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AbstratMahine learning tehniques have been used for various information a-ess tasks, suh as ategorization, lustering or information extration. A-quiring the annotated data neessary to apply supervised learning tehniquesis a major hallenge for these appliations, espeially in very large olletions.Annotating the data usually requires humans who an read and understandthem, and is therefore very ostly, espeially in tehnial domains.Over the last years, two main approahes have been explored towards thisdiretion, namely semi-supervised (SSL) and ative learning. Both paradigmsaddress the issue of annotation ost, but from two di�erent perspetives. Onthe one hand, semi-supervised learning tries to learn by taking into aountboth labeled and unlabeled data. On the other hand, ative learning tries to�nd the most informative examples to label, in order to minimize the numberof labeled examples neessary for learning. Either methods try to redue thehuman labeling e�ort.In this thesis, we address the problem of reduing this annotation burden.In partiular, we investigate extensions of aspet models for the lassi�a-tion task, where the training set is partially labelled. We propose two semi-supervised PLSA algorithms, whih inorporate a mislabeling error model.We then ombine these semi-supervised algorithms with two ative learningalgorithms. Our models are developped as extensions of the lassi�ationsystem previously developed in Xerox Researh Centre Europe. We evaluatethe proposed models in three well-known datasets and in one oming from aBusiness Group of Xerox.Keywords: Aspet Models, Semi-Supervised Learning, Ative Learning,Categorization





RésuméL'apprentissage automatique a été utilisé pour diverses tâhes d' aès à l' in-formation, tels que la atégorisation, le lustering ou l' extration d' informa-tion. Aquérir les données annotées néessaires pour appliquer les tehniquesd' apprentissage supervisé est un dé� majeur pour es appliations, en par-tiulier pour les très grandes olletions. L'annotation des données néessitegénéralement l'e�ort humain et 'est don très oûteux, en partiulier dansles domaines tehniques.Au ours des dernières années, deux grandes approhes ont été exploréesdans e sens, l'apprentissage semi-supervisé et l'apprentissage atif. Les deuxparadigmes abordent la question du oût d'annotation, mais de deux points devue di�érents. D'une part, apprentissage semi-supervisé essaie d'apprendreen tenant ompte à la fois des données annotées et non-annotées. D'autrepart, l'apprentissage atif tente de trouver les meilleurs exemples à annoter,a�n de réduire au minimum le nombre d'exemples annotés neessaire. Cha-une des méthodes tentent de réduire l'e�ort humain d'annotation.Dans e travail, nous abordons le problème de la rédution du oût an-notation. En partiulier, nous étudions des extensions de modèles d'aspetpour le tâhe de la lassi�ation, où les données sont partiellement annotées.Nous proposons deux variants semi-supervisé de l'algorithme PLSA, qui in-orporent un modéle d'erreur. Nous ombinons ensuite es algorithmes semi-supervisé ave deux algorithmes d'apprentissage atif. Nos modèles sontonçus omme des extensions de le système atuel pour la lassi�ation deXerox. Nous évaluons les modèles proposés sur quatre bases de données, dontune en provenane d'un Business Group de Xerox.Mots-lés: modéles d'aspet, apprentissage semi-supervisé, apprentissageatif, atégorisation
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1Introdution
Contents 1.1 General . . . . . . . . . . . . . . . . . . . . . . . 11.2 Contributions . . . . . . . . . . . . . . . . . . . 31.3 Outline of this thesis . . . . . . . . . . . . . . . 41.1 GeneralThe explosion of available information during the last years has inreased theinterest of the Mahine Learning (ML) ommunity for di�erent learning prob-lems that have been raised in most of the information aess appliations. Inthis thesis we are interested in the study of two of these problems whih arethe ability of algorithms to handle partially labeled data and the apaity tomodel the generation of textual observations.On the one hand probabilisti models (suh as Naive Bayes) explainingthe generation of observations based entirely on their lasses have shown theirlimits in the sense that there are more and more textual douments whihpotentially over di�erent topis. New generative aspet models have reentlybeen proposed whih aim to take into aount data with multiple faets. Inthis lass of models, observations are generated by a mixture of aspets, or



2 Chapter 1. Introdutiontopis, eah of whih being a distribution over the basi features of the ob-servations (suh as words in a doument, or pixels in an image).Aspet models have been suesfully used for various textual informationaess and image analysis tasks suh as doument lustering and ategoriza-tion or sene segmentation. In many of these tasks, aquiring the annotateddata neessary to apply supervised learning tehniques is a major hallenge,espeially in very large data sets. These annotations require humans who anunderstand the sene or the text, and are therefore very ostly, espeially intehnial domains.To this end, the paradigm known as Semi-Supervised Learning, has emergedin the Mahine Learning ommunity in the late 90′s. Under this framework,the aim is to make a deision rule based on both labeled and unlabeled trainingexamples. To ahieve this goal, the deision rule is learned by simultaneouslyoptimizing a supervised empirial learner on the labeled set, while respetingthe underline struture of the unlabeled training data in the input spae.Di�erent luster, smoothness and manifold assumptions have been pro-posed to this end and have led to a number of semi-supervised algorithms,suh as EM-based generative models, graph-based methods and transdutivemodels.In the same vein, Ative Learning addresses also the issue of the an-notation burden, but from a di�erent perspetive. Instead of using all theunlabeled data together with the labeled one, it tries to minimize the anno-tation ost by labeling as few examples as possible and foussing on the mostuseful examples. Di�erent types of ative learning methods have been intro-dued in the literature, suh as unertainty-based methods, expeted errorminimization methods and query by ommittee methods.By ombining semi-supervised and ative learning, an attempt is madein order to bene�t from both frameworks to address the annotation burden



1.2. Contributions 3problem. The semi-supervised learning omponent improves the lassi�ationrule and the measure of its on�dene, while the ative learning queries forlabelling the most relevant and potentially useful examples. In this thesis, wemove also towards this diretion, that is the ombination of semi-supervisedaspet models with ative learning.In this thesis, we explore the possibility to learn aspet models with thehelp of a training set ontaining both labeled and unlabeled examples.1.2 ContributionsIn this thesis we address the problem of learning aspet models with par-tially labeled examples. We propose di�erent algorithms whih bene�t fromboth semi-supervised and ative learning frameworks. To the best of ourknowledge, there has been little e�ort so far to extend aspet models to theseframeworks. Our models are now in use in the ontext of a lassi�ationsystem developed previously in Xerox Researh Centre Europe, namely theCategoriX/ClusteriX system. The motivation is to extend the latter underthe semi-supervised and ative frameworks, in order to take advantage of thehuge amounts of available unlabeled datasets.In partiular we have elaborated:
• Two semi-supervised PLSA algorithms, whih inorporate a mislabelingerror model. The motivation is to redue the annotation ost by takingadvantage of aspet models properties.
• Combining two ative learning tehniques with the two semi-supervisedPLSA methods above. The idea is to bene�t from both the frame-works of Semi-Supervised and Ative Learning, as they o�er di�erentadvantages.
• Finally, an evaluation of the results in three widely used dataset and in



4 Chapter 1. Introdutionone oming from a Business Group of Xerox show the e�ieny of ourapproah.1.3 Outline of this thesisThe �rst part of this manusript is omposed of two hapters presenting aliterature review of semi-supervised and ative learning algorithms. The mo-tivation is to give an global view of the di�erent aspets of learning usingpartially labeled data. In hapter 2 we present the existing methods in semi-supervised and the mislabeling error models are disussed. In hapter 3 theative learning framework is presented.In the seond part of this thesis, we present our ontributions. We arefousing on the task of doument ategorization and we present an extensionof aspet models to the ase of semi-supervised learning for this task. Morepreisely, in hapter 4 we present the semi-supervised PLSA models thatwe proposed. In hapter 5 we ombine these methods with two di�erentative learning tehniques. Then, in hapter 6 the evaluation of all the abovemodels is presented in four datasets: the three widely used olletions of20Newsgroups, Reuters and WebKB and on the Xerox XLS dataset. Finally,in hapter 7, the onlusion and the future diretions are given.
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2Learning with Partially Labeledand Mislabeled Training Data
Contents 2 .1 Introdution . . . . . . . . . . . . . . . . . . . . 72 .2 Semi-Supervised Learning . . . . . . . . . . . . 92 .2.1 Transdutive Learning . . . . . . . . . . . . . 122 .2.2 Indutive Learning . . . . . . . . . . . . . . . 262 .3 Mislabeling Error Models . . . . . . . . . . . . 372 .3.1 Semi-Supervised learning with mislabeled data 402 .4 Conlusion . . . . . . . . . . . . . . . . . . . . . 442 .1 IntrodutionOne of the major hallenges in many Mahine Learning (ML) tasks, suh astextual Information Aess (IA), Natural Language Proessing (NLP) andimage analysis appliations, is the onstitution of onsistent databases, re-quired in order to apply supervised learning tehniques. Very often, skilledhumans are needed in order to annotate the data, espeially, in tehnial do-mains (e.g. biologial data). In addition, the explosion of information during



8 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datathe last years has led to a onsiderable inrease of the ost and the di�ultyof aquiring annotated data. The labeling proess is so time-onsuming thatjust a part of the available data ould be labeled. On the other hand, hugeamounts of unlabeled data are available and easy to obtain. The latter hasstirred up the interest of the ML ommunity to design new algorithms ableto learn from partially labeled training sets. These algorithms, referred toas Semi-Supervised Learning (SSL) algorithms in the literature, rely on theassumption that unlabeled examples arry some useful information about theproblem we try to solve.A representative example is the information retrieval tasks in the WorldWide Web. Due to the perpetual growth of the available web pages, it isimpossible to have a su�ient and onsistent labeled training set. On theontrary, billions of (unlabeled) web pages are available. In this ase, semi-supervised learning ould be of great pratial value, as it ould take advan-tage of the information ontained in these data.On the other side, the majority of the indutive methods take the qualityof the training dataset for granted. Nevertheless, very often, noise is intro-dued in the labeling of the training set. Of ourse, the presene of noisean redue the system performane in terms of lassi�ation auray. Thisled to several mislabeling learning models whih have been introdued in thepattern reognition literature in the early 70′s. These studies aim at solv-ing some pratial appliations suh as remote-sensing, where the presene ofnoise is inevitable.In this hapter, we start by presenting a synthesis of semi-supervised learn-ing algorithms. We do not present an exhaustive list of all existing methodswhih have been presented in the literature. Instead, we refer to the dif-ferent families of semi-supervised learning, their motivation, and the mostrepresentative methods in eah of them. We start with a short disussionof the usefulness of unlabeled data. We distinguish transdutive from indu-tive semi-supervised learning, and some transdutive methods are presented.



2 .2. Semi-Supervised Learning 9Then, some methods oming from the two main families of semi-supervisedlearning models are detailled: the generative and the disriminative ones.In the seond setion of this hapter, we present the problem of learningwith the presene of noise in the training data. We review some existing teh-inques and we distinguish random from non-random imperfet supervision.We then present some work whih ombines mislabeling error models andsemi-supervised learning.2 .2 Semi-Supervised LearningSemi-supervised learning an be plaed in between supervised and unsuper-vised learning. As a result, it an be oneived from two di�erent perspetives:either as a supervised task with some additional unlabeled data or as an un-supervised task with some additional onstraints. The former is onsideredas semi-supervised lassi�ation, whether the latter as semi-supervised lus-tering.A related family of methods is transdutive learning. In this ontext,a partially labeled set of examples is available but, in ontrast with semi-supervised learning whih is indutive, the goal is to predit the labels onlyfor the unlabeled examples in the given set, and not to derive a funtion.In other words, in the transdutive setting, we do not have to possibility tolassify any new data, but only the ones inluded in the training set.Are unlabeled examples bene�ial?At this point, the question whih arises is if, and under whih irumstanes,the amount of unlabeled data an be proved helpful. The researh alreadyonduted to answer this question has demonstrated, with theoretial and ex-perimental results, that unlabeled examples ould, under some assumptions,help and improve performane in the lassi�ation task. Nevertheless, thereexists also some literature whih has put some doubts about the bene�ial



10 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datarole of unlabeled data under ertain irumstanes.From a theoretial point of view, the ruial issue to understand in whatsituations the unlabeled may be bene�ial is still open. Some authors havetried to understand the role of unlabeled examples in the learning proess.A �rst study was realized by (O'Neill, 1978), who onsidered the problemof estimating the Fisher linear disriminant using additional unlabeled dataand onluded that unlassi�ed observations should ertainly not be disarded.(Castelli and Cover, 1995) showed that the lassi�ation error has an exponen-tial onvergene to the Bayes optimal solution, when the number of unlabeledexamples grows to in�nity. They generalized their �nding to the situationwhere a �nite number of labeled and unlabeled examples are available, thelass-onditional densities are known, but the lass priors are not (Castelliand Cover, 1996). The role of unlabeled data under the PAC framework wasalso analyzed by (Ratsaby and Venkatesh, 1995). Also, (Cozman et al., 2003)suggests that the unlabeled data an degrade the lassi�ation performane,when the modelling assumptions are inorret, and it would be better if theyare disarded. Finally, (Grandvalet and Bengio, 2005) proposed an estima-tion priniple appliable to any probabilisti lassi�er, whih bene�ts fromthe unlabeled data, espeially when lasses have small overlap.Figure 2 .1 demonstrates a simple example, where we an easily notie thatunlabeled examples an help (b), but sometimes not only they annot (), butthey an even mislead the model (d), when the model assumptions are wrong.Taking into aount the above, it beomes apparent that some assump-tions should hold, in order for the unlabeled examples to be meaningful. Themost ommon assumptions are:
• Smoothness assumption: if two points are lose, then they should belabeled similarly. In other words, data whih belong to the same luster(i.e. a high-density region) are likely to be in the same lass. Thisassumption, does not imply that lasses are formed from single ompat



2 .2. Semi-Supervised Learning 11lusters. It only requires that objets from two distint lasses are notpart of the same luster.
• Cluster assumption (a.k.a. Low density separation): the searh of adeision boundary should take plae in low-density regions. If we reallto our example in �gure 2 .1 (b), where the luster assumption holds,we an see that the deision boundary lies on the low-density region.
• Manifold assumption: the high-dimensional data lie on a low- dimen-sional manifold. In other words, the examples whih belong to the samemanifold, have the same lass. It also does not imply that lasses areformed from single ompat lusters. This assumption is related to theluster assumption, but it inspires di�erent algorithms.

Figure 2 .1: A simple example whih demonstrate the usefulness of unlabeledexamples (small dots), in di�erent ases. The dotted line shows the orretdeision border. The dark line is the estimated border, taking into aountthe available data in eah ase. When the luster assumption holds, unlabeleddata an help (b). But when it does not (), they annot provide any usefulinformation. When the modelling assumption is inorret, they an evendegrade the performane (d)In the next setions, di�erent tehniques based on eah of these assump-tions are presented. At this point we have to mention that the importane ofthe unlabeled data also depends on the hoie of features or, equivalently, thesimilarity metri we use, as the latter plays an important role on the lustersthe data form.



12 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataTo sum up, we an onlude that unlabeled data are helpful, as long asertain assumptions hold. So, before using semi-supervised learning, it wouldbe wise to verify if some of the assumptions mentioned above hold.NotationBefore presenting the existing methods on semi-supervised learning, some no-tation needs to be introdued.We suppose that we have a olletion of data X = Xl ∪ Xu, where Xland Xu are respetively the set of labeled and unlabeled examples in X . Wealso suppose that labeled data are sampled from the real joint distribution
p(x, y) and that unlabeled examples ome from the marginal distribution
p(x). All examples from Xl have a lass label y ∈ C = {y1, ..., yk}, whilefor the examples from Xu the lass label is unknown. Also, we suppose that
Xtest is the test set, whih will be used for testing our learner, denoted as
f : X → Y . The test set is not available during the training.2 .2.1 Transdutive LearningTransdutive learning is losely related to semi-supervised learning. It was�rst introdued by (Vapnik, 1982, 1998). In transdution, in ontrast withindutive learning, no general deision rule is inferred. The goal is just toannotate the unlabeled examples of the training set. In other words, it triesto �nd the labels y ∈ C = {y1, ..., yK} of the unlabeled examples Xu. Trans-dutive learners annot handle any unseen data (for example data from thetest set Xtest). This approah is more often used for onstrained lustering.2 .2.1.1 Transdutive Support Vetor MahineOne of the most popular transdutive methods, is the Transdutive SupportVetor Mahine(TSVM) algorithm, whih was �rst introdued by (Vapnik,1998). TSVM is the extention of the standard SVM, where additional unla-beled data are available. It uses the information of these unlabeled samples



2 .2. Semi-Supervised Learning 13and predits the optimal labels for them. The goal is to �nd a maximum mar-gin hyperplane lassi�er based on the labeled training examples, but at thesame time try to plae this hyperplane away from the unlabeled data. TSVMfollows the low density separation, as it tries to plae the deision boundaryin the less dense regions (e.g. �gure 2 .2).

