the initialization. In the semi-supervised framework, theinitialization is more sensitive 
omparing with the supervised 
ase, and as aresult the number of 
omponents has an important in�uen
e in the perfor-man
e. As we 
an see in the table 6 .5, for the ssPLSA-fake approa
h thevariability of the results in
reases when more 
omponents are added to themodel. Overall, this approa
h yields 
onsistently lower performan
e than thessPLSA-mem approa
hes, whi
h in addition seem less sensitive to varyingnumbers of 
omponents. Noti
e how, when the number of 
omponents per
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lass is in
reased from 1 to 2 
orresponding respe
tively to |A| = 20 and
|A| = 40 for 20Newsgroups dataset or 4, |A| = 16 for the WebKB dataset, theperforman
e of the ssPLSA-mem approa
h in
reases slightly, but 
onsistently.In addition, the variability of the results is mostly well 
ontained and gen-erally smaller than for the ssPLSA-fake approa
h. The results for the othertwo datasets indi
ate the same trend of the algorithms. This result, givesan advantage in the two ssPLSA-mem methods: the 
hoi
e of the numberof 
omponents is not of that 
ru
ial importan
e as it is for the ssPLSA-fakemodel. 20Newsgroups1% 5% 20% 40%
|A| = 20

ssPLSA-mem Soft 65.96 ± 0.89 79.13 ± 0.11 83.59 ± 0.66 85.63 ± 0.42ssPLSA-mem Hard 57.52 ± 0.59 76.42 ± 0.16 83.24 ± 0.57 85.54 ± 0.3ssPLSA-fake 57.04 ± 0.68 63.75 ± 0.78 70.05 ± 0.68 79.59 ± 0.28

|A| = 40
ssPLSA-mem Soft 66.23± 0.52 80.01± 0.23 84.42± 0.73 85.9± 0.85ssPLSA-mem Hard 58.24 ± 0.46 77.18 ± 0.2 83.47 ± 0.35 85.76± 0.69ssPLSA-fake 57.87 ± 0.41 59.75 ± 1.09 65.75 ± 0.98 78.86 ± 0.39WebKB1% 5% 20% 40%

|A| = 4
ssPLSA-mem Soft 60.25 ± 0.64 72.97 ± 0.24 79.84 ± 0.96 79.57 ± 0.26ssPLSA-mem Hard 49.25 ± 0.73 70.03 ± 0.63 79.61 ± 0.52 79.52 ± 0.17ssPLSA-fake 44.42 ± 0.78 59.76 ± 0.84 68.94 ± 0.79 72.63 ± 0.59

|A| = 16
ssPLSA-mem Soft 60.56± 0.29 73.67± 0.33 80.56± 0.42 80.94± 0.72ssPLSA-mem Hard 49.84 ± 0.67 70.85 ± 0.51 80.67 ± 0.32 80.83± 0.49ssPLSA-fake 47.97 ± 0.87 62.76 ± 0.58 70.65 ± 0.86 73.78 ± 0.34Table 6 .5: F-s
ore for varying proportions of labeled-unlabeled training data,for the three variants of the semi-supervised PLSA (ssPLSA-fake, ssPLSA-mem Hard, ssPLSA-mem Soft) and di�erent numbers of the latent topi
s |A|.Bold indi
ates statisti
ally better results, measured using a t-test at the 5%signi�
an
e level.For the XLS dataset, as we mentioned before, we 
ompare the semi-supervised models with the 
urrent supervised version of the Categorix Sys-tem. The latter uses the supervised PLSA model. We did not performed any
omparison with semi-supervised Naives Bayes and TSVM as we did for theother datasets. As we mentioned before, the proposed models are developped
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ore (y-axis) versus, the per
entage of labeled examples in thetraining set |Xl|, (x-axis) graphs for the various algorithms on 20Newsgroups,WebKB and Reuters.as extensions of the 
urrent version of the Categorix System. As there are nointentions, at least for the moment, to repla
e it with a 
ompletely di�erentSystem, we are interrested in the 
omparison with the 
urrent model of thisSystem, instead of 
omparing with any other model.In �gure 6 .7 we 
an see the results for di�erent ratio of labeled-unlabeledexamples. As we 
an noti
e, the semi-supervised learning perform better, es-pe
ially when very few labels are available. After 10% of labeled examples, theperforman
e of all 
lassi�ers does not 
hange mu
h. These results 
orroboratethe 
on
lusions we rea
hed over the previous three datasets: semi-supervisedlearning 
an eventually help and the ssPLSA-mem Soft outperforms the oth-
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Figure 6 .7: F-S
ore (y-axis) versus, the per
entage of labeled examples inthe training set |Xl|, (x-axis) graphs for supervised and all semi-supervisedvariants of PLSA algorithm on XLS dataset.In table 6 .6, we 
ompare ssPLSA-mem Soft and ssPLSA-mem Hard, inorder to give a better insight for the gain of the former method, espe
iallywhen the number of labeled examples is relatively small. As we 
an noti
e,for all four datasets, the ssPLSA-mem Soft outperforms the ssPLSA-memHard when very few labeled data are available in the training set.6 .5.2 A
tive ssPLSA ResultsIn this se
tion we present the results of the 
ombination of semi-supervisedand a
tive learning. As introdu
ed in 
hapter 5, the idea is to perform a
-tive learning on the top of the semi-supervised algorithms des
ribed above.We run experiments for all semi-supervised variants, for both a
tive learningte
hniques, and for all four datasets. In our experiments, we label one exam-