Figure 2 .2: In TSVM, the unlabeled examples (small dots) put the deisionboundary in low density regionsLet us suppose that our hypothesis spae H is a set of hyperplanes h(x) =

sign{xw + b}. It tries to predit the labels y∗1, . . . , y∗n of the unlabeled data,and to �nd a hyperplane with parameters 〈w, b〉 whih separates both labeledand unlabeled data with the maximum margin. In order to ahieve the aboveriterion, we try to minimize the funtion
1

2
‖w‖2 + C

k∑

i=0

ξi

︸ ︷︷ ︸
labeled

+C∗
n∑

i=0

ξ∗i

︸ ︷︷ ︸
unlabeled

(2 .1)over (y∗1, . . . , y
∗
n, w, b, ξ1, . . . , ξk, ξ

∗
1 , . . . , ξ

∗
n)and subjet to

∀k
i=1 : yi [wxi + b] > 1− ξi
∀n

i=1 : y∗i [wx∗i + b] > 1− ξ∗i
∀k

i=1 : ξi > 0

∀n
i=1 : ξ∗i > 0



14 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datawhere ξi are slak variables and C,C∗ are parameters, set by the user.This funtion orresponds to the task of �nding the exat solution of antransdutive SVM and is onsidered as an NP-hard problem. This is thereason why muh e�ort has been done in order to �nd some e�ient approx-imation algorithms.In this ontext, (Joahims, 1999) introdued a di�erent formulation of theoptimization of TSVM, and proposed his SVMlight software. The idea is tostart by labeling the test data Xu based on the indutive SVM lassi�ation.Then, in order to inrease the in�uene of the unlabeled data, we inrease thevalues of the parameters C∗
−, C

∗
+ (whih allow trading o� margin size againstmislassifying training examples or exluding test examples and whih areinitialized to some small number), until the value C∗ de�ned by the user isreahed. Then, we swith labels of test data in order to derease the objetivefuntion. A desription of this proedure is given in algorithm 1.Algorithm 1: Transdutive SVM (Joahims, 1999)Input :

• A set of partially labeled data X = Xl ∪ Xu

• parameters C, C∗

• Initialize the ost fators C∗
−, C

∗
+ to some small numbersInrement the ost fators C∗

−, C
∗
+ up to the user de�ned value C∗repeat

• Loate two test examples for whih hanging the lass labelsleads to a derease in the urrent objetive funtion 2 .1
• If these two examples exist, swith themuntil Objetive funtion 2 .1 doesn't derease anymore ;Output : predited labels of the test examples(Chapelle and Zien, 2005) presented a di�erent implementation whih is



2 .2. Semi-Supervised Learning 15based on the optimization of the objetive funtion using the gradient desentalgorithm. The ∇TSVM, as it is known, diretly optimizes the objetive fun-tion aording to the luster assumption. The equation 2 .1 an be rewritten,without the need of onstraints, as
1

2
‖w‖2 + C

k∑

i=1

L(yi(w · xi + b)) + C∗
n∑

i=1

L(|w · xi + b|) (2 .2)with L(t) = max(0, 1 − t).Before performing a standard gradient desent in the above equation, asit is not di�erentiable, the expression is transformed in
1

2
‖w‖2 + C

k∑

i=1

L(yi(w · xi + b)) + C∗
n∑

i=1

L∗(w · xi + b) (2 .3)with L∗(t) = max(3t2).
∇TSVM uses similar heuristis for the C∗, as TSVM of (Joahims, 1999)desribed above.(De Bie and Cristianini, 2004) proposed a relaxation of the transdutiveSVM algorithm, using Semi-De�nite programming (SDP). However, due tothe high dimensionality of the feasible region of the relaxed parameters, theomputation remains omplex and, as a result, it annot handle large datasets.They further proposed a spetral lustering method, whih approximates theoriginal SDP method, and shrinks the feasible region of the variables.More reently, (Collobert et al., 2006) suggested an algorithm for TSVM,whih uses the onave-onvex proedure (CCCP) (Yuille and Rangarajan,2002). CCCP iteratively optimizes non-onvex ost funtions that an beexpressed as the sum of a onvex funtion and a onave funtion. The opti-mization is arried out iteratively by solving a sequene of onvex problemsobtained by linearly approximating the onave funtion in the viinity of the



16 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Datasolution of the previous onvex problem. They report an important inreasein the training speed using this method.(Sindhwani et al., 2006) used a deterministi annealing approah in orderto optimize the objetive funtion. The motivation is to solve the problem ofloal minima in the TSVM optimization proedure. The idea is to start byminimizing a smoothed onvex version of the objetive funtion and graduallydeform it into the TSVM one.In the same vein, (Chapelle et al., 2006) proposed a ontinuation approah,whih also starts by minimizing a onvex objetive funtion, and uses thesolution as initialization of the next less smooth funtion. It iterates until itreahes the original objetive funtion.2 .2.1.2 Graph-based methodsAnother family of transdutive learning algorithms onsists of graph-basedmethods. They rely on the idea of reating a graph G = (V,E), where theset of nodes V represents the labeled Xl and unlabeled Xu data, and the setof edges E represents the similarities between the nodes. These similaritiesare de�ned by an adjaeny (or weight) matrix W , where Wij is the simi-larity between nodes xi and xj. The weights an be alulated in di�erentways. For example, using the k-nearest neighbor method, we an assign 1for the k nearest neighbors of a node, and 0 for the others. Another, widelyused, method of assigning the weights in a fully direted graph, is to use theGaussian kernel:
Wij = e

‖xi−xj‖
2

2σ2 (2 .4)These methods suppose that the smoothness assumption holds, in otherwords, they assume that nodes onneted with heavy weighted edges, tend tohave the same label. This setion disusses some representative algorithmsand their motivation.At this point, we have to mention that the main drawnbak of all graph-



2 .2. Semi-Supervised Learning 17based methods, is the onstrution of the graph. The latter is very importantfor the performane of the algorithms, even more important than the hoieof the algorithm itself. Nevertheless, little work has been performed towardsthis diretion. A disussion on this matter an be found in (Zhu, 2005).Graph Minuts. (Blum and Chawla, 2001) proposed a method based ongraph uts (known as s-t minut). The idea is to try to �nd a minimum uton the graph (that is the ut with the smallest sum of weights), suh as to sep-arate labeled examples of di�erent lasses. Assuming we have a binary las-si�ation problem, the algorithm tries to �nd a minimum ut (cut(G+, G−))on the graph G = (V,E), where G+ and G− are the set of examples (ver-ties) whih inlude the labeled examples with labels yi = +1 and yi = −1respetively. Then, it annotates as positive the unlabeled examples whihbelong to G+ and as negative the ones whih belong to G−. A summary ofthis algorithm is shown in algorithm 2.Algorithm 2: Graph minuts (Blum and Chawla, 2001)Input : A weighted graph G = (V,E)

• Find a minimun ut of the graph, suh that G+ ontains thepositive labeled examples and G− the negative ones.
• Assign the positive label to the nodes (examples) whih belongto G+ and the negative label to the ones of G−Output : predited labels of the unlabeled examplesOne of the problems of the above algorithm is that the preditions arebased on hard lassi�ation. This is why an extension of the minut approahis presented in (Blum et al., 2004). The idea is to add some randomness tothe graph. In partiular, the algorithm reates di�erent versions of the graph,by adding eah time, some random noise to the edge weights. Then, thealgorithm of minut is applied to eah of these graphs and their preditionsis alulated. The �nal preditions of the labels is determined by majorityvote. That way, a kind of on�dene on the preditions is alulated.
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3Figure 2 .3: A simple example whih demonstrates the minimum ut in thegraph, and annotation the unlabeled examples (white nodes) aordinglyMarkov RandomWalks. (Szummer and Jaakkola, 2002) proposed a graph-based algorithm, whih uses Markov random walks on the graph. The idea isto start from a randomly hosen unlabeled node and walk on the graph, withtransition probabilities between nodes i and j de�ned as
pij =

Wij∑

k

Wik

(2 .5)(pij = 0 if i and j are not onneted).We denote by Pt|0 = (j|i) the t-step transition probabilities, where t is auser de�ned parameter. Supposing that we have a transition matrix A, whihontains the transition probabilities pij for all the nodes of the graph, we anthen alulate the t-step transition probabilities as
Pt|0(j|i) = [At]ij (2 .6)This is the probability that the Markov proess starts from a given node iand ends in node j after t steps. These onditional probabilities P0|t(i|j)de�ne our new representation for the examples. In other words, eah point jis assoiated with a vetor of onditional probabilities P0|t(i|j), i = 1, . . . , N .Using this representation, the points are lose whenever they have nearly thesame distribution over the states.



2 .2. Semi-Supervised Learning 19The lassi�ation model assumes that eah data point has a label or adistribution P (y|i) over the lass labels. These distributions are unknownand represent the parameters to be estimated. Now, given a point j weinterpret it as a sample for the t step Markov random walk. As labels areassoiated with the starting points, the posterior probabilisty of the label forpoint j is given by
Ppost(y|j) =

∑

i

P (y|i)P0|t(i|j)To lassify the j-th point, we hoose the lass that maximizes the poste-rior:
cj = argmax

c
Ppost(y = c|j)One of the problem of this algorithm, is the hoie of the value of t (i.e.the length of the random walk), whih is very important for the performaneof the algorithm. If, for example, its value is very small, then the data aremerged in small lusters. On the other hand, if it is very big, all nodes beomeindistinguishable. In general, the latter is alulated either by ross-validationor heuristis.Label Propagation. In the literature, several transdutive graph-basedmethods are based on label propagation. The idea is to start by the labelednodes, propagate their labels to their neighbors, and iterate the proess untilonvergene.In this ontext, (Zhu and Ghahramani, 2002) presented suh an algo-rithm. The idea is to ombine random walks and lamping. The weights ofthe nodes and the transition probabilities are de�ned as in the Markov Ran-dom Walks algorithm (equations 2 .5 and 2 .6). The labels are propagatedaross the graph until onvergene. The initial labels of the labeled exam-ples are enfored to stay unhangeable through the iterations, in order not toloose the information they provide. This method is desribed in algorithm (3).



20 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 3: Label propagation (Zhu and Ghahramani, 2002)Input :
• A weighted graph G = (V,E), with weights W
• The diagonal matrix Dii =

∑

k

Wik

• Initial labels ŷ(0) = (ŷl, ŷu), with ŷl = yl for the labeled examplesand ŷu = 0 for the unlabeled examplesrepeat
• Propagate label ŷ(t+1) ← D−1Wŷ(t)

• Row-normalize ŷ
• Clamp the labeled data (i.e. ŷl = yl)until onvergene of ŷ ;Output : predited labels of the unlabeled examples(Zhou et al., 2004) presented a similar method. It uses the normalizedLaplaian L ← I − D−1/2WD−1/2, where D is the diagonal matrix and Wthe weight matrix. In eah iteration, the labels are propagated on the graphtaking into aount the neighbors but also the initial value of eah node.Supposing we have a parameter γ ∈ [0, 1), the estimation of the labels isalulated as: ŷ(t+1) ← γLŷ(t) + (1 − γ)ŷ(0), where ŷ(t) are the estimatedlabels of the previous iteration and ŷ(0) are the initial labels. The algorithmstops when ŷ onverges. An extention of this method in direted graph ispresented in (Zhou et al., 2005).Linear Neighborhood Propagation (LNP). In the same vein, (Wangand Zhang, 2008) presented a method based on a linear neighborhood model,whih assumes that eah data point an be linearly reonstruted from itsneighborhood. This algorithm an propagate the labels from the labeledpoints to the whole dataset using these linear neighborhoods with su�ientsmoothness. It approximates the graph by a series of overlapped linear neigh-



2 .2. Semi-Supervised Learning 21borhood pathes. It then aggregates the weights whih are alulated for eahof the above pathes, in order to determine the �nal weights of the graph.They proved that the resulting Laplaian matrix is an approximation of thestandard Laplaian matrix of a weighted undireted graph, and as a result,it an be onsidered as a smoothed version of the latter. The propagation ofthe labels is done using a similar tehnique as in (Zhou et al., 2004), takinginto aount the neighbors labels but also keeping some information of theinitial labels.Gaussian Fields and Harmoni funtions. (Zhu et al., 2003a) formu-lates the problem in terms of a Gaussian random �eld on the graph. It anbe seen as a nearest neighbor approah, where the neighbors are alulatedusing random walks on the graph. The Gaussian random �eld di�ers fromthe Markov random �eld on the fat that it is de�ned on a ontinuous statespae. The goal is to �nd a real-valued funtion f : V → R aording towhih we will assign labels to the unlabeled examples. For the labeled ex-amples we assume that fl = yl (their real values). We de�ne the followingenergy funtion:
E(f) =

1

2

∑

i,j

wij (f(xi)− f(xj))
2 (2 .7)As we an notie, aording to the above funtion, low energy orrespondsto slowly varying funtion over the graph. We assume the Gaussian Ran-dom �eld pβ(f) = e−βE(f)

Zβ
where β is an �inverse temperature� parameter and

Zβ =
∫
f |fl=yL

e−βE(f)df an be onsidered as a normalization over all fun-tions, under the onstraint that labeled examples keep their labels. It anbe proved than the minimun energy funtion f = argminf |yl=fl
E(f) is Har-moni. In other terms, the value of the funtion f of eah unlabeled exampleis averaged over the values of f on the neighboring points in the graph. Also,aording to the maximun priniple of harmoni funtions (Doyle and Snell,1984) f is unique and either satis�es the onstraints 0 < f(xj) < 1 for Xuor is a onstant. As a result, we an assign the example xi to lass 1 if

f(xi) > 0.5 and to lass 0 di�erently. Algorithm 4 desribes the solutionusing matrix methods.



22 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Data
Algorithm 4: Gaussian Fields and Harmoni FuntionsInput :

• A weighted graph G = (V,E), with weights W (equation 2 .4),and fl the labels of the labeled examples
• The diagonal matrix Dii =

∑

k

Wik

• The ombinatorial Laplaian matrix L = D −W . We split the matrixaordingto labeled and unlabeled examples as: L =

[
Lll Llu

Lul Luu

]Output :
• fu = −L−1

uu ∗ Lul ∗ fl

Spetral Graph Transduer. (Joahims, 2003) presented another trans-dutive algorithm, whih an been seen as the transdutive version of the knearest-neighbor (kNN) lassi�er. This algorithm has three main steps.First, it onstruts a similarity-weighted k nearest neighbor graph G, wherethe weights are alulated as
Wij =






sim(xi,xj)∑

xk∈knn(xi)

sim(xi, xk)
if xj ∈ knn(xi)

0 else (2 .8)Then, it deomposes the G into spetrum. In order alulate the latter, ittries to minimize the normalized graph ut with onstraints:
min

y

cut(G+, G−)

|{xi : yi = +1}‖{xi : yi = −1}|



2 .2. Semi-Supervised Learning 23subjet to
yi = +1, if xi ∈ C and positive
yi = −1, if xi ∈ C and negative
y = {+1,−1}nwhere the cut(G+, G−) is the sum of the edges weights aross the ut of thegraph, and G+ and G− are the set of examples (verties) with yi = +1 and

yi = −1 respetively. In other words, it tries to minimize the average weightof the ut, instead of the sum of weights of the ut, as in s− t minuts algo-rithm desribed above. The motivation is to avoid unbalaned uts. As theminimization is an NP -hard problem, Spetral Graph Transduer proposesan approximation to this problem, using a spetral graph method. The algo-rithm an be seen as an extention of the work of (Hagen and Kahng, 1992),who presented a method whih uses spetral lustering for minimizing theratio ut of a graph, but in the ase of unsupervised learning. In the �nalstep, the unlabeled examples are lassi�ed aording to the subgraph (G+ or
G−) they belong to.Conditional Harmoni Mixing. (Burges and Platt, 2006) presented analgorithm appliable to direted graph. This method supposes that we havea direted graph and a onditional probability matrix assoiated to eah link.The posterior lass probability for eah node is updated by minimizing theKullbak-Leibler (KL) divergene between the urrent distribution and theone predited by its neighbors.2 .2.1.3 Manifold methodsIn the literature high interest has been shown for the knownledge of manifoldlearning. The motivation behind these methods is the fat that the strutureof data an a�et the answer, as it hanges the notion of similarity. Thesemethods are based on the manifold assumption, mentioned in the previoussetion: High dimensional data are distributed on some low dimensional man-



24 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Dataifold. The goal is to �nd a low dimensional struture in high dimensional data.In other words, supposing that we have as input the training data X = Xl∪Xuwith xi ∈ R
D, we want to �nd their projetion in the d-dimensional spae,that is ψi ∈ R

d (where d << D). Originally, the existing methods addressedmanifold learning in the ontext of unsupervised learning. The idea is to usethe unlabeled data in order to estimate the geometry of the data. As suh,they are very lose to transdutive framework and they are worth mentioning.At this point we have to note that manifold methods do not performlassi�ation, but they rather try to simplify the struture of the data. Nev-ertheless, they an use also unlabeled data in order to �nd a lower dimensionalstruture of the data, this is why there are worth mentioning.Linear dimensionality redution. The most known methods for lineardimensionality redution, are the Priniple Component Analysis (PCA) (Jol-li�e, 1986) and the Multidimensional Saling (MDS) (Cox and Cox, 1994).Both methods are used in the algorithms for nonlinear dimensionality redu-tion, desribed below.The motivation of Priniple Component Analysis is to try to preservethe ovariane struture of the data set. In other words, it tries to �nd a
d-dimensional projetion of the input patterns xi ∈ R

d in suh way thatdistane of examples are presented as:
ǫPCA =

∑

i

‖xi −
m∑

τ=1

(xieτ )eτ‖2where vetor eτ , with τ = 1, . . . , d represents a partial orthonormal basis ofthe input spae.The solution to this problem is the d eigenvetors having the highest eigen-values of the entered ovariane matrix (C = 1
Nx

∑

i

xix
T
i ).



2 .2. Semi-Supervised Learning 25On the other hand, Multidimensional Saling, initially designed to pre-serve the distane between pairs, tries to preserve the inner produt betweenthe input data. In other words, it aims at minimizing the funtion:
ǫMDS =

∑

ij

(xixj − ψiψj)
2It starts by alulating the Gram matrix Gij = xixj. Supposing that vτand λτ are its eigenvetors and eigenvalues respetively, the outputs ψ arealulated as ψτ =

√
λτvτ , with τ = 1, . . . , d.Nonlinear dimensionality redution. Spetral methods have played animportant role for nonlinear dimensionality redution and di�erent methodshave been proposed in this ontext. The general framework of all proposedmethods is:1. Create a k nearest neighbor graph2. Derive a matrix from the graph weights3. Yield low dimensional embedding from eigenvetorsAt this point we have to mention that graph-based methods are nothingelse than one-dimension spetral methods.(Tenenbaum et al., 2000) proposed the Isomap algorithm. It an be seenas a variant of Multidimensional Saling (MDS), where instead of Eulideandistanes, it uses the geodesis ones. For the latter, it alulates the pairwisedistanes between all nodes along the shortest paths through the k nearestneighbor graph. It therefore uses Djikstra's algorithm. In step 3, it feedsMDS with the matrix ontaining the distanes of the previous step.In the same vein, Maximum variane unfolding has been proposed by(Weinberger and Saul, 2006; Sun et al., 2006). Like Isomap, it starts againwith a k nearest neighbor graph, and it uses the top eigenvetors of the learnedinner produt matrix in order to alulate the low-dimensional embedding.



26 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataNevertheless, it does not use the geodesi distanes. Instead, it attempts to�unfold� the graph, with the help of semide�nite programming (SDP) (Van-denberghe and Boyd, 1996). Instead of learning the output vetors diretly,the semide�nite programming aims to �nd an inner produt matrix that max-imizes the pairwise distanes between any two inputs that are not onnetedin the neighborhood graph, that is Kij = ψi · ψj .(Roweis and Saul, 2000; Saul and Roweis, 2003) presented an algorithmknown as Loally Linear Embedding (LLE). It starts also by reating a k near-est neighbor graph, but this time direted. It then reates a sparse matrix,whih tries to apture the loal geometri properties. The idea is to �nd alinear ombination for eah xi and eah neighbors, and then try to representthe same linear ombination for ψi and its neighbors. This latter is expressedby the matrix (I −W )T (I −W ), where the weight matrix W is omputedby reonstruting eah xi from its neighbors. Finally, in order to alulatethe d-dimensional embedding, it uses the d bottom eigenvetors of the abovesparse matrix.Laplaian eigenmaps (Belkin and Niyogi, 2003) as the Loally Linear Em-bedding, uses sparse matrix methods for the derivation of the matrix of thegraph weights. The weight matrix W an be omputed by the Gaussian ker-nel (equation 2 .4). Then it derives the matrix L = I−D−1/2WD−1/2, whihis the normalized and symmetrized form of the Laplaian matrix. The ideais to preserve proximity relations between data. As in LLE, we hoose the dbottom eigenvetors for yielding the low-dimensional struture.2 .2.2 Indutive LearningIn semi-supervised learning, the idea is to learn a deision rule based onlabeled and unlabeled data, in suh a way that this deision rule an be usedfor the annotation of other unseen data. The semi-supervised algorithms anbe separated in two main families: Generative and Disriminative methods.



2 .2. Semi-Supervised Learning 272 .2.2.1 Generative MethodsIn these algorithms, the goal is to start from a generative model and try toestimate the density P (x). These methods are making assumptions on thenature of the data and their density.Most generative SSL methods rely on mixture models. These ap-proahes follow the luster assumption. The mixture model is used to modelboth the input distribution and the labeling proess. The labeled examplesare used jointly with the unlabeled examples to estimate the mixture model,for example using the EM algorithm, and the labeled examples are used asa basis to assign labels to the mixture omponents (i.e. unlabeled data areonsidered as missing values in the EM algorithm (we alulate P (x|y). Thenwe use the Bayes rule to alulate P (y|x)). As a onsequene, the deisionboundary falls in between lusters of data, and therefore in low density re-gions.The introdution of the Expetation-Maximization (EM) algorithm for learn-ing from inomplete data, was �rst proposed and formalized by (Dempsteret al., 1977). The idea is quite simple. The method starts by initializing themodel parameters using the labeled data. Then, the model is re-estimatedbased on unlabeled data using the EM algorithm. The proess repeats untilEM onverges. The �nal model an be used to measure the performane ontest data.The idea of using EM algorithm to learn from labeled and unlabeled datahas been brought to the attention of the Mahine learning ommunity by(Miller and Uyar, 1997), and has been applied to doument lassi�ationtask by (Nigam et al., 2000).Semi-Supervised Naive Bayes. (Nigam et al., 2000) proposed a semi-supervised version of the Naive Bayes lassi�er1 for doument lassi�ation.1A nie review of di�erent variants of Naive Bayes lassi�er an be found in (Lewis,



28 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataThe Naive Bayes lassi�er assumes that eah example is generated by amixture model, where eah mixture omponent orresponds to a lass y ∈ C:
p(x,Θ) =

K∑

k=1

p(yk | Θ)p(x | yk,Θ) (2 .9)In this model, eah mixture omponent yk may be seleted with probability
p(yk | Θ), and doument x is generated entirely from the seleted mixtureomponent, with probability p(x | yk,Θ). For examples with no known label,the probability is given by the sum over all mixture omponents (equation2 .9). In this ase, eah doument is represented as a vetor x = 〈n(w, x)〉w∈WThe Naive Bayes assumption is that the features of a doument are gener-ated independently, without taking order into aount. Under this assumptionthe probability of an example x given the lass yk is given by

p(x | yk,Θ) ∝
Nw∏

j=1

p
n(wj ,x)
jk (2 .10)Where, pjk is the probability of generating feature wj ∈ W in lass yk. Thus,the omplete model parameters, Θ, is a set of lass priors and a set of multi-nomial parameters:

Θ = {p(yk) : yk ∈ C; pjk : wj ∈ W, yk ∈ C}.Parameter estimation in a semi-supervised learning ontext is arried out us-ing an EM algorithm, as detailed in algorithm 5. Parameters are �rst initializedusing Maximum Likelihood estimates over the labelled data Xl ⊂ X only. Itthen iteratively estimates the probability that eah mixture omponent yk ∈ Cgenerates eah example x ∈ X using the urrent parameters Θ(j) (E-step),and updates the parameters Θ(j+1) by maximizing the omplete-data log-likelihood (M-step). During the M-step, a parameter λ ∈ [0, 1] is introdued.The motivation is to weight the e�et of unlabeled data. In other words, its1998)



2 .2. Semi-Supervised Learning 29Algorithm 5: Semi-supervised Naive-Bayes algorithmInput :
• A set of partially labeled data X = Xl ∪ Xu

• Initial model parameters Θ(0) estimated over the labeled set Xl.
• j ← 0repeat
• E-step: Estimate the posterior lass probability that eahexample x ∈ X belongs to eah mixture omponent
yk : ∀x ∈ X ,∀yk ∈ C,

p(yk | x,Θ(j)) =
p(yk | Θ(j))p(x | yk,Θ

(j))

p(x | Θ(j))

• M-step: Estimate the new parameters Θ(j+1) whih maximizethe omplete-data log-likelihood:
p(yk | Θ(j+1)) =

1 +
∑

x∈X

δ(x)p(yk | x,Θ(j))

C + |Xl|+ λ|Xu|

pΘ(j+1)

jk =

1 +
∑

x∈X

δ(x)n(wj , x)p(yk | x,Θ(j))

|W|+
|W|∑

l=1

∑

x∈X

δ(x)n(wl, x)p(yk | x,Θ(j))where, δ(x) = 1 if x ∈ Xl and δ(x) = λ if x ∈ Xu

• j ← j + 1until onvergene of the omplete-data log-likelihood ;Output : A Naive Bayes lassi�er with parameters Θ(j)goal is to ontrol the in�uene of unlabeled data over labelled examples.Semi-supervised lustering with onstraints. At this point, it is worthmentioning another family of approahes, namely the semi-supervised luster-



30 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Dataing with onstraints, whih an be onsidered as semi-supervised generativemethods. The idea is to perform lustering on the data in order to de�nethe lusters they rely on, and use the labeled examples in order to de�neonstraints whih lusters should respet.Di�erent methods have been presented in the literature. They an be dis-tinguished in two main families: the onstraint-based and the distane-based.In the former the idea is to perform lustering by inorporating some kind ofpenalties for the violation of the onstraints. Suh methods have been pro-posed by (Demiriz et al., 1999; Wagsta� et al., 2001; Basu et al., 2002). Inthe distane-based methods, the idea is to perform lustering using a distanefuntion whih is parametrized using the labeled examples. Methods of thisategory inlude (Cohn et al., 2003; Xing et al., 2003).As lustering is out of the sope of this thesis, for more details of theabove methods, the reader an refer to (Basu et al., 2006).2 .2.2.2 Disriminative MethodsDisriminative approahes fous on diretly estimating the deision boundarybetween lasses, that is the probability P (y|x), without implementing theluster assumption. Note that, although disriminative training is knownto be asymptotially better than generative approahes, the latter may bepreferable when the number of annotated data is limited. They make fewassumptions on the nature of the data, and these hypotheses are generallyweak.Self-training. The probably earliest idea of SSL is based on the prinipleof self training. It has appeared early in the literature (Sudder, 1965; Spra-gins, 1966; Agrawala, 1970) and has been applied to di�erent problems suhas adaptive signal proessing (Widrow and Stearns, 1985), natural languageproessing (Yarowsky, 1995), objet detetion systems from images (Rosen-berg et al., 2005), gene identi�ation (Lomsadze et al., 2005) and others.
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Figure 2 .4: Self-Training algorithmThe proess of self-training begins with building a lassi�er that is trainedwith few labeled examples. The trained lassi�er is used to annotate the unla-beled examples. The ones among them with the highest on�dene are addedto the training set together with their predited labels. The lassi�er is re-trained and this proedure is repeated until there no unlabeled examples left.Another variant of self-training proposes to train the model until there is nohanges in the label preditions, when a margin-based riterion is used labelthe unlabeled examples. This method �nds the deision boundary followingthe low density separation assumption, as it tends to push the boundary farfrom the unlabeled data.One of the drawbaks of self-training is the fat that it reinfores itslassi�ation errors.Co-training. Based on the idea of self-supervised learning, (Blum andMithell, 1998) presented the o-training algorithm. This method supposesthat we have two di�erent modalities of the data set, under the assumptionthat eah of them is rih enough to learn the parameters of a lassi�er. Thatis, eah example xi has two di�erent views xi,1 and xi,2. It also supposes that



32 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 6: Self TrainingInput : A partially labeled dataset X = Xl ∪ Xurepeat
• Train the lassi�er with the labeled examples X (i)

l

• Annotate the unlabeled examples X (i)
u using the trainedlassi�er

• Add the most on�dent unlabeled examples (X ′

u) withtheir predited labels to the labeled set (X (i+1)
l = X (i)

l ∪ X
′

uand X (i+1)
u = X (i)

u \ X ′

u)until all unlabeled data have been labeled ;Output : The model parametersthe two views of the data are onsistent:
∃h1, h2, xi : hopt(xi) = sgn(h1(x1,i)) = sgn(h2(x2,i))It is also assumes that the two views are independent given the label:

p(x1,i|x2,i, yi) = p(x1,i|yi)

p(x2,i|x1,i, yi) = p(x2,i|yi)

Figure 2 .5: Co-Training algorithm



2 .2. Semi-Supervised Learning 33Initially, two separate lassi�ers h1 and h2 are trained with the labeledset, eah using one view. Then, they lassify the unlabeled examples, and asubset of these examples lassi�ed with lassi�er h1 are hosen randomly andused as input to lassi�er h2, onsidering that the labels predited by h1 arethe orret ones. Eah lassi�er is retrained with the additional examples andtheir labels predited by the other lassi�er. This proess repeats for a givennumber of iterations. A more detailed desription of the o-training methodis given in algorithm 7.(Nigam and Ghani, 2000) proposed a similar semi-supervised, multi-viewalgorithm (the algorithm Co-EM) whih an be seen as a probabilisti versionof the Co-training. The algorithm runs EM in eah view and, before eah it-eration, it inter-hanges the probabilisti labels generated in eah view. Thebasi idea of both Co-EM and o-Training, is to use the knowledge learned inone view to train the other one. The di�erene between them is that Co-EM uses probabilisti labels for the labeled examples that may hange fromone iteration to the other.The assumption of onsistene and independene between the two viewsof the data that o-training (and Co-EM) is making is very strong, and it isdi�ult to be met in real-world appliations. And this an even result a de-rease in performane (Nigam and Ghani, 2000). This is why an e�ort hasbeen made in order to relax these assumptions. (Goldman and Zhou, 2000)proposed a variant of o-training whih does not suppose independene andonsisteny of the data views. Instead, it learns two di�erent lassi�ers onthe labeled set. Then, they annotate the unlabeled examples and they enrihthe labeled sets of eah other. The motivation is that the two lassi�ers willlearn two di�erent models whih an eventually omplement eah other. Adi�erent way to relax this assumption is presented by (Balan et al., 2004). Inthe latter, an expansion property on the underlying distribution of the datais proposed, in order to replae the onditional independene assumption ofo-training.



34 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataThe idea of using two lassi�ers has appeared earlier than o-training inthe literature. For example, in the work of (De Sa, 1993, 1994) a similaralgorithm is presented. The so-alled self-supervision algorithm uses twodi�erent lassi�ers, whih play alternatively the role of teaher and student.The output of the one is used as desired input for the other. This proedureontinues until the onvergene of the output.Algorithm 7: Co-Training (Blum and Mithell, 1998)Input :
• A partially labeled dataset X = Xl ∪ Xu,where Xl = {(x1,i, x2,i}i=1,...,m and Xu = {(x1,i, x2,i}i=m+1,...,m+n

• Two lassi�ers h1 and h2

• Create a set X ′
u, by hoosing randomly N examples from Xurepeat

• Train lassi�er h1 with the labeled examples Xl

• Train lassi�er h2 with the labeled examples Xl

• Annotate p positive and n negative unlabeled examplesfrom X ′
u using the trained lassi�er h1

• Annotate p positive and n negative unlabeled examplesfrom X ′
u using the trained lassi�er h2

• Add the above examples with their predited labels tothe labeled set
• Add 2p + 2n examples from the Xu to X ′

uuntil a �xed number of iterations ;Output : The predited labels and the lassi�ers h1 and h2Co-boosting. (Collins and Singer, 1999) proposed the o-boosting algo-rithm, whih is based on the algorithm of Adaboost (Freund and Shapire,1997; Shapire and Singer, 1999). It builds two additive models in parallel,



2 .2. Semi-Supervised Learning 35with an objetive funtion that bounds the rate of agreement. It an be on-sidered as a variant of o-training.We suppose that eah example xi is an instane pair (x1,i, x2,i), whihrepresents the two modalities of the example. We also suppose that we havea partially labeled dataset of size m+ n, where the �rst m pairs have labels
yi, for i = 1, . . . ,m and the rest n are unlabeled. The algorithm makes thefairly strong assumption, that eah of the two modalities of eah example x1,iand x2,i is su�ient in order to determine its label.Let us denote with g1 and g2 the two lassi�ers. For the labeled data wesuppose that sign(g1(x1,i)) = sign(g2(x2,i)) = yi. For the unlabeled data,we suppose that sign(g1(x1,i)) = sign(g2(x2,i)). The two lassi�ers, are builtduring the iterations of the algorithm, by updating eah time the equation:

∀i, gt
j(xj,i) = gt−1

j (xj,i) + αth
j
t (xj,i) (2 .11)The αt orresponds to the on�dene value and is alulated also during theiterations as follows:

αt =
1

2
ln

(
W+ + ǫ

W− + ǫ

) (2 .12)where W+ and W− are omputed for eah possible hypothesis ht(xi) (see al-gorithm 8 for details).The ǫ orresponds to a smoothing parameter, and it is introdued in orderto avoid the extreme on�dene values, whih may appear when, for example,a feature is present in very few examples.The algorithm tries to minimize the sum of the lassi�ation error on thelabeled examples and the number of disagreements between the two lassi�erson the unlabeled data. In other words, on eah step, the algorithm searhes



36 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 8: Co-boosting (Collins and Singer, 1999)Input : {(x1,i, . . . , x2,i)}i=1,...,n+m and (yi)i=1,...,mInitialize: ∀i, j : g
(0)
j (xi) = 0repeat

• Set pseudo-labels:
ỹi =

{
yi if 1 ≤ i ≤ m
sign

(
gt−1
3−j(x3−j,i)

) if m < i ≤ n+m

• Set virtual distribution:
Dj

t (i) =
1

Zj
t

e(−ỹig
t−1
j (xj,i))where Zj

t is the normalization term, i.e. Zj
t =

n+m∑

i=1

e(−ỹig
t−1
j (xj,i))

• Train the lassi�er hj
t using the distribution Dj

t(i.e. eah observation is weighted di�erently for di�erent t)
• Choose the weights αt ∈ R of the obtained lassi�er αt = 1

2 ln
(

W++ǫ
W−+ǫ

),where W+ =
∑

i:ht(xi)=yi

Dj
t (i) and W− =

∑

i:ht(xi)=−yi

Dj
t (i)

• Update the global lassi�er taking into aount the lassi�erof step t ∀i, gt
j(xj,i) = gt−1

j (xj,i) + αth
j
t (xj,i)until a �xed number of iterations t and for j = 1, 2 ;Output : Final hypothesis: f(x) = sign




2∑

j=1

gT
j (xj)



to minimize the funtion:
Zco

def
=

m∑

i=1

[
e(−yig1(x1,i)) + e(−yig2(x2,i))

]

+

m+n∑

i=m+1

[
e(−sign(g2(x2,i))g1(x1,i)) + e(−sign(g1(x1,i))g2(x2,i))

]



2 .3. Mislabeling Error Models 37As we an see for the above funtion, small values of Zco means that thetwo lassi�ers have low error rate on labeled examples and there is also lowdisagreement in the preditions of labels for unlabeled examples.Eah iteration of the algorithm is omposed by two rounds: in eah ofthem, one of the lassi�er is updated while the other remains �xed. Thisproedure ontinues for T iterations, by alternating the two lassi�ers.2 .3 Mislabeling Error ModelsAs we mentioned in the introdution of this hapter, very often, noise anbe introdued in the labeling of the training set whih an redue the sys-tem performane in terms of lassi�ation auray. Some proposed solutionstry to apture the mislabelings within the learning algorithm. That is, theylearn with the noisy data, by using mehanisms in order to apture the mis-labelings. The existing studies distinguish between random and no-randomimperfet supervisions: the probability of mislassi�ation of an observationdoes depend on its feature vetor while it does not for the former.Random imperfet supervision. It an our when the noise in the datadepends on their feature vetor. In the ontext of medial diagnosis for ex-ample, this ould be the labeling of test blood results (Aithison and Begg,1976). (MLahlan, 1972) studied onditional error rates using their asymp-toti expansions for the ase where one group does not get mislabeled sample.(Chittineni, 1980) onsidered the problem of learning from imperfetlylabeled data. He used noisy data in order to analyse the Bayes lassi�er errorand to alulate the error bounds on the performane of nearest neighborlassi�ers. In the same vein, (Lugosi, 1992) investigated the asymptoti be-havior of the error probability of two methods under very general onditions:the nearest neighbor algorithm and a method based on the maximization ofthe estimated a posteriori probabilities. In (Chhikara and MKeon, 1984),an analysis of the importane of mislabeled training data is done, and it is



38 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Dataproved that the training of lassi�ers by ignoring mislabeling in the trainingset an degrade lassi�ation performane. (Krishnan and Nandy, 1987) pre-sented the derivation of the likelihood estimation of parameters for two groupmultivariate normal mixtures with a ommon ovariane matrix using themaximum likelihood priniple, for a binary lassi�ation problem. Followingthis work, Krishnan ompared an imperfet and a perfet supervision shemeby measuring the Asymptoti Relative E�ieny, that is the number of sam-ples needed in eah of the shemes in order to ahieve the same performane(Krishnan, 1988).More reently, (Karmaker and Kwek, 2005) presented a boosting ap-proah, namely the ORBoost (Outlier Removal Boosting). It is based onthe well-known AdaBoost algorithm (Freund and Shapire, 1997; Shapireand Singer, 1999). The idea is to introdue a threshold whih puts an up-per bound on the weights of the noisy examples. During the iterations, theexamples whih are identi�ed as outliers (that is, the examples with weightslarger than the limit bound) are eliminated. As the iterations inrease, theremained examples have hopefully the orret labels and the lassi�er havebetter performane.In (Lawrene and Sholkopf, 2001), an algorithm for onstruting a ker-nel Fisher disriminant from noisy training data is presented. The idea is toassign to eah example a probability of its label being �ipped. They use thenthe EM algorithm in order to update these probabilities. They assume that thelass onditional densities are Gaussian distributions. (Li et al., 2006), basedon the latter algorithm, presented two extensions to non-Gaussian datasets,namely the Clustering-based Probabilisti Algorithm (CPA) and the Prob-abilisti Kernel Fisher (PKF): the former applies the algorithm introduedby (Lawrene and Sholkopf, 2001) to a Mixture-of-Gaussians (MoG) in theinput spae (algorithm 9), while the latter gives a similar framework to theiralgorithm, but this time no distribution assumption is made.In the �rst step of algorithm (9), the optimal number of mixture om-



2 .3. Mislabeling Error Models 39Algorithm 9: The sequential steps in the Clustering-based Probabilis-ti Algorithm (CPA)1. Estimate the number of mixture omponents K2. Estimate the mixture density parameters and priors by theMixture-of-Gaussians3. Map lusters to lasses4. Optimize the mixture parameters by applying the modi�edalgorithm of (Lawrene and Sholkopf, 2001) to eah of theomponents5. Map updated lusters to lasses6. Create a Bayes lassi�erponents must be alulated. In (Li et al., 2006) the latter is determined asthe K value that produes the highest total log-likelihood on the test set. Intheir paper, more details on alternative tehniques for estimating the numberof mixtures an be found.No-random imperfet supervision. The imperfet supervision an beno-random in the ase where the noise is not uniform in the features spae.In other words, the noise depends on the feature vetor. In the ontext ofmedial diagnosis (if we want to ompare with the example given in the previ-ous setion) a no-random imperfet supervision an our when humans labela patient disease by its symptoms. As in the ase of random imperfet super-vision, di�erent tehniques have been proposed in order to deal with this kindof data. (Lahenbrunh, 1974) presented suh a tehnique, by alulating theonditional error rates using Monte Carlo methods. Also, (Titterington, 1989)used an EM algorithm in order to estimate the parameters of a logisti-normaldistribution.