6 .5. Experiments 10720Newsgroups WebKB Reuters XLSratio Algorithm F-s
ore F-s
ore F-s
ore F-s
ore
0.3%

ssPLSA-mem hard 32.62 38.82 47.76 61.41ssPLSA-mem soft 44.05 48.78 66.34 65.16
0.5%

ssPLSA-mem hard 41.26 40.86 52.02 64.52ssPLSA-mem soft 52.46 51.55 68.74 66.19
0.8%

ssPLSA-mem hard 51.2 44.16 57.42 64.87ssPLSA-mem soft 60.62 56.33 75.11 67.04
1%

ssPLSA-mem hard 58.24 49.84 66.93 65.57ssPLSA-mem soft 66.23 60.56 77.53 67.17Table 6 .6: Comparison of the two variants of ssPLSA with amislabeling error model (ssPLSA-mem Hard ssPLSA-mem Soft) on20Newsgroups, WebKB, Reuters and XLS test sets, trained on di�erent ra-tio of labeled-unlabeled dataple in ea
h iteration and 100 iterations are performed for WebKB, Reuters and
150 for 20Newsgroups dataset. For the XLS dataset we label 2 examples inea
h iteration, and we perform 100 iterations (as the dataset is bigger thanthe other three we need more data for a
hieving a good performan
e). Aswe mentioned in 
hapter 5, for the Margin Method, it is not wise to 
hoose 2examples that are next to ea
h other, as they 
annot gives us more informa-tion that ea
h of them does. As a result, we 
hose the two examples with thebiggest 
lass-entropy but in addition with di�erent assigned labels.In order to evaluate the performan
e of the a
tive learning methods, wealso run experiments for the 
ombination of the semi-supervised algorithmswith a random sele
tion method, where in ea
h iteration the do
uments tobe labeled are 
hosen at random.As we 
an noti
e from the �gure 6 .8 the use of a
tive learning helps, in
omparison with the random query for all three datasets. The performan
eof the two di�erent a
tive learning te
hniques are 
omparable, and their dif-feren
e is not statisti
ally signi�
ant. Nevertheless, they 
learly outperfomthe random method, espe
ially when very few labeled data are available.
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Entropy method
Margin method
Random methodFigure 6 .8: F-S
ore (y-axis) versus, the number of labeled examples in thetraining set |Dl|, (x-axis) graphs for the 
ombination of the two ssPLSA al-gorithms with a
tive learning on Reuters, WebKB and 20Newsgroups datasetsThe results with the ssPLSA-fake gave us the same indi
ations. A 
om-parison of the latter with the other two semi-supervised variants using ea
hof the two a
tive learning methods is presented in �gure (6 .9). We 
an see



6 .5. Experiments 109that the performan
e of a
tive ssPLSA-mem Soft is 
onstantly better thana
tive ssPLSA-mem Hard and a
tive ssPLSA-fake.
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ssPLSA−mem Soft
ssPLSA−mem Hard
ssPLSA−fakeFigure 6 .9: Comparison of the three ssPLSA algorithms using the two di�er-ent a
tive learning algorithms, on Reuters, WebKB and 20Newsgroups datasetFor the XLS dataset, the algorithms show again a similar behavior. In
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Entropy method