40 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Data(Ambroise and Govaert, 2000) proposed an EM algorithm whih estimatesthe posterior distribution of the true label lass with respet to the inompletedata. They are based on the onept of Maximum Likelihood Estimators(MLE) omputed on observations whih may be either labeled, unlabeledor partially labeled. The idea is to introdue a distribution whih indiatesthe subset of lasses an example ould belong, inluding the true lass. Inother words, it tries to identially distribute its doubts about the label of anexample in the other possibles lasses. They ompared this method with thetransferable belief model (TBM), �rst introdued by (Denoeux, 1995): thelatter is a non-probabilisti approah, based on the �Dempster-Shafer� theory(Smets, 1994), and an also handle mislabeling data.2 .3.1 Semi-Supervised learning with mislabeled dataThe methods we presented above were all proposed in the ontext of super-vised learning. (Amini and Gallinari, 2003) introdued another method whihtakes into aount the mislabelings, but in addition performs semi-supervisedlearning. Their method ould be plaed in the random imperfet supervisionframework, as the mislabeling of an example does not depend on its featurevetor. In ontrast with the other methods of this framework, this methoddoes not assume that the label errors ome from the manual labeling of thedata. Instead, it assumes that the mislabeling errors our by the lassi�a-tion algorithm itself and it uses the label error model to orret them. Theiralgorithm is based on the Logisti-CEM �rst introdued in (Vittaut et al.,2002). The idea is to inorporate in the latter a mislabeling error model.The algorithm is �rst trained on the labeled part of the training set and ititeratively assigns lass labels to unlabeled training examples. These newlylabeled examples, together with the labeled part of the training set, are thenused to re-train the lassi�er. At eah iteration, the semi-supervised learningsystem is ating as an imperfet supervisor on unlabeled training examples.In order to model the mislabeling errors, supposing there is a set of nlabeled and a set of m unlabeled examples, they introdued the following



2 .3. Mislabeling Error Models 41probability, where yi and ỹi are the perfet (i.e. the real but unknown) andthe imperfet (i.e. the predited by the lassi�er) labels of the unlabeledexample xi ∈ Xu:
∀k,∀h, αkh = p(ỹ = k|y = h)subjet to the onstraints:

∀h,
∑

k

αkh = 1They assume that the density of an example, given its true label, doesnot depend on its imperfet label:
p(xi|ỹ = k, y = k) = p(xi|y = h)In order to train their model, they use the CEM2 algorithm. The lattertries to maximize the following log-likelihood:

Lc =

n∑

i=1

c∑

k=1

tki logP (y = k|xi, β)

+
n+m∑

i=n+1

c∑

k=1

[
t̃ki log

(
c∑

h=1

αkhP (ỹ = h|xi, β)

)] (2 .13)where ti = {tki}k is the indiator vetor lass assoiated with the labeledexamples xi:
∀i ∈ {1, . . . , n} ,∀yi = k ⇔ tki = 1 and ∀h 6= k, thi = 0The t̃kj orresponds to the respetive indiator vetor lass, based on theestimated labels ỹj for the unlabeled examples xj. The parameters β are theparameters of the logisti lassi�er.2CEM refers to Classi�ation EM. The latter was introdued by (Symons, 1981) andwas applied to semi-supervised learning by (MLahlan, 1992). The idea is to introduean additional step (C-step) in the EM algorithm. During this step, eah of the examples isassigned to the most likely lass.



42 Chapter 2 . Learning with Partially Labeled and Mislabeled Training DataAlgorithm 10: SSL with an expliit label-error model for mislassi�eddataInput : A partially labeled dataset X = Xl ∪ XuA logisti lassi�er fInitialize:
• Train f with the labeled examples.We denote with β(0) the obtained parameters
• Initialize α(0) by random
• j ← 0repeat
• C-step: Estimate the imperfet lass posterior probabilitiesusing the output of the lassi�er, and get an imperfet labelfor eah xi ∈ Xu:

∀xi ∈ Xu, ỹ(j+1)
i = argmax

k

c∑

h=1

α
(j)
khp(ỹ

(j) = h|xi)Let π(j+1) be the new partition obtained from this lassi�erfor the unlabeled data
• M-step: Estimate the new parameters β(j+1), α(j+1)whih maximize Lc(π

(j+1), β(j), α(j)) (eq. 2 .13):� β(j+1) = argmax
β(j)

Lc(π
(j+1), β(j), α(j))� Find the parameters α(j+1) whih maximize

Lc(π
(j+1), β(j+1), α(j)),subjet to onstraints ∀k,∀h, α(j+1)

kh ∈ [0, 1]and ∀h,∑
k

α
(j+1)
kh = 1

• j ← j + 1until onvergene of Lc ;Output : The labels of the examples x ∈ Xu



2 .3. Mislabeling Error Models 43In algorithm (10) the di�erent steps of the method are desribed. TheE-step does not appear expliitly in the algorithm, as it is trivial, sine theposterior estimates are given by the lassi�er outputs diretly.Additional methods. It is worth mentioning that in the literature thereexist some methods whih try to solve the problem of noisy data from adi�erent perspetive. Istead of modeling the mislabeling errors, they try to�lean� the data, by �nding and removing the mislabeled data. In other words,they employ some preproessing mehanisms to handle noisy instanes beforea learner is formed. These �ltering tehniques (as they are known) usuallyresult in a redued training set. Suh methods inlude (Brodley and Friedl,1999) who used ross-validation over the training data to �nd mislabeledinstanes. Also, (John, 1995) tried removing the training instanes that arepruned by the C4.5 algorithm (Quinlan, 1993). In eah iteration the tree wasrebuilt from the �ltered set of training instanes. This proedure was repeateduntil no further pruning ould be done. (Van Hulse et al., 2007) introduedan approah (alled Pairwise Attribute Noise Detetion Algorithm (PANDA))whih tries to identify the most noisy examples. Due to the potential risk ofdata leaning when noisy examples are retained while good examples areremoved, in whih ases the redued training set an be muh less auratethan the full training set, e�orts have been taken to onstrut noise tolerantlassi�ers diretly.
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Figure 2 .6: Filtering Tehniques: They try to lean the dataset by removingthe mislabeling data (the small dots and lines) and keeping only the orretlabeled examples (big irles and lines)



44 Chapter 2 . Learning with Partially Labeled and Mislabeled Training Data2 .4 ConlusionIn this hapter we have �rst introdued the idea of semi-supervised learningand the motivation behind this onept. The huge amount of available unla-beled data and the ost of labeling these examples have led to the design ofalgorithms whih try to take advantage of both labeled the unlabeled data.Several of these methods have been inspired from tehniques presented �rstin the statistial ommunity. Before presenting the di�erent families of semi-supervised learning tehniques, we have disussed the assumptions in whihthey rely on. A distintion between transdutive and semi-supervised learn-ing has been made and a synthesis of di�erent methods in eah of the twoapproahes has been presented.In the seond part of this hapter, we disussed the presene of noise in atraining dataset. Very often there are mislabelings in the training data andthat an lead to a derease of the performane. This is why di�erent methodshave been introdued in the literature, whih try to deal with this problem.The goal was not to present an exhaustive list of all existing methods.Instead, the onepts of semi-supervised learning and mislabeling error mod-els have been presented. Some representative methods, together with theirmotivation, from eah of the di�erent frameworks have been disussed.



3Ative Learning
Contents 3 .1 Introdution . . . . . . . . . . . . . . . . . . . . 453 .2 Ative Learning Tehniques . . . . . . . . . . . 473 .2.1 Certainty-based sampling . . . . . . . . . . . . 473 .2.2 Query By Committee . . . . . . . . . . . . . . 483 .2.3 Expeted error minimization . . . . . . . . . . 503 .3 Theoretial views of Ative learning . . . . . . 513 .4 Combining SSL and Ative Learning . . . . . 533 .5 Conlusion . . . . . . . . . . . . . . . . . . . . . 583 .1 IntrodutionAtive learning (AL), as semi-supervised learning, addresses the issue of an-notation ost. In ontrast with semi-supervised learning whih, as mentionedin the previous hapter, uses the unlabeled data in addition with the labeledones, ative learning suggests to hoose the most informative examples amongthe unlabeled ones to annotate, in order to obtain better performane than,if unlabeled examples are not taken into aount in the learning proess orif they are labeled at random. This form of ative learning is also known as



46 Chapter 3 . Ative Learningseletive sampling (Cohn et al., 1994).The typial ative learning setting onsists of a partially labeled dataset
X = Xl ∪ Xu, a lassi�er f and a query module q. The lassi�er is ini-tially trained with the labeled subset Xl. Then, using the query module q, ithooses the unlabeled examples X ′

u ⊂ Xu whih an bring more informationin our lassi�er. These examples are labeled by the user and the lassi�er isretrained with the enrihed labeled set Xl ∪ X ′
u (�gure 3 .1). The measure ofe�ieny for an ative learner an be either the redution of the labeled setsize needed to ahieve a ertain performane, or the performane ahieved fora ertain size of the labeled set.

Figure 3 .1: Ative learning: The lassi�er is trained with the labeled exam-ples. Then, using a seletion strategy, it hooses and demand the annotationof the most informative examples among the unlabeled ones. This proedureontinues until a ertain performane or a ertain size of the labeled setAtive learning has been applied in various tasks. For example, (Shohnand Cohn, 2000) presented very good results for text lassi�ation using a-



3 .2. Ative Learning Tehniques 47tive learning. (Vogiatzis and Tsapatsoulis, 2008) proposed an ative learningmethod in the �eld of bioinformatis and they presented results on DNA mi-roarray data sets. (Kuo et al., 2008) presented an adaptive learning frame-work for Phoneti Similarity Modeling (PSM) that supports the automationstrution of transliteration lexions. (Cooper et al., 2007) used ativelearning to identify whih motion sequene the user should perform next,in order to improve the quality and responsiveness of a kinemati haraterontroller. (Hakkani-Tür et al., 2006) applied ative learning in the task ofspoken language understanding.(Chawla and Bowyer, 2007) proposed a learn-ing framework for the fae reognition task. They proposed to atively learnthe fae spae in order to ahieve a good performane using just a subset ofthe training set.3 .2 Ative Learning TehniquesThe existing ative learning algorithms an be plaed in three main ategories:the ertainty-based sampling, the query by ommittee and the expeted errorminimization. In the following setions the motivation of these ategories aredisussed and some well known methods are presented.3 .2.1 Certainty-based samplingCertainty-based sampling is based on the on�dene of the urrent lassi�eron unlabeled data. This method was �rst introdued by (Lewis and Gale,1994), where a probabilisti lassi�er is used (Naive Bayes), whih assigns allpossible labels to the unlabeled data with ertain probabilities. Then, basedon these probabilities, the most ambiguous examples are hosen for annota-tion, i.e. the examples with the highest entropy (high entropy suggests highunertainty for an example).In (Tong and Koller, 2000) a similar idea is presented. In their method,the unertainty of the unlabeled data is measured as the loseness to thedeision boundary of an SVM lassi�er. Also, (Campbell et al., 2000) pro-



48 Chapter 3 . Ative Learningposed an algorithm for the training of support vetor mahines using instaneseletion. In eah iteration the example whih is the losest to the urrenthyperplane of the SVM algorithm is hosen.In the same vein, (Ertekin et al., 2007) proposed an ative learning methodwhih selets informative examples from a randomly piked small pool ofexamples rather than making a full searh in the entire training set. Thatway, the ative learning method an be appliable to very large datasets. Theyused the SVM algorithm, but instead of using a traditional SVM solvers (e.g.SVMlight (Joahims, 1999)), they used an online SVM algorithm, LASVM(Bordes et al., 2005). LASVM works in an online setting, where its model isontinually modi�ed as it proesses the training examples one by one. Theproposed ative learning method selets the examples losest to the marginas in (Tong and Koller, 2000; Campbell et al., 2000). They used the proposedative learning strategy in order to address the lass imbalane problem, andthey presented some enouraging results. The intuition is that we an ahievemore balaned lass distributions in the earlier steps of the learning, if wefous the learning on the examples around the lassi�ation boundary.3 .2.2 Query By CommitteeA seond type of ative learning whih is met in the literature is the queryby ommittee (QBC). It was �rst introdued by (Seung et al., 1992; Freundet al., 1997). The idea here is to measure the agreement among a ommittee oflassi�ers. The lassi�ers are trained with the labeled data and they lassifythen the unlabeled examples. The algorithm hooses the examples with thebiggest disagreement among the lassi�ers. These examples are annotated bythe user and they are inorporated in the labeled examples. The intuitionbehind this method is that if di�erent lassi�ers disagree about the label ofan example, it means that the later is di�ult to label. Here we must notethat in order this method to be e�ient, the results of the lassi�ers shouldnot be orrelated.



3 .2. Ative Learning Tehniques 49(Muslea et al., 2000) presented the o-Testing algorithm whih an beapplied in multi-view tasks, that is the tasks where there are more than onesignal to desribe observations (like in o-training, desribed in the previoushapter). The idea is to use di�erent lassi�ers for the di�erent views of thedata and to query the unlabeled examples on whih the views predit di�er-ent labels.

Figure 3 .2: Query By Committee. The ative learner hooses the examplewith the biggest disagreement among the di�erent lassi�ers(Dagan and Engelson, 1995) presented a general ommittee-based ativelearning method for seletive sampling, whih is appiable to probabilistilassi�ers. In their work, they foused on the task of tagging, where anexample is a word sequene and eah word w is labeled with a tag t by eahommittee member. In order to quantify the ommittee disagreement for a



50 Chapter 3 . Ative Learningword, they use the vote entropy de�ned as:
V E(w) = −

∑

t

V (t, w)

k
log

V (t, w)

kwhere V (t, w) is the number of ommittee members (out of k members) vot-ing for tag t for the word w. The vote entropy an be seen as a measureof lassi�ation unertainty based on the training data. They then measurethe disagreement over an a word sequene by averaging the voting entropyof all words in the sequene. They applied their method to training HiddenMarkov Models (HMM) (Rabiner, 1990).(Davy and Luz, 2007) proposes the History Kullbak-Leibler Divergene(HKLD) algorithm. The idea is to inorporate the preditions made in pre-vious iteration of ative learning into the seletion of informative unlabelledexamples. The past k preditions, of the previous k iterations, an be thoughtof as the output of a ommittee of size k. In this ontext we an measureunertainty as the disagreement among ommittee members using Kullbak-Leibler divergene to the mean (MCallum and Nigam, 1998). KL divergeneto the mean is an average of the KL divergene between eah distribution andthe mean of all the distributions.3 .2.3 Expeted error minimizationThe third type of ative learning algorithms tries to minimize the expetederror (for example (Iyengar et al., 2000)). Aording to this paradigm, theunlabeled data whih redue the expeted lassi�ation error are hosen forannotation. This last type of ative learning methods is the most sophisti-ated, as it is based on a statistially optimal solution. The idea is to onsidereah of the unlabeled examples as the next query. Then the redution of thelassi�ation error is alulated. The unlabeled data with the largest esti-mated redution is asked to be annotated by the system. For example, in(Roy and MCallum, 2001) a sample estimation method is used for the Naive



3 .3. Theoretial views of Ative learning 51Bayes lassi�er. The idea is to train the lassi�er using the urrent labeledexamples and then produe an estimated output distribution P̃D(y|x) for theunlabeled examples whih are andidates (as the true output distribution isunknown). The best andidate is the one for whih the knowledge of thetrue label will ause the largest redution of the risk (expeted loss). Usingthis estimated distribution, they alulate the expeted loss for an andidateunlabeled example x∗ by either a log loss (as the real labels are not knownwe use the estimated ones):
ẼP̃D∗

=
1

|X |
∑

x∈X

∑

y∈Y

P̃D∗(y|x) log(P̃D∗(y|x)) (3 .1)or a 0/1 loss:
ẼP̃D∗

=
1

|X |
∑

x∈X

(
1−max

y∈Y
P̃D∗(y|x)