Margin method

Random methodFigure 6 .10: Comparison of the two di�erent a
tive learning te
hniques andthe Random sele
tion, on the ssPLSA-Hard and ssPLSA-Soft algorithms, onXLS dataset�gure 6 .10 the results for the latter are presented. As we 
an noti
e, a
tivelearning helps, 
omparing to the random method, even if the gain is not as bigas in the other three datasets. As before, the two a
tive learning methods givesimilar results. In 6 .11 the 
omparison between the three semi-supervisedPLSA variants 
ombined with ea
h of the a
tive methods is presented. Also,in this 
ase, the a
tive ssPLSA-mem Soft has the better performan
e.
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6 .6. Con
lusion 1116 .6 Con
lusionIn this 
hapter the evaluation of all the proposed models has been presentedand dis
ussed. We saw that the semi-supervised learning 
an help when veryfew labeled examples are available. We 
ompared the models with some state-of-the-art algorithms and the results indi
ate that the ssPLSA-mem Soft isthe more performant model for all four datasets. The 
ombination with a
tivelearning is also evaluated. We 
ompared the two a
tive learning te
hniqueswith a random method (where the examples are 
hosen by random instead ofusing a a
tive method). The results obtained have proven that a
tive learning
an eventually help, espe
ially when the training set 
ontains very few labeledexamples.





7Con
lusions
Contents 7 .1 Contributions . . . . . . . . . . . . . . . . . . . 1137 .2 Future Perspe
tives . . . . . . . . . . . . . . . . 1147 .1 ContributionsThis study was motivated by the 
ost of labeling do
ument 
olle
tions andthe ability of aspe
t models to explain the generation of textual observations.We fo
used on semi-supervised and a
tive learning for the task of do
ument
lassi�
ation. This thesis was realized in the framework of a Cifre grant inXerox Resear
h Centre. We studied the possible extensions of the 
urrent
lassi�
ation system and new models were proposed.In the �rst part of this thesis, we presented a literature review of existingstate-of-the-art methods. We fo
used on the frameworks of Semi-SupervisedLearning, Mislabeling Error Models and A
tive Learning. The di�erent ap-proa
hes of these frameworks and their motivation have been dis
ussed.In the se
ond part, we presented and evaluated the proposed models.



114 Chapter 7 . Con
lusionsIn parti
ular, the 
ontributions of this thesis in
lude:
• Two semi-supervised variants of the PLSA algorithm. The motivationwas to take advantange of both the huge amount of available unlabeleddata and the properties of aspe
t models. Our results have provedour initial intuition, that aspe
t models 
an bene�t from the unlabeledexamples. In addition, the in
orporation of a model whi
h 
an 
apturethe mislabeled examples 
an ameliorate more the performan
e of our
lassi�er.
• Combination of the above semi-supervised variants with two di�erenta
tive learning te
hniques. We wanted to bene�t from the propertiesof both frameworks. The evaluation we performed has shown that this
ombination 
an further in
rease 
lassi�er's performan
e. Using a
tivelearning we manage to 
hose our training labeled set 
arefully, usingthe most informative results. That way, we 
an a
hieve a better perfor-man
e using less labeled examples.7 .2 Future Perspe
tivesThis thesis was fo
used on the PLSA model. Nevertheless, this does notmean that the developped models 
an ex
lusively used with the latter. Onthe 
ontrary, the proposed te
hniques are very easily appli
able to di�erentaspe
t models, su
h as Latent Diri
hlet allo
ation (LDA) (Blei et al., 2003).It would be interesting to see how the latter would perform under the frame-work of semi-supervised and a
tive learning, by in
orporating the proposedmislabeling error model.Another possible extension is the use of di�erent a
tive learning te
h-niques. Also, the 
ombination of more than one a
tive learning te
hnique
ould be 
onsidered.A di�erent axis of resear
h in
ludes the further investigation of determin-ing the number of 
omponents. As we dis
ussed in the evaluation 
hapter,



7 .2. Future Perspe
tives 115this is an important parameter in aspe
t models. To the best of our knowl-edge, there has been little e�ort so far to solve this issue.The domains of semi-supervised and a
tive learning have still many openproblems and further resear
h on the several open problems 
ould be provedfruitful, both in theoriti
al bases as well as in pra
ti
al appli
ations.
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