) (3 .2)where D∗ = D + (x∗, y∗). Of ourse, before making the query, the true labelof x∗ is also unknown. Again, the urrent learned lassi�er gives an estimateof the distribution P̃D(y|x∗) from whih the estimated label of the x∗ wouldbe hosen. The latter is used in order to alulate the estimated error foreah possible label y ∈ Y . Algorithm (11) presents the above method.Also (Dönmez et al., 2007) proposed a similar approah (the so-alled�dual�) where the strategy seletion parameters are adaptively updated basedon estimated future residual error redution after eah atively sampled point.3 .3 Theoretial views of Ative learningExept the di�erent tehniques of ative learning presented in the previoussetions, some e�ort has been made in a theoretial basis, and some interrest-ing works have appeared in the literature.In this ontext, (Cohn et al., 1995) onsidered the problem of ativelyseleing examples as a the statistially optimal manner. They studied two



52 Chapter 3 . Ative LearningAlgorithm 11: Ative Learning by expeted Error Minimization (Royand MCallum, 2001)1. train a lassi�er using the urrent labeled examples X
• onsider eah unlabeled example x in the pool as a andidate forthe next labeling request� onsider eah possible label y for x and add the pair (x, y) tothe training set� re-train the lassi�er with the enlarged training set X + (x, y)� estimate the resulting expeted loss using equation (3 .1 or3 .2)
• Assign to x the average expeted losses for eah possible labeling
y weighted aording to the urrent lassi�er's posterior, P̃D(y|x)2. Selet for labeling the unlabeled example x that generated the lowestexpeted error on all other examples.well known statistial models, Mixtures of Gaussians and Loally WeightedRegression and they derived a greedy optimality riterion for the seletion ofexamples.More reently, (Castro and Nowak, 2007) tried to ome up with some lim-its in ative learning. Using minimax analysis tehniques, they ahieved somebounds under whih one an expet signi�ant gains through ative learning.(Hanneke, 2007b) studied the label omplexity of pool-based ative learn-ing in the PAC model with noise. They derived upper and lower boundson the label omplexity in terms of generalizations of extended teahing di-mension. They laimed that their bound is the �rst nontrivial general upperbound on label omplexity in the presene of persistent lassi�ation noise.(Balan et al., 2006) presented an algorithm, the so-alled Agnosti Ativelearning or A2 learning (whih is essentially the ative learning algorithm of



3 .4. Combining SSL and Ative Learning 53(Cohn et al., 1994)), and they provided a label-omplexity upper bound forlearning linear separators under the uniform input distribution. (Hanneke,2007a) extended this work by deriving a general bound on the number of labelrequests, appliable to any onept spae and distribution. Also, in (Balanet al., 2007a) presented a framework for margin based ative learning of linearseparators.In (Balan et al., 2007b) the problem is onsidered from a di�erent angleand the asymptoti omplexity of ative learning is analyzed. They provedthat in many interesting ases ative learning does help asymptotially.(Krause and Guestrin, 2007) ame up with a theoretial bound on howmuh better a sequential algorithm an perform than an a priori design strate-gies. They onsidered Gaussian Proesses (GPs) with unknown parametersand they presented some bounds whih motivate the swith between explo-ration and exploitation approahes to ative learning. They extended theiralgorithm to handle nonstationary Gaussian Proesses, exploiting loal stru-ture in the model.3 .4 Combining SSL and Ative LearningThe idea of ombining ative and semi-supervised learning was �rst intro-dued by (MCallum and Nigam, 1998). The idea is to integrate an EM algo-rithm with unlabeled data into an ative learning framework, and more par-tiularly in a query by ommittee (QBC) method. The ommitee membersare reated by sampling lassi�ers aording to the distribution of lassi�erparameters spei�ed by the training data (algorithm 12).In (Muslea et al., 2002), Co-EMT is proposed. This algorithm ombinesCo-Testing and Co-EM. As opposed to Co-Testing algorithm, whih learns hy-potheses h1 and h2 based only on the labeled examples, Co-EMT learns thetwo hypotheses by running Co-EM on both labeled and unlabeled examples.Then, in the ative learning step, it annotates the example on whih the pre-



54 Chapter 3 . Ative Learningditions of h1 and h2 are the most divergent, that is, the example for whih
h1 and h2 have an equally strong on�dene at prediting a di�erent label.Algorithm 12: Combining ative learning and semi-supervised learn-ing using EM (MCallum and Nigam, 1998)Input : The labeled and unlabeled training doumentswhile more labeled data are required doBuild an initial estimate of the model parameters from the labeleddouments onlyfor eah of the k ommittee members (i.e. for eah lassi�er) do

• Create a ommittee member by sampling a lassi�er foreah lass from the appropriate Dirihlet distribution
• Starting with the sampled lassi�er apply EM withthe unlabeled data:
• repeat� Use the urrent lassi�er to probabilistially labelthe unlabeled douments� Realulate the lassi�er parameters given theprobabilistially-weighted labelsuntil parameters onvergene ;
• Use the urrent lassi�er to probabilistially labelall unlabeled doumentsendCalulate the disagreement for eah unlabeled doument, multiplyby its density, and request the lass label for the one with thehighest sore.endOutput : The new labeled set and all the predited labels(Zhu et al., 2003b) also present a ombination of semi-supervised and a-tive learning using Gaussian �elds and harmoni funtions (the semi-supervisedmethod is desribed analytially in the previous hapter 2 .2.1.2). In brief,under this semi-supervised framework, the expeted generalization error after



3 .4. Combining SSL and Ative Learning 55querying a point is alulated, and the one whih gives the largest redutionis hosen for annotation (algorithm 13). The estimated risk R̂(f) an be al-ulated as follows (here, the fi values are onsidered as �proxy� for the lassprobabilities:
R̂(f) =

n∑

i=1

[sign(fi − 0.5) 6= −1] (1− fi) + [sign(fi − 0.5) 6= 1] fi

=

n∑

i=1

min(fi, 1− fi)We then retrain the lassi�er on the new labeled training set (augmentedby the annotated unlabeled example). If we denote by f+(xk,yk) the newharmoni funtion, the estimated risk beomes:
R̂(f+(xk,yk)) =

n∑

i=1

min(f
+(xk,yk)
i , 1− f+(xk,yk)

i )As we do not know the value of yk, in order to estimate the expeted risk,after querying the example k, we use the following equation:
R̂(f+xk) = (1− fk)R̂(f+(xk,−1)) + fkR̂(f+(xk,1))In eah iteration, we hoose the next example k that minimizes the ex-peted estimated risk:

k = argmink′R̂(f+xk′ ) (3 .3)(Zhou et al., 2006) presented the so-alled method Semi-Supervised A-tive Image Retrieval (SSAIR) for a di�erent task of relevane feedbak. Themethod was inspired by o-training (Blum and Mithell, 1998) and o-testing(Muslea et al., 2000), but instead of using two su�ient but redundant viewsof the dataset, it employs two di�erent learners on the same data. Initially,the two learners are trained on the labeled data. Then, eah of them ranksthe unlabeled data by giving them a value between {−1, 1}, where negativeand positive indiates whether the learner believes that the example is ir-relevant or relevant resetively. The bigger the absolute value is, the more



56 Chapter 3 . Ative LearningAlgorithm 13: Combining ative learning and semi-supervised learn-ing using Gaussian �elds and harmoni funtionsInput :
• A graph G = (V,E) and weight matrix W
• The labels of the labeled examples fl

• The diagonal matrix Dij =
∑

k

Wik

• The ombinatorial Laplaian matrix L = D −W.We split the matrix aording to labeled andunlabeled examples as: L =

[
Lll Llu

Lul Luu

]while more labeled data are required do
• Compute harmoni funtion fu = −L−1

uu ∗ Lul ∗ fl

• Find best example to annotate, using equation (3 .3)
• Query point xk, and reeive answer yk

• Add (xk, yk) in Xl, and remove xk from XuendOutput :
• The new labeled set and the lassi�er f

on�dent the learner is about its deision. Aording to this ranking eahlearner passes the most relevant images to the other one. After re-trainingwith the additional labeled data, the learners rank the data again and thentheir rankings are merged by summation, whih gives the �nal ranking for theunlabeled data. The examples for whih the learners are on�dent to be rele-vant are returned as the retrieval result. The ones whih have low on�deneare plaed into the pool whih is used in the next round of relevane feedbak.
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Figure 3 .3: Combining semi-supervised and Ative learningIn the ontext of multi-view ative learning, (Probst and Ghani, 2007)proposed a method whih ombines semi-supervised and ative learning. The�rst step uses o-EM with naive Bayes as the semi-supervised algorithm. Theypresent an approximation to o-EM with naive Bayes that an inorporate userfeedbak almost instantly and an use any sample-seletion strategy for ativelearning.Why the ombination should work? Intuitively, the ombination ofboth semi-supervised and ative learning appears to be partiularly bene�ialin reduing the annotation burden. Semi-supervised learning is more fousedon exploitation, while ative learning is more dediated to exploration of thedata. As a result, used alone, it an lead to poor performane in ertainases, as semi-supervised strongly su�ers from poorly represented lasses,while being very sensitive to noise. On the other hand, ative learning ouldbe too slow, as it does not really exploit the information given by unlabeled



58 Chapter 3 . Ative Learningdata. In the same vein, semi-supervised learning tends to over-weight easy-to-lassify examples that will dominate the proess, while ative learning hasthe opposite strategy, resulting in exploring more deeply the hard-to-lassifyexamples. Also, ative learning based on the on�dene sores alulated onthe whole dataset and not only on the labeled examples, an be expetedto be more e�ient. The reason is that the on�dene sore will be moreaurate based on both label and unlabeled data.3 .5 ConlusionIn this hapter, we presented the existing methods in ative learning. Thelatter, as semi-supervised learning, tries to redue the annotation burden.The general idea of the latter is to annotate atively the most informativeexamples in order to ameliorate the performane of the lassi�er. We havepresented the main types of ative learners and representative algorithmsin eah of them. In the last setion, the ombination with semi-supervisedlearning has been disussed. The reasons that the ombination is interestingand promising have been demonstrated, together with some works towardsthis diretion.



IIAtive and Semi-SupervisedAspet Models





In the �rst part of this thesis, we have presented three frameworks thataim to redue the annotation burden and to model possible mislabelings in atraining set. In partiular, we �rst presented semi-supervised paradigm andmislabeling error models. Then, we foused on the e�ort that has been madeto ombine these two frameworks. Finally, we presented the paradigm of a-tive learning and the ombination of the latter with semi-supervised learning.In this seond part, we ombine these three frameworks. We are fousingon the task of text ategorization and we present an extension of the aspetmodels to the ase of semi-supervised learning for this task. This study ismotivated by the ost of labeling doument olletions and the ability ofaspet models to explain the generation of textual observations. In this part,we propose two semi-supervised variants of aspet models, espeially of thePLSA algorithm, whih inorporate a mislabeling error model. We furtherextend these semi-supervised models by ombining them with two di�erentative learning strategies.





4Semi-Supervised Aspet Models
Contents 4 .1 Introdution . . . . . . . . . . . . . . . . . . . . 634 .2 Aspet Models for Doument Classi�ation . 644 .3 Probabilisti Latent Semanti Analysis . . . . 654 .4 ssPLSA with a �missing values� model . . . . 684 .5 ssPLSA with a fake label model . . . . . . . . 704 .6 ssPLSA-mislabeling with hard lustering . . . 734 .7 ssPLSA-mislabeling with soft lustering . . . 784 .8 Conlusion . . . . . . . . . . . . . . . . . . . . . 814 .1 IntrodutionIn this hapter, we start by presenting the framework of aspet models. Then,we desribe the Probabilisti Latent Semanti Analysis (PLSA) algorithmintrodued by (Hofmann, 2001). We ontinue by introduing our three semi-supervised variants of the PLSA model.The motivation of the �rst variant is to try to handle the unertaintyposed by the unlabeled data lusters. In the seond and third variants, we



64 Chapter 4 . Semi-Supervised Aspet Modelstry to apture the possible mislabeled data whih our during the training ofour model. The idea is to iteratively assign lass labels to unlabeled examplesand estimate the probabilities of the mislabeling errors. These probabilitiesare taken into aount in the estimation of the new model parameters beforethe next round. In the third variant, as opposed to the seond one, we performsoft lustering on the unlabeled data.4 .2 Aspet Models for Doument Classi�ationAs we saw in hapter 2, semi-supervised methods relying on a generativemodel usually implement a loal independane assumption (similar to theNaive Bayes assumption), whih is unlikely to be met in pratie. In addi-tion, some simple models (suh as the Naive Bayes model) assume that anobservation is generated in its entirety from the lass it belongs to. Thismakes it inonvenient to model data that may omprise several aspets, forexample textual douments whih potentially over di�erent topis. This hasled to the development of Aspet Models (Hofmann, 2001), whih an takeinto aount suh data with multiple faets. The aspet models di�er in thestatistial assumptions they impose on the model: They are based on the as-sumption that examples over one or more di�erent topis. In other words, anexample an be modeled as a mixture of topis. They speify a simple prob-abilisti proedure by whih theses examples an be generated. In this way,examples are now haraterized in terms of topis instead of simple features.Observations are generated by a mixture of aspets, or topis, eah of whihbeing a distribution over the basi features of the observations (suh as wordsin a doument, or pixels in an image et). Interestingly, these models allow toapture interesting appliation-dependent phenomena. When modeling tex-tual ontent, for example, they take into aount linguistis properties3 suhas synonymy (di�erent terms with the same meaning) and polysemy (di�er-ent meanings of the same term). Both may have a ruial in�uene on themodelling of the relationship between douments.3Further details on these linguistis properties are given in the evaluation hapter, wherethe representation of the data is disussed



4 .3. Probabilisti Latent Semanti Analysis 654 .3 Probabilisti Latent Semanti AnalysisOne of the �rst aspet models introdued in the literature, is the ProbabilistiLatent Semanti Analysis (PLSA), proposed by Hofmann (Hofmann, 2001).The latter has been presented in terms of doument lassi�ation, but it anbe appliable to di�erent tasks, suh as image lassi�ation. It has beenpresented as a probabilisti version of the Latent Semanti Analysis (LSA)method (Deerwester et al., 1990).PLSA is a probabilisti model whih haraterizes eah word in a do-ument as a sample from a mixture model, where mixture omponents areonditionally-independent multinomial distributions. This model, also knownas the aspet model (Saul and Pereira, 1997), assoiates an unobserved latentvariable (alled aspet, topi or omponent) α ∈ {α1, ..., αA} to eah obser-vation orresponding to the ourrene of a word w ∈ W within a doument
x ∈ X . One omponent or topi an oinide with one lass or, in anothersetting, a lass an be assoiated to more than one omponent. Although orig-inally proposed in an unsupervised setting, this latent variable model is easilyextended to lassi�ation with the following underlying generation proess:
• Pik a doument x with probability P (x),
• Choose a latent variable α aording to its onditional probability P (α |
x)

• Generate a feature w with probability P (w | α)

• Generate the example's lass y aording to the probability P (y | α).The probability P (y | α) is �xed, by foring to zero the omponent α thatdo not belong to a ertain lass y, i.e. P (y|α) =

{
1, if α ∈ y
0, otherwise (as weknow how many omponents per lass we have).Hene, the model parameters are

Ξ = {P (α | x), P (w | α) : α ∈ A,x ∈ X , w ∈ W}
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Figure 4 .1: Graphial model representation of the PLSA model. Latentvariables are double irled.The generation of a feature w within an example x an then be translatedby the following joint probability model:
P (w, x) = P (x)

∑

α∈A

P (w | α)P (α | x) (4 .1)So, the log-likelihood of the model an be estimated as:
L =

∑

w∈W

∑

x∈X

n(x,w) log P (x,w) (4 .2)where n(w, x) denotes the frequeny of the word w in instane x. At thispoint we have to note that y appears in the log-likelihood indiretly, through
α. In algorithm (14) the training of this model is desribed. The idea is toperform one lustering per lass by �xing the number of omponents per lass.The latter is done during the initialization of the model (Ξ(0)), where we foreto zero the P (α | x) for an example x whih does not belong to a partiulartopi α (that is the labeled training examples). The algorithm used ensure



4 .3. Probabilisti Latent Semanti Analysis 67to maintain the fored zeros during the iterations. The P (w | α) is initializedby giving random values for all w and α.After the training of the model, we run the PLSA for the test set,(algorithm(15)) using the alulated model (i.e. P (w|α)), in order to learn the P (α|x)and we lassify the examples of the test set with the maximum posteriorprobability using hain rule:
P (y|x) ∝

∑

α

P (α|x)P (y|α)We hoose as label for eah example, the one with the highest probability.
In hapter 2, we presented (together with its semi-supervised variant) theNaive Bayes model (Lewis, 1998). In the latter, some simplifying assump-tions are onsidered, whih PLSA overomes in two important ways. First,it relaxes the assumption that a lass y is assoiated to a single topi. InPLSA, the number of topis |A| may be larger than the number of lasses K.The seond and ruial di�erene is that in Naive Bayes, all features mustbe generated from the same topi. This requires the use of lever smoothingstrategies to ounter the fat that some features that are unrelated to a topimay appear by oinidene in an example from that topi. On the otherhand, in PLSA, a topi is drawn independently from P (α | x) eah time anew feature is generated in an example. This provides a muh more naturalway to handle unusual features or multi-topiality.
The omplexity of PLSA is O(|A| ×M), where M = #{(w, x)|n(w, x) >

0}, is the number of pairs (w, x) o-ouring at least one in the olletion(or, in other words, the number of non-zero entries in the example-featurematrix).



68 Chapter 4 . Semi-Supervised Aspet ModelsAlgorithm 14: Probabilisti Latent Semanti Analysis (PLSA) forDoument Classi�ation: TrainingInput :
• A labeled set X = Xl,
• Random initial model parameters Ξ(0).
• j ← 0repeat
• E-step: Estimate the latent lass posteriors:
∀x ∈ X ,∀w ∈ W,∀α ∈ A of the lass y(x)

P (α|w, x) = π(j)
α (w, x) =

P (j)(α|x)P (j)(w|α)∑

α′∈A

P (j)(α′|x)P (j)(w|α′)

• M-step: Estimate the new model parameters Ξ(j+1)by maximizing the omplete-data log-likelihood:
P (j+1)(w|α) ∝

∑

x

n(w, x)π(j)
α (w, x)

P (j+1)(α|x) ∝
∑

w

n(w, x)π(j)
α (w, x)

• j ← j + 1until onvergene of the omplete-data log-likelihood ;Output : A generative lassi�er with parameters Ξ(j)4 .4 Semi-Supervised PLSA with a �missing values�modelThe most straight forward semi-supervised variant of the PLSA algorithm isto treat it as a �missing values� model. The latter an be seen as a luster-ing with onstraints. In this ase, our model will be idential with the onepresented in the previous setion and in algorithm (14). The di�erene lies



4 .4. ssPLSA with a �missing values� model 69Algorithm 15: Probabilisti Latent Semanti Analysis (PLSA) forDoument Classi�ation: TestingInput :
• A test set X ′

• the learned model P (w|α)repeat
• E-step: Estimate the latent lass posteriors:
∀x ∈ X ′,∀w ∈ W,∀α ∈ A

P (α|w, x) = π(j)
α (w, x) =

P (j)(α|x)P (w|α)∑

α′∈A

P (j)(α′|x)P (w|α′)

• M-step:
P (j+1)(α|x) ∝

∑

w

n(w, x)π(j)
α (w, x)until onvergene of the omplete-data log-likelihood ;Calulate the labels of the test set:

P (y|x) ∝
∑

α

P (j)(α|x)P (y|α)Output : The labels of the test setto the initialization proess: instead of foring to zero the P (α | x) for allexamples x of the training set whih do not belong to a partiular topi α,this time we fore P (α | x) only for the labeled examples and we give randomvalues for all the unlabeled examples of the training set, under the onstraintto sum up to 1. This happens beause we do not know the labels of the un-labeled examples, and as a result, we annot �nd in whih topi they belong(by P (y|α)), as we do with the labeled data.This �missing values� model is the simplest way to perform semi-supervisedlearning with the PLSA model. The drawbak is that it does not apture any



70 Chapter 4 . Semi-Supervised Aspet Modelsof the problems reated beause of the very low ratio of labeled and un-labeled examples. This is why we will fous on the three semi-supervisedvariants desribed in the next setions, whih are more sophistiated. The�rst one (with the �fake label� model) solves the problem of the unlabeledomponents, while the other two variants (with the mislabeling error model)apture and modelize the mislabelings produed by the lassi�er during theiterations.
4 .5 Semi-Supervised PLSA with a fake label modelAs the aspet PLSA model haraterizes the generation of the o-ourrenebetween a feature w and an example x, for learning the semi-supervised mod-els we have to form two labeled Ql and unlabeled Qu training sets fromXl and
Xu. We onsider now eah observation as a pair q = (w, x) suh that observa-tions in Ql are assigned to the same lass label as the example x they ontain.We reall that we still haraterize the data using a mixture model with
|A| latent topi variables α, under the graphial assumption of aspet mod-els (that x and w are independent onditionally to a latent topi variable α).(Krithara et al., 2006), following the work of (Gaussier and Goutte, 2005), pre-sented a semi-supervised variant of PLSA, where additional �fake� labels wereintrodued for the unlabeled data (namely the ssPLSA-fake). The motivationfor the latter was to try to solve the problem of the unlabeled omponents(whih ontain only unlabeled examples and for whih a lass assignation isrisky). Indeed, the lak of labeled examples in these omponents an lead toarbitrary lass probabilities, and as a result, to arbitrary lassi�ation dei-sions. So all labeled examples in Ql (where Ql are the o-ourrenes for thelabeled data) are kept with their real lass labels and all unlabeled examplesin Qu (the o-ourrenes for the unlabeled data) are assigned a new fakelabel y = y0.



4 .5. ssPLSA with a fake label model 71In this ase the model parameters are
Λ = {P (α | x), P (z = y0 | α), P (w | α) : α ∈ A,x ∈ X , w ∈ W, z ∈ {y + y0}}The above model parameters Λ are obtained by maximizing the ompletedata log-likelihood

L1 =
∑

x∈Ql,w∈W

logP (w, x, z) (4 .3)using the Expetation-Maximization EM algorithm. In algorithm 16, thetraining of this model is summarized.

Figure 4 .2: Graphial model representation of the ssPLSA model with a fakelabel model.z ∈ {y + y0}At this point we have to note that the values of P (z|α) depend on thevalue of latent topi variable α. The ardinal of α is given, and in addition,the repartition of the α in di�erent lasses is also known, that is, the numberof latent topi variables per lass. So, in order to initialize, for the true lasses(i.e. for all z 6= y0) we fore to zero the P (z|α) for the latent topi variables αwhih do not belong to the partiular lass z, and for z = y0 we give randomvalues for all α.



72 Chapter 4 . Semi-Supervised Aspet ModelsThe omplexity of this algorithm is O(|A| ×M) where, as before, M =

#{(w, x)|n(w, x) > 0}.One the model parameters are obtained, if we want to assign the unla-beled data used in the learning stage to a lass (i.e. transdutive learning),for eah example x, we distribute the probability obtained for the "fake" label
z = y0, on the "true" labels using the following equation:

P (y|x) ∝
∑

α

P (α|x) [P (y|α) + λP (z=y0|α)] (4 .4)where λ ∈ [0, 1
K

] (where λ = 1
K orresponds to a uniform repartition ofunertain �fake� label on the other labels) and y = 1, . . . ,K.The ssPLSA-fake, an be seen as a on�dene measure for eah unlabeledexample to belong to a given lass. That is, after training, unlabeled examplesfor whih the model is more on�dent, are assigned to one of the real lasses.On the other hand, examples for whih the lassi�er has no on�dene willkeep their fake labels and, from the above equation, their in�uene will bedownweighted.A new example x is assigned to the lass with maximum posterior prob-ability using the same rule as before (equation 4 .4), using the P (z = y0|α)estimated during the training of the model.If we want to test our model on new data, after having trained the model,we assign a new example x to the lass with maximum posterior probabilityusing the equation (4 .4) above (as in the ase of the unlabeled examples inthe training set).



4 .6. ssPLSA-mislabeling with hard lustering 73Algorithm 16: Semi-Supervised PLSA (ssPLSA) with fake labelsInput :
• A set of partially labeled data X = Xl ∪Xu,
• Random initial model parameters Λ(0).
• j ← 0repeat
• E-step: Estimate the latent lass posteriors:
∀x ∈ X ,∀z ∈ C̃ = C + y0 , ∀w ∈ W,∀α ∈ A

π(j)
α (w, x, z) =

P (j)(α|x)P (j)(w|α)P (j)(z|α)

P (j)(w, z|x)where P (j)(w, z|x) =
∑

α∈A

P (j)(α|x)P (j)(w|α)P (j)(z|α)

• M-step: Estimate the new model parameters Λ(j+1)by maximizing the omplete-data log-likelihood:
P (j+1)(w|α) ∝

∑

x

n(w, x)π(j)
α (w, x, z(x))

P (j+1)(α|x) ∝
∑

w

n(w, x)π(j)
α (w, x, z(x))

P (j+1)(z|α) ∝
∑

w

∑

x,z

n(w, x)π(j)
α (w, x, z)

• j ← j + 1until onvergene of the omplete-data log-likelihood ;Output : A generative lassi�er with parameters Λ(j)4 .6 Semi-Supervised PLSA with a mislabeling er-ror model - hard lusteringIn this setion we introdue a semi-supervised variant of the PLSA modelin whih a mislassi�ation error is inorporated (namely the ssPLSA-mem



74 Chapter 4 . Semi-Supervised Aspet Modelshard). We assume that the labeling errors made by the generative modelfor unlabeled data ome from a stohasti proess and that these errors areinherent to semi-supervised learning algorithms. The idea here is to hara-terize this stohasti proess in order to redue the labeling errors omputedby the lassi�er for unlabeled data in the training set.We assume that for eah unlabeled example x ∈ Xu, there exists a perfet,true label y, and an imperfet label ỹ, estimated by the lassi�er. Assumingalso that the estimated label is dependent on the true one, we an modelthese labels by the following probabilities:
∀(k, h) ∈ C × C, βkh = P (ỹ = k|y = h) (4 .5)subjet to the onstraint that ∀h,∑k βkh = 1.In �gure 4 .3 below the graphial representation of this model for bothlabeled and unlabeled data is given.

Figure 4 .3: Graphial model representation of the semi-supervised PLSAwith a mislabeling error model, for labeled (left) and unlabeled (right) dou-ments.



4 .6. ssPLSA-mislabeling with hard lustering 75The underlying generation proess assoiated to this latent variable modelfor unlabeled data is:
• Pik an example x with probability P (x),
• Choose a latent variable α aording to its onditional probability P (α |
x)

• Generate a feature w with probability P (w | α)

• Generate the latent doument lass y aording to the probability P (y |
α)

• The imperfet lass label ỹ is generated with probability βỹ|y = P (ỹ | y)As in the ssPLSA-fake presented in the previous setion, the values of
P (y|α) depend on the value of the latent topi variable α. The ardinal of
α is given (as is onsidered as a hyper-parameter). The repartition of the
α in the lasses is also known for both labeled and unlabeled examples. Weinitialize by foring to zero the P (y|α) for the latent topi variables α whihdo not belong to the partiular lass y. These values remain �xed. In otherwords, we perform hard lustering. We have to note that the hard lusteringis done in terms of lasses, as an example an be a mix of several omponents,as far as these omponents are related to the same lass (y).With this new graphial model, the joint probability between an unlabeledexample q ∈ Qu and its imperfet lass label estimated by the lassi�er anbe expressed as

∀q ∈ Qu, P (w, x, ỹ) =
∑

α∈A

P (w|α)P (α|x)
∑

y∈C

βỹ|yP (y|α)The model parameters are in this ase:
Φ = {P (α | x), P (w | α), βỹ|y : x ∈ X , w ∈ W, α ∈ A, y ∈ C, ỹ ∈ C}and they are estimated by maximizing the omplete data log-likelihood:



76 Chapter 4 . Semi-Supervised Aspet Models
L2 =

∑

x∈Xl

∑

w

n(w, x) log
∑

α

P (x)P (w|α)P (α|x)P (y|α)

+
∑

x∈Xu

∑

w

n(w, x) log
∑

α

P (x)P (w|α)P (α|x)
∑

y

βỹ|yP (y|α)
(4 .6)The Maximum likelihood estimates of model parameters are:

P (j+1)(w|α) ∝
∑

x∈Xl

n(w, x)π(j)
α (w, x, y(x)) +

∑

x∈Xu

n(w, x)π̃(j)
α (w, x, ỹ(x))(4 .7)where

πα(w, x, y) =
P (α|x)P (w|α)P (y|α)∑
α P (α|x)P (w|α)P (y|α)

(4 .8)and
π̃α(w, x, ỹ) =

P (α|x)P (w|α)
∑

y P (y|α)βỹ|y∑
α P (α|x)P (w|α)

∑
y P (y|α)βỹ|y

(4 .9)are the latent topi posteriors for respetively the labeled and unlabeled data.
P (j+1)(α|x) ∝

∑

w

n(w, x)×






π
(j)
α (w, x, y(x)), for x ∈ Xl

π̃
(j)
α (w, x, ỹ(x)), for x ∈ Xu

(4 .10)The mislabeling probabilities are estimated over the unlabeled trainingset:
β

(j+1)
ỹ|y ∝

∑

w

∑

x∈Xu

n(w, x)
∑

α|α∈y

π̃(j)
α (w, x, ỹ) (4 .11)In algorithm 17 the estimation of model parameters Φ is desribed. Thisalgorithm is also an EM-like algorithm as the previous semi-supervised model.For the initialization of the model parameters Φ(0) are assigned random valuesby respeting the onstraints. Then, at eah iteration j during the E-step ,latent topi posteriors are estimated for labeled and unlabeled data using theurrent parameters Φ(j). During the M-step, new parameters Φ(j+1) are es-



4 .6. ssPLSA-mislabeling with hard lustering 77timated by maximizing the omplete data log-likelihood (equation 4 .6). Wealternate these two step until the onvergene of the omplete data likelihoodto a loal maximum.Algorithm 17: ssPLSA-mem hardInput :
• A set of partially labeled data X = Xl ∪Xu,
• Random initial model parameters Φ(0).
• j ← 0

• Run a simple PLSA algorithm for the estimation of the initial ỹrepeatE-step: Estimate the latent lass posteriors
πα(w, x, y) =

P (α|x)P (w|α)P (y|α)∑
α P (α|x)P (w|α)P (y|α)

, if x ∈ Xl

π̃α(w, x, ỹ) =
P (α|x)P (w|α)

∑
y P (y|α)βỹ|y∑

α P (α|x)P (w|α)
∑

y P (y|α)βỹ|y
, if x ∈ XuM-step: Estimate the new model parameters Φ(j+1)by maximizing the omplete-data log-likelihood

P (j+1)(w|α) ∝
∑

x∈Xl

n(w, x)π(j)
α (w, x, y(x)) +

∑

x∈Xu

n(w, x)π̃(j)
α (w, x, ỹ(x))

P (j+1)(α|x) ∝
∑

w

n(w, x) ×
{
π

(j)
α (w, x, y(x)), for x ∈ Xl

π̃
(j)
α (w, x, ỹ(x)), for x ∈ Xu

β
(j+1)
ỹ|y ∝

∑

w

∑

x∈Xu

n(w, x)
∑

α|α∈y

π̃(j)
α (w, x, ỹ)

j ← j + 1until onvergene of the omplete-data log-likelihood ;Output : A generative lassi�er with parameters Φ(j)The omplexity of this algorithm is O(|A| ×M ×C), whih is omparableto the one of PLSA and ssPLSA-fake.



78 Chapter 4 . Semi-Supervised Aspet Models4 .7 Semi-Supervised PLSA with a mislabeling er-ror model - Soft lusteringIn this setion we present an extention of the previous model, namely thessPLSA-mem soft. We mentioned that in ssPLSA-mem hard we performhard lustering by �xing the values of P (y|α). The idea here is to performsoft lustering for the unlabeled data. In other words, the repartition for theunlabeled data is not �xed. We denote by P̃ (y|α) the values for the unlabeleddata, whih are obtained during the training of the model. For the labeledexamples, we initialize, as before, by foring to zero the P (y|α) for the latenttopi variables α whih do not belong to the partiular lass y.We deided to perform hard lustering for the labeled examples, beause,as disussed in (Gaussier and Goutte, 2005), the soft lustering potentiallyfaes the problem of luster impurity : all omponents ontain examples fromseveral lasses instead of �speialising� to one or few lasses. As a onse-quene, even if we use the unlabelled data to better model these omponents,this will not help to disriminate the di�erent lasses. On the other hand, byallowing soft lustering only on the unlabeled examples, we do not fae thisproblem and in addition we give the possibility to the unlabeled examples tobe distributed over all omponents.Hene, in this ase the joint probability between an unlabeled example q ∈
Qu and its imperfet lass label estimated by the lassi�er an be expressedas

P (w, x, ỹ) = P (x)
∑

α∈A

P (w|α)P (α|x)
∑

y∈C

βỹ|yP̃ (y|α)The model parameters
Ψ = {P (α | x), P (w | α), βỹ|y, P̃ (y|α) : x ∈ X , w ∈ W, α ∈ A, y ∈ C, ỹ ∈ C}are estimated by maximizing the omplete data log-likelihood:



4 .7. ssPLSA-mislabeling with soft lustering 79
L3 =

∑

x∈Xl

∑

w

n(w, x) log
∑

α

P (x)P (w|α)P (α|x)P (y|α)

+
∑

x∈Xu

∑

w

n(w, x) log
∑

α

p(x)p(w|α)p(α|x)
∑

y

βỹ|yP̃ (y|α)
(4 .12)As we an notie, the di�erene with the ssPLSA-hard strategy, relieson the introdution of P̃ (y|α) for unlabeled data, whih is not �xed, butis estimated during the EM algorithm. In order to initialize this parameter,we do not fore to zero any of its values, but nevertheless, we favorize theomponents for whih the P (y|α) of the labeled examples is not zero, bygiving them bigger values. In other words, we initialize this parameter insuh a way so that it is not very far from the P (y|α) (but on the other handwe do not fored to zero any value, as we want to perform soft lustering).We deided to initialize that way in order to avoid identi�ability problemswhih an our. For the training of the urrent model, we use again theequations (4 .7), (4 .10), (4 .11) and (4 .8), but this time the latent topiposterior π̃α(w, x, ỹ) for the unlabeled data is de�ned as follows:

π̃α(w, x, ỹ) =
P (α|x)P (w|α)

∑
y P̃ (y|α)βỹ|y∑

α P (α|x)P (w|α)
∑

y P̃ (y|α)βỹ|y

(4 .13)In addition, the P̃ (y|α) is estimated over the unlabeled training set:
P̃ (j+1)(y|α) = P̃ (j)(y|α)

∑

w

∑

x∈Xu

n(w, x)
P (j)(α|x)P (j)(w|α)β

(j)
ỹ(x)|y

∑
α P

(j)(α|x)P (j)(w|α)
∑

y P̃
(j)(y|α)β

(j)
ỹ|y(4 .14)The proedure for estimating model parameters Ψ is desribed in algo-rithm 18.The omplexity of this algorithm is O(|A| ×M ×C), whih is omparablewith the one of the semi-supervised Naive Bayes (as presented in hapter 2)and ssPLSA-fake algorithms.



80 Chapter 4 . Semi-Supervised Aspet ModelsAlgorithm 18: ssPLSA-mem softInput :
• A set of partially labeled data X = Xl ∪Xu,
• Random initial model parameters Ψ(0).
• j ← 0

• Run a simple PLSA algorithm for the estimation of the initial ỹrepeatE-step: Estimate the latent lass posteriors
πα(w, x, y) =

P (α|x)P (w|α)P (y|α)∑
α P (α|x)P (w|α)P (y|α)

, if x ∈ Xl

π̃α(w, x, ỹ) =
P (α|x)P (w|α)

∑
y P̃ (y|α)βỹ|y∑

α P (α|x)P (w|α)
∑

y P̃ (y|α)βỹ|y

, if x ∈ XuM-step: Estimate the new model parameters Ψ(j+1)by maximizing the omplete-data log-likelihood
P (j+1)(w|α) ∝

∑

x∈Xl

n(w, x)π(j)
α (w, x, y(x)) +

∑

x∈Xu

n(w, x)π̃(j)
α (w, x, ỹ(x))

P (j+1)(α|x) ∝
∑

w

n(w, x)×
{
π

(j)
α (w, x, y(x)), for x ∈ Xl

π̃
(j)
α (w, x, ỹ(x)), for x ∈ Xu

β
(j+1)
ỹ|y ∝

∑

w

∑

x∈Xu

n(w, x)
∑

α|α∈y

π̃(j)
α (w, x, ỹ)

P̃ (j+1)(y|α) = P̃ (j)(y|α)
∑

w

∑

x∈Xu

n(w, x)
P (j)(α|x)P (j)(w|α)β

(j)
ỹ(x)|y

∑
α P

(j)(α|x)P (j)(w|α)
∑

y P̃
(j)(y|α)β

(j)
ỹ|y

j ← j + 1until onvergene of the omplete-data log-likelihood ;Output : A generative lassi�er with parameters Ψ(j)

The experiments in hapter 6 will prove that the soft lustering in the un-



4 .8. Conlusion 81labeled training data is really bene�ial, espeially when the ratio of labeled-unlabeled data is very low.Remarks The following matrix sums up the models presented in this hap-ter, omparing the parameters they ontrol and their omplexity. As we ansee the omplexity of all four is omparable. In hapter 6, we test these meth-ods and disuss how the di�erent parameters an a�et their performanes.All the above models an be performed diretly in multilass lassi�ationtasks, without any modi�ation. And this an be proved a great advantagewith respet to binary lassi�ation semi-supervised models, as in may realworld lassi�ation problems are multilass, and many of the existing meth-ods annot handle multilass problem easily.Parameters ComplexityModels P (w|α) P (α|x) P (ỹ|y) P (y|α) O()PLSA √ √
O(|A| ×M)ssPLSA-fake √ √ √
O(|A| ×M)ssPLSA-mem hard √ √ √

O(C × |A| ×M)ssPLSA-mem soft √ √ √ √
O(C × |A| ×M)Table 4 .1: Comparison of the di�erent variants of the semi-supervised PLSAmodel. For the omplexities M = #{(w, x)|n(w, x) > 0}4 .8 ConlusionIn this hapter we presented three semi-supervised variants of the Probabilis-ti Latent Semanti Analysis. These aspet models use both label and unla-beled data and at the same time, they model the possible mislabeling errors.First a variant (ssPLSA-fake) whih uses fake labels is presented and thentwo slightly di�erent models were proposed (ssPLSA-mem hard and ssPLSA-mem soft). In the next hapter, we extend these models by ombining themwith two di�erent ative learning tehniques.





5Ative Semi-supervised AspetModels
Contents 5 .1 Introdution . . . . . . . . . . . . . . . . . . . . 835 .2 Margin-Based Method . . . . . . . . . . . . . . 855 .3 Entropy-Based Method . . . . . . . . . . . . . 865 .4 Conlusion . . . . . . . . . . . . . . . . . . . . . 885 .1 IntrodutionIn this hapter, we extend the presented semi-supervised models, by ombin-ing them with two ative learning methods. The motivation is to try to takeadvantage of the harateristis of both frameworks.As disussed in hapter 3, the ombination of both semi-supervised andative learning appears to be partiularly bene�ial in reduing the annotationburden for the following reasons:1. It onstitutes an e�ient way of solving the exploitation/explorationproblem: semi-supervised learning is more foused on exploitation, while
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Figure 5 .1: Combining semi-supervised and Ative learningative learning is more dediated to exploration. Semi-supervised learn-ing alone may lead to poor performane in the ase of very sare initialannotation. It then strongly su�ers from poorly represented lasses,while being very sensitive to noise and potentially instability. On theother hand, ative learning alone may spend too muh time queryinguseless examples, as it an not exploit the information given by theunlabeled data.2. In the same vein, it may alleviate the data imbalane problem due toeah method separately. Semi-supervised learning tends to over-weighteasy-to-lassify examples that will dominate the proess, while ativelearning has the opposite strategy, resulting in exploring more deeplythe hard-to-lassify examples (Tür et al., 2005).3. Semi-supervised learning is able to provide a more motivated estima-tion of the on�dene sore assoiated to the lass predition for eah



5 .2. Margin-Based Method 85example, taking into aount the whole data set, inluding the unla-belled data. As a onsequene, ative learning based on these betteron�dene sores an be expeted to be more e�ient.In the next two setions, we present two di�erent ative learning methodswhih an be performed on the top of the semi-supervised models presentedin the previous hapter. These model an be also used with any other semi-supervised probabilisti model. In both methods, we hoose to annotate theless on�dent example. Their di�erene lies on the measure of on�denethey use.5 .2 Margin-Based MethodThe �rst ative learning method (the so-alled margin method) hooses toannotate the example whih is loser to the lasses' boundaries (Kritharaet al., 2006). The latter gives us a notion of on�dene the lassi�er has onthe lassi�ation of these examples. In order to measure this on�dene weuse the following lass-entropy measure for eah unlabeled example:
B(x) = −

∑

y

P (y|x) log P (y|x), where x ∈ Xu (5 .1)The bigger the B is, the less on�dent the lassi�er is about the labeling ofthe example. After having seleted an example, we annotate it and we add itto the initial labeled set Xl. More than one examples an be seleted at eahiteration. The reason is that, espeially for lassi�ation problems with a bigamount of examples and many lasses, the annotation of only one exampleat a time, an be proved time-onsuming, as a respetful amount of labeledexamples will be needed in order to ahieve good performanes. If we hooseto do the latter, it is not wise to hoose examples that are next to eah other,as they annot give us more information than eah of them does. As a result,it is better to hoose, for instane, examples with big lass-entropy whihhave been given di�erent labels. That way the lassi�er an get informationabout di�erent lasses and not only one.



86 Chapter 5 . Ative Semi-supervised Aspet ModelsAlgorithm 19 gives us the general framework under whih the above ativelearning method an be ombined with any semi-supervised variant of thePLSA model.Algorithm 19: Combining ssPLSA and Ative LearningInput : A set of partially labeled douments X = Xl ∪ Xurepeat
• Run the ssPLSA algorithm (and alulate the P (y|x))
• Estimate the on�dene of the lassi�er on the unlabeledexamples: ∀x ∈ Xu, B(x) = −∑y P (y|x) log P (y|x)

• Choose the example(s) with low on�dene, i.e. higher value of B(if we hoose more than one example to label, we hoose exampleswith have been lassi�ed into di�erent lasses )and add them in the labeled dataset Xluntil a given number of queries or a ertain performane ;Output : A generative lassi�er
5 .3 Entropy-Based MethodIn this setion, we present another ative learning method, whih an be om-bined with the semi-supervised framework. Based on the method presentedby (Dagan and Engelson, 1995), we alulate the entropy of the annotationof the unlabeled data, during the iterations of the algorithm. This methodan be seen as a query by ommittee approah, where, in ontrast to themethod of (Dagan and Engelson, 1995), the ommittees here are the di�erentiterations of the same model.In ontrast to the margin based method presented previously, the urrentone does not use the probabilities P (y|x) of an example x to be assigned thelabel y but, instead, is uses the deterministi votes of the lassi�er during thedi�erent iterations. We denote by V (y, x) the number of times that the label
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y was assigned in the example x during the previous iterations.Then, we denote as Vote Entropy of an example x as:

V E(x) = −
∑

y

V (y, x)

iters
log

V (y, x)

iters
(5 .2)where iters refers to the number of iterations.The examples to be labeled are hosen using equation (5 .2), that is, ex-amples with higher entropies are seleted. As long as we add new examplesduring the iterations, the labeling of some examples will hange as, new infor-mation will be given to the lassi�er. Thus, the strategy hooses the examplesfor whih the lassi�er hanges its deision more often during the iterations.We have to note, that during the �rst 2-3 iterations, we do not have enoughinformation in order to hoose the best examples to label, but very quiklythe ative learner manage to identify these examples. The intuition behindthis model is that examples whih tend to hange labels are those for whihthe lassi�er seems more undeided. In algorithm (20) the ombination ofthis method with the semi-supervised PLSA is desribed.Algorithm 20: Combining ssPLSA and Ative LearningInput : A set of partially labeled douments X = Xl ∪ Xurepeat

• Run the ssPLSA algorithm
• Update the V E for eah of the examples, aording to thedeision of the lassi�er in the urrent iteration
• Choose the example(s) with the highest entropy and add themin the labeled dataset Xluntil a ertain number of queries or a ertain performane ;Output : A generative lassi�er



88 Chapter 5 . Ative Semi-supervised Aspet Models5 .4 ConlusionIn this hapter, we propose the ombination of the semi-supervised PLSAmodels presented in the previous hapter with two ative learning methods.Both try to measure the on�dene of the lassi�er by using two di�erentstrategies. The less on�dent examples are hosen for annotation and thelassi�er is retrained with the updated training set. In the next hapter wedisuss the performane of these models, and the bene�ts they an o�er tothe semi-supervised learning.
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Contents 6 .1 Introdution . . . . . . . . . . . . . . . . . . . . 896 .2 Doument Categorization . . . . . . . . . . . . 906 .2.1 Data Representation . . . . . . . . . . . . . . 916 .3 Datasets . . . . . . . . . . . . . . . . . . . . . . 936 .4 Evaluation Measures . . . . . . . . . . . . . . . 966 .5 Experiments . . . . . . . . . . . . . . . . . . . . 966 .5.1 ssPLSA Results . . . . . . . . . . . . . . . . . 1016 .5.2 Ative ssPLSA Results . . . . . . . . . . . . . 1066 .6 Conlusion . . . . . . . . . . . . . . . . . . . . . 1116 .1 IntrodutionIn the two previous hapters, di�erent methods for semi-supervised and ativelearning have been presented. In the urrent hapter, we try to evaluate allthese models and ompare their performane with some well known state-of-the-art tehniques. We are fousing on doument lassi�ation, that westart to desribe. Then, we present the datasets we used for the ompqrisons.Then, an evaluation with a real-world dataset, provided by a Xerox BusinessGroup, is performed.



90 Chapter 6 . Evaluation6 .2 Doument CategorizationDoument Categorization (or lassi�ation) refers to the task of assigning at-egories, to a given set of douments. The automated ategorization frameworkdates from the early 60's when knowledge engineering tehniques were used inorder to built manually lassi�ers, by de�ning a set of rules enoding expertknowledge (for example (Hayes et al., 1990)). But it was only in the beginningof the 90's that doument ategorization has started to draw the attentionof the Mahine Learning ommunity. The motivation was both the applia-tive interests, and the inreasing amounts of available data (Sebastiani, 2002).

Figure 6 .1: The proedure of ategorization: given some training examplesalready labeled (for example a set of douments or a set of images) and thespei�ed ategories, a lassi�er is trained. Then, the latter is able to lassifynew unlabeled instanes to the respetive ategories.Categorizing data into themati ategories usually follows the supervisedlearning paradigm: we train a learner using some already lassi�ed instanesand then this trained learner is used to lassify new unlassi�ed instanes(�gure 6 .1).



6 .2. Doument Categorization 916 .2.1 Data RepresentationIn order for a learning algorithm to interpret a dataset, the latter has to beproessed to a form whih the algorithm an proess. One of the most widelyused representations is a multidimensional feature vetor. The intuition be-hind this representation is simple: examples whih ontain the same featuresprobably belong to the same topis.
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Figure 6 .2: The douments are represented as a term-doument matrix,where the frequeny of a term within a doument is given.In the ase of doument lassi�ation, this representation orresponds tothe so-alled bag-of-words. In the latter, features are words ouring in thedouments. It is ommon to do some additional pre-proessing before reat-ing the multidimensional feature vetor. That inludes stemming, removal ofvery ommon words and ollapsing of multiple ourrenes of words into one.That way we are able to derease the dimensionality of the data and, as aresult, we an gain in terms of time and performane.After determining the features whih are going to be used (i.e. the wordsremaining after the pre-proessing), we alulate the matrix of the featurefrequenies, that is, the number of times a given word appears in eah dou-



92 Chapter 6 . Evaluationment in the olletion (�gure 6 .2). In other terms, we denote eah doument
x ∈ X as a vetor x =< n(w, x) >w∈W , where w indiates the features fromthe set of features W = {w1, . . . , wNw}, and n(wi, x) the number of times theword wi ours in the doument x. This ount is sometimes normalized toprevent a bias towards longer douments and results in values in the rangebetween 0 and 1.As a partiular ase, some authors (Lewis and Ringuette, 1994; Koller andSahami, 1997; Shapire and Singer, 2000) have used a binary matrix to rep-resent their datasets, where 1 denotes the presene of a word in a doumentand 0 its absene. In general, suh a representation is used when the appliedalgorithm an only handle symboli or non-numeri values.Another very ommon tehnique is the weighting of the features, by usingthe tf · idf sore (for example (Salton and Bukley, 1988)). The latter refersto the �term frequeny-inverse doument frequeny� weighting funtion. Inother words, instead of just ounting the words in the douments, we weightthe features' frequenies by using the following transformation:

tfidf(wj, xi) = n(wj, xi) log
|X |

#X (wj)
(6 .1)where |X | denotes the total number of douments in the olletion and #X (wj)the number of douments in whih wj ours at least one (also known asdoument frequeny of term wj).Di�erent variants of the bag-of-words representation an be used, aord-ing to the needs of the learning algorithm used. For example, in graphialmethods, an adjaeny (weight) matrix is usually used. The weights repre-sent the similarity between the examples and an be alulated using di�erentfuntions (e.g. the Gaussian kernel).Nevertheless, the use of the bag-of-words representation has some draw-baks. In the ase of doument lassi�ation for example, problems an be



6 .3. Datasets 93aused by the properties of the human languages: polysemy and synonymy.Aording to the former, there exist words whih have more than one meaning.As a result, if two douments ontain suh a word, they will be ategorizedin a similar way, even if they talk about ompletely di�erent topis. For ex-ample, let us onsider two douments whih ontain the word �apple�: usingthe bag-of-words representation they will be lassi�ed in the same way, evenif the one talks about fruits and the other about ma omputers. The seondproperty, synonymy, an lead to the opposite situation: if two doumentsontain two di�erent words with the same meaning (for example, �ar� and�automobile�) they will not be lassi�ed in the same ategory even if they talkabout the same topi. As we desribed in hapter 4, we have hosen to useAspet models, in order to overome these problems.6 .3 DatasetsIn our experiments we used four di�erent datasets: two olletions from theCMU World Wide Knowledge Base projet - WebKB and 20Newsgroups, thewidely used text olletion of Reuters (Reuters − 21578) and a real-worlddataset from Xerox. As mentioned before, we are onentrated in doumentlassi�ation; nevertheless, the algorithms desribed in the previous haptersan be also used for di�erent appliations in whih there is a relation of o-orene between objets and variables suh as image lassi�ation.The 20Newsgroups dataset4 is a state-of-the-art doument olletion fortext lassi�ation. The data set is a olletion of approximately 20000 news-group douments, organized into 20 di�erent newsgroups, eah orrespondingto a di�erent topi. Some of the newsgroups are very losely related to eahother (e.g. omp.sys.ibm.p.hardware / omp.sys.ma.hardware), while oth-ers are highly unrelated (e.g mis.forsale / so.religion.hristian). In �gure6 .3 all the di�erent 20 newsgroups are presented, partitioned (more or less)aording to subjet matter.4http://people.sail.mit.edu/jrennie/20Newsgroups/
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20 Newsgroups
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MISCFigure 6 .3: The struture of the 20 Newsgroups dataset.The WebKB dataset5 (Craven et al., 1998) ontains web pages gatheredfrom 4 di�erent university omputer siene departments (Cornell, Texas,Washington and Wisonsin). The pages are divided into seven ategories. Inour evaluation, we use the four most used entity-representing ategories inthe literature (Nigam et al., 2000): student, faulty, ourse and projet, alltogether ontaining 4196 pages.The Reuters dataset6 onsists of 21578 artiles and 90 topi ategoriesfrom the Reuters newswire. We seleted the douments whih belong only toone lass, and in addition we only kept the lasses whih ontain at least 100douments. This gave as a base of 4381 douments lassi�ed in 7 di�erentlasses: ACQ (1084), EARN (2052), CRUDE (296), GRAIN (286), INTER-EST (106), MONEY (377) and TRADE (207).These three datasets were pre-proessed as follows:
• Email tags as well as other non-alpha numeri terms were removed
• All douments were tokenized on white spae and puntuation
• tokens in less than 5 douments in eah test olletion were disarded
• A total of 608 stopwords from the CACM stoplist7 were removed fromeah doument.5http://www.s.mu.edu/afs/s.mu.edu/projet/theo-20/www/data/6http://www.daviddlewis.om/resoures/testolletions/reuters21578/7http://ir.ds.gla.a.uk/resoures/test_olletions/am/



6 .3. Datasets 95No other form of pre-proessing (stemming, multi-word reognition et.) wasused on the douments. Table 6 .1 summarizes the harateristis of thesedatasets. Dataset 20Newsgroups WebKB ReutersColletion size 20000 4196 4381
# of lasses, K 20 4 7Voabulary size, |W| 38300 9400 4749Training set size, |Xl ∪Xu| 16000 3257 3504Test set size 4000 839 876Table 6 .1: Charateristis of the datasetsXLS datasetApart from the datasets above whih, as we mentioned, are widely used forevaluation of di�erent lassi�ation algorithms in the Mahine Learning om-munity, we used a real world dataset (alled XLS) whih was provided by aXerox Business Group (XLS). As we mentioned in the introdution of thisthesis, the developpement of our models was done in the framework of re-searh projet onduted in Xerox Researh Centre Europe. The motivationwas to extend a previously developed lassi�ation system by adding the as-pets of semi-supervised and ative learning that we developped here. As aresult, we ompared our models, with the previous lassi�ation system (Cat-egoriX), in order to evaluate the amelioration they ould o�er.The Xerox Litigation Servies (XLS) business group is looking to improvetheir operations by integrating the Xerox CategoriX Tehnology into their on-line portal. XLS tehnology is intended to provide ustomers an e�ient andseure way to ollaborate with law �rms, partners and government agenies onlitigation and regulatory ompliane matters. It provides the identi�ation,�ltering, prodution and storage of relevant data in the form of paper andeletroni douments. Examples of eletroni douments inlude: email, text�les, memos, databases, presentations and spreadsheets. XLS have provideda sample of douments as well as a list of ategories on whih we performed



96 Chapter 6 . Evaluationour experiments.This dataset ontains 20000 douments in the training set and 34770in the test set. The douments onsist of approximately 40% emails, 20%Mirosoft Word douments; 20% Mirosoft Exel douments, 10% MirosoftPower point douments and 10% PDF and other douments. We want tolassify the douments as Responsive and Non-Responsive to a partiulargiven ase. The two ategories are balaned (50%/50%). We ompared ourresults, with the ones of the urrent version of CategoriX.6 .4 Evaluation MeasuresIn order to evaluate the performane of the models, we used the miroaverageF-sore measure for all experiments.For eah lassi�er, Gf , we �rst ompute its miroaverage preision P andreall R by summing over all the individual deisions it made on the test set:
R(Gf ) =

∑K
k=1 θ(k,Gf )

∑K
k=1(θ(k,Gf ) + ψ(k,Gf ))

P (Gf ) =

∑K
k=1 θ(k,Gf )

∑K
k=1(θ(k,Gf ) + φ(k,Gf ))Where, θ(k,Gf ), φ(k,Gf ) and ψ(k,Gf ) respetively denote the true posi-tive, false positive and false negative douments in lass k found by Gf . TheF-sore measure is then de�ned as (Lewis and Ringuette, 1994):

F (Gf ) =
2P (Gf )R(Gf )

P (Gf ) +R(Gf )6 .5 ExperimentsWe ompared the performane of the models on the 4 datasets by varyingthe perentage of labeled examples in the training set and using 10-fold ross



6 .5. Experiments 97validation. We performed 10 runs for eah of the folds and we alulatedthe average F-sore (as we initialize some of the variables by random, wewanted to ensure that the obtained results do not depend on this randominitialization). In order to evaluate the signi�ane of the obtained results,we perfomed a t-test at the 5% signi�ane level.For the three well-known datasets (WebKB, Reuters and 20Newsgroups),we ompared our models with two state-of-the-art methods in text lassi�a-tion: the semi-supervised Naive Bayes lassi�er (Nigam et al., 2000) and thetransdutive SVM lassi�er (SVM-light pakage (Joahims, 1999)). For thelatter, we used a linear kernel and we optimized the ost parameter, using anested ross-validation. We performed the one vs. all strategy (we fusion theresults by hoosing, for eah example, the lass with the maximum sore). Weould pssibly obtain better results from TSVM if we had used a non-linearkernel, but the latter was omputationaly intratable, omparing with theomputational time of the other models.For the XLS dataset, we ompared our models with the supervised PLSAmodel, as used for the CategoriX system.For all four datasets, we �xed the value of λ = 0.01 of the ssPLA-fakealgorithm (we have tried di�erent values of lambda, but 0.01 gave us the bestresults).In order to have an upper bound on the performane of the ompared las-si�ers,we �rst ompare the systems in a fully supervised way, that is when
100% of the douments in the training set have their true labels and are usedfor training the lassi�ers. Table (6 .2) sums up these results. As we annotie, all PLSA models behave identially, whih is expeted, if we onsiderthat there are no unlabeled training douments, and as a result, no fakes ormislabeling errors to haraterize.In order to evaluate empirially the e�et of unlabeled douments for



98 Chapter 6 . Evaluation20Newsgroups WebKB ReutersSystem F-sore (%) F-sore (%) F-sore (%)Naive Bayes 88.23 84.32 93.89PLSA |A| = 40 |A| = 16 |A| = 1489.72 85.54 94.29SVM 88.98 85.15 89.50Table 6 .2: Comparison of the F-sore measures between the NaiveBayes and PLSA generative models as well as the SVM lassi�er on20Newsgroups, WebKB and Reuters test sets, where |A| is the number ofomponents. All lassi�ers are trained in a fully supervised way.training the models we have also trained the PLSA model in a purely super-vised way (with the orresponding perentage of randomly seleted labeleddouments). We used the supervised PLSA model desribed in hapter 4.Number of Components. As we mentioned in the desription of the mod-els, the number of latent variables |A| (i.e. the number of omponents) mustbe de�ned by the user, during the initialization. The latter depends mostlyon the dataset and its distribution. As a result, the issue of how to hoose thisnumber ours, as this parameter is quite important for the performane ofthe models (espeially in the semi-supervised framework). We tried di�erenttehniques, in order to �nd whih is the most onvenient one.We �rstly tried to �nd the best number of omponents empirially, i.e.by doing ross-validation using di�erent number of omponents and ompar-ing the results. In this framework, we perfomed some experiments undertwo di�erent senarios: In the �rst, we onsidered that all lasses have anequal number of omponents (Method 1). In the seond, we onsider that wehave at least one omponent per lass, and in addition, we have a number ofomponents that we do not know in whih lass they belong, i.e. we let thealgorithm to assign them in the di�erent lasses during the training proess(Method 2). Table (6 .3) presents some representative results obtained forthe 20Newsgroups dataset for di�erent numbers of omponents and for 10-



6 .5. Experiments 99fold ross-validation. 20NewsgroupsMethod 1 Method 2

|A| F-sore (%) |A| F-sore (%)
20 (1 per lass) 88.93 ± 0.51 20 (0 additional) 88.93 ± 0.51

40 (2 per lass) 89.72± 0.46 25 (5 additional) 88.52 ± 0.63

60 (3 per lass) 89.21 ± 0.30 30 (10 additional) 89.13 ± 0.18

80 (4 per lass) 88.77 ± 0.21 40 (20 additional) 89.32± 0.36
100 (5 per lass) 87.34 ± 0.49 50 (30 additional) 88.83 ± 0.43

120 (6 per lass) 87.73 ± 0.65 60 (40 additional) 88.49 ± 0.21Table 6 .3: Comparison of the F-sore measures on 20Newsgroups for thesupervised PLSA. The �rst variant we have |A| omponents, equally splitedin the lasses and the seond one supposes we have one omponent per lassplus a number of additional omponentsWe also tried to de�ne the number of omponents using a more sophis-tiated way: the idea was to start with one omponent per lass, and theniteratively �nd and split the most heterogeneous omponents. In order toalulate the heterogeneity of a omponent we used the following equation:
volume(α) =

∑
x P (α|x)KL(P (w|x), P (w|α))∑

x P (α|x)where KL() refers to the Kullbak-Leibler divergene (Kullbak and Leibler,1951). The above equation is atually measuring the average distane of theexamples and the omponent they belong to: the loser the examples are inthe pro�le of the omponent, the more homogeneous the omponent is. Theresults of this method are presented in table (6 .4).As we an see from both tables (6 .3,6 .4), this method do not seem toobtain better results than the previous one, and in addition is more omplexin terms of omputation. The results we obtained for the other datasets in-diate the same onlusion. By simply �xing the number of omponents perlass we obtain good performane for PLSA. We have performed the same



100 Chapter 6 . Evaluation20NewsgroupsHeterogeneity
|A| F-sore (%) |A| F-sore (%)

20 (0 splits) 88.93 ± 0.51 50 (30 splits) 89.11 ± 0.35

25 (5 splits) 88.72 ± 0.29 60 (40 splits) 88.21 ± 0.72

30 (10 splits) 89.03 ± 0.11 100 (60 splits) 88.27 ± 0.51

40 (20 splits) 89.73± 0.67 120 (100 splits) 87.86 ± 0.55Table 6 .4: F-sore on 20Newsgroups for the supervised PLSA. We start withone omponent per lass. We alulate the heterogeneity of the omponentsand we split them approprietily. The |A| indiates the �nal number of om-ponents after di�erent splits. In the seond one we alulate the AIC and wehoose the number for whih the latter is bigger.kind of experiments for the semi-supervised ase (espeially when the numberof labeled examples is really small). The results we obtained by performingthe above methods indiated also that the ross-validation seems to be moste�ient for the hoie of |A|. The infuene of |A| in the semi-supervised aseis disussed in more details in the next setion, as the ssPLSA is more sensi-tive to the initialization.For our datasets we obtained the best results by using |A| = 40 for the20Newsgroups, |A| = 16 for the WebKB, |A| = 14 for the Reuters, and |A| = 4for the XLS.All these experiments, were performed in a non nested ross validation.That is, we performed the methods above in a supervised way, in order to�nd the best number of omponents for eah dataset, and then we performedthe experiments with our methods. We have hosen this proedure, for onemain reason: in the semi-supervised setting, and espeially when the ratio oflabeled and unlabeled examples is very low, we do not have enough data todetermine the best number of omponets.To sum up, we an onlude that by simply supposing that the lasseshave an equal number of omponents and alulating it using ross-validation,



6 .5. Experiments 101we an obtain tquite good performaes, at least for the datasets we used inour evaluation. As a result, we deided to use this method instead of a moresophistiated one.6 .5.1 ssPLSA ResultsIn this setion, we present the results obtained for the semi-supervised mod-els alone. Figures (6 .4) and (6 .5) show the F-sore measure over the testsets on the three data olletions (20Newsgroups, WebKB and Reuters) forsemi-supervised learning for di�erent ratio of labeled-unlabeled doumentsin the training set. 5% in the x-axis means that 5% of the labeled dou-ments (|Xl|) in the training sets were used for training, the 95% remain-ing being used as unlabeled training douments (|Xu|). We ompared thethree semi-supervised variants of PLSA, as presented in hapter 4, with theTSVM and semi-supervised Naive Bayes. The ssPLSA-mem soft uniformlyoutperforms the other models on these datasets. This is partiularly lear for20Newsgroups whih is a more omplex lassi�ation problem. With only
5% of labeled douments in the training set, the F-sore of the ssPLSAwith mislabeling algorithm is about 8% over the ssPLSA with fake labelson 20Newsgroups. Using only 10% allows to reah 80% of the maximum F-sore on 20Newsgroups while the 90% remaining labeled douments allowsto reah the maximum performane level. The semi-supervised Naive Bayesmodel outperforms on the other hand the ssPLSA-fake labels on all datasets.This might be due to the fat that the ssPLSA-fake algorithm tries to measurethe on�dene of the results, rather than diretly ameliorate the performane.As we an notie, the results of the TSVM are bad in these experiments.This an be explained by the fat that the model was initially designed for2-lass lassi�ation problems and the one vs. all strategy does not give ade-quate reognition of lasses.In order to evaluate empirially the e�et of unlabeled douments fortraining the models we have also trained the PLSA model in a supervised
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5% labeled data, the fully supervised PLSA reahes 52.5% F-sore auraywhile ssPLSA-fake ahieve 63% and ssPLSA-mem Hard ssPLSA-mem Softahieve 79%. As we an notie on the �gure 6 .6, the gain with the use of theunlabeled data is similar for the other two datasets (WebKB and Reuters).One interesting aspet of our experimental results is that the behavior ofthe three ssPLSA variants is very di�erent when the number of latent vari-ables per lass inreases. As we mentioned in the previous setion, the latteris de�ned during the initialization. In the semi-supervised framework, theinitialization is more sensitive omparing with the supervised ase, and as aresult the number of omponents has an important in�uene in the perfor-mane. As we an see in the table 6 .5, for the ssPLSA-fake approah thevariability of the results inreases when more omponents are added to themodel. Overall, this approah yields onsistently lower performane than thessPLSA-mem approahes, whih in addition seem less sensitive to varyingnumbers of omponents. Notie how, when the number of omponents per



104 Chapter 6 . Evaluationlass is inreased from 1 to 2 orresponding respetively to |A| = 20 and
|A| = 40 for 20Newsgroups dataset or 4, |A| = 16 for the WebKB dataset, theperformane of the ssPLSA-mem approah inreases slightly, but onsistently.In addition, the variability of the results is mostly well ontained and gen-erally smaller than for the ssPLSA-fake approah. The results for the othertwo datasets indiate the same trend of the algorithms. This result, givesan advantage in the two ssPLSA-mem methods: the hoie of the numberof omponents is not of that ruial importane as it is for the ssPLSA-fakemodel. 20Newsgroups1% 5% 20% 40%
|A| = 20

ssPLSA-mem Soft 65.96 ± 0.89 79.13 ± 0.11 83.59 ± 0.66 85.63 ± 0.42ssPLSA-mem Hard 57.52 ± 0.59 76.42 ± 0.16 83.24 ± 0.57 85.54 ± 0.3ssPLSA-fake 57.04 ± 0.68 63.75 ± 0.78 70.05 ± 0.68 79.59 ± 0.28

|A| = 40
ssPLSA-mem Soft 66.23± 0.52 80.01± 0.23 84.42± 0.73 85.9± 0.85ssPLSA-mem Hard 58.24 ± 0.46 77.18 ± 0.2 83.47 ± 0.35 85.76± 0.69ssPLSA-fake 57.87 ± 0.41 59.75 ± 1.09 65.75 ± 0.98 78.86 ± 0.39WebKB1% 5% 20% 40%

|A| = 4
ssPLSA-mem Soft 60.25 ± 0.64 72.97 ± 0.24 79.84 ± 0.96 79.57 ± 0.26ssPLSA-mem Hard 49.25 ± 0.73 70.03 ± 0.63 79.61 ± 0.52 79.52 ± 0.17ssPLSA-fake 44.42 ± 0.78 59.76 ± 0.84 68.94 ± 0.79 72.63 ± 0.59

|A| = 16
ssPLSA-mem Soft 60.56± 0.29 73.67± 0.33 80.56± 0.42 80.94± 0.72ssPLSA-mem Hard 49.84 ± 0.67 70.85 ± 0.51 80.67 ± 0.32 80.83± 0.49ssPLSA-fake 47.97 ± 0.87 62.76 ± 0.58 70.65 ± 0.86 73.78 ± 0.34Table 6 .5: F-sore for varying proportions of labeled-unlabeled training data,for the three variants of the semi-supervised PLSA (ssPLSA-fake, ssPLSA-mem Hard, ssPLSA-mem Soft) and di�erent numbers of the latent topis |A|.Bold indiates statistially better results, measured using a t-test at the 5%signi�ane level.For the XLS dataset, as we mentioned before, we ompare the semi-supervised models with the urrent supervised version of the Categorix Sys-tem. The latter uses the supervised PLSA model. We did not performed anyomparison with semi-supervised Naives Bayes and TSVM as we did for theother datasets. As we mentioned before, the proposed models are developped
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Figure 6 .7: F-Sore (y-axis) versus, the perentage of labeled examples inthe training set |Xl|, (x-axis) graphs for supervised and all semi-supervisedvariants of PLSA algorithm on XLS dataset.In table 6 .6, we ompare ssPLSA-mem Soft and ssPLSA-mem Hard, inorder to give a better insight for the gain of the former method, espeiallywhen the number of labeled examples is relatively small. As we an notie,for all four datasets, the ssPLSA-mem Soft outperforms the ssPLSA-memHard when very few labeled data are available in the training set.6 .5.2 Ative ssPLSA ResultsIn this setion we present the results of the ombination of semi-supervisedand ative learning. As introdued in hapter 5, the idea is to perform a-tive learning on the top of the semi-supervised algorithms desribed above.We run experiments for all semi-supervised variants, for both ative learningtehniques, and for all four datasets. In our experiments, we label one exam-



6 .5. Experiments 10720Newsgroups WebKB Reuters XLSratio Algorithm F-sore F-sore F-sore F-sore
0.3%

ssPLSA-mem hard 32.62 38.82 47.76 61.41ssPLSA-mem soft 44.05 48.78 66.34 65.16
0.5%

ssPLSA-mem hard 41.26 40.86 52.02 64.52ssPLSA-mem soft 52.46 51.55 68.74 66.19
0.8%

ssPLSA-mem hard 51.2 44.16 57.42 64.87ssPLSA-mem soft 60.62 56.33 75.11 67.04
1%

ssPLSA-mem hard 58.24 49.84 66.93 65.57ssPLSA-mem soft 66.23 60.56 77.53 67.17Table 6 .6: Comparison of the two variants of ssPLSA with amislabeling error model (ssPLSA-mem Hard ssPLSA-mem Soft) on20Newsgroups, WebKB, Reuters and XLS test sets, trained on di�erent ra-tio of labeled-unlabeled dataple in eah iteration and 100 iterations are performed for WebKB, Reuters and
150 for 20Newsgroups dataset. For the XLS dataset we label 2 examples ineah iteration, and we perform 100 iterations (as the dataset is bigger thanthe other three we need more data for ahieving a good performane). Aswe mentioned in hapter 5, for the Margin Method, it is not wise to hoose 2examples that are next to eah other, as they annot gives us more informa-tion that eah of them does. As a result, we hose the two examples with thebiggest lass-entropy but in addition with di�erent assigned labels.In order to evaluate the performane of the ative learning methods, wealso run experiments for the ombination of the semi-supervised algorithmswith a random seletion method, where in eah iteration the douments tobe labeled are hosen at random.As we an notie from the �gure 6 .8 the use of ative learning helps, inomparison with the random query for all three datasets. The performaneof the two di�erent ative learning tehniques are omparable, and their dif-ferene is not statistially signi�ant. Nevertheless, they learly outperfomthe random method, espeially when very few labeled data are available.
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Random methodFigure 6 .8: F-Sore (y-axis) versus, the number of labeled examples in thetraining set |Dl|, (x-axis) graphs for the ombination of the two ssPLSA al-gorithms with ative learning on Reuters, WebKB and 20Newsgroups datasetsThe results with the ssPLSA-fake gave us the same indiations. A om-parison of the latter with the other two semi-supervised variants using eahof the two ative learning methods is presented in �gure (6 .9). We an see



6 .5. Experiments 109that the performane of ative ssPLSA-mem Soft is onstantly better thanative ssPLSA-mem Hard and ative ssPLSA-fake.
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Random methodFigure 6 .10: Comparison of the two di�erent ative learning tehniques andthe Random seletion, on the ssPLSA-Hard and ssPLSA-Soft algorithms, onXLS dataset�gure 6 .10 the results for the latter are presented. As we an notie, ativelearning helps, omparing to the random method, even if the gain is not as bigas in the other three datasets. As before, the two ative learning methods givesimilar results. In 6 .11 the omparison between the three semi-supervisedPLSA variants ombined with eah of the ative methods is presented. Also,in this ase, the ative ssPLSA-mem Soft has the better performane.
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6 .6. Conlusion 1116 .6 ConlusionIn this hapter the evaluation of all the proposed models has been presentedand disussed. We saw that the semi-supervised learning an help when veryfew labeled examples are available. We ompared the models with some state-of-the-art algorithms and the results indiate that the ssPLSA-mem Soft isthe more performant model for all four datasets. The ombination with ativelearning is also evaluated. We ompared the two ative learning tehniqueswith a random method (where the examples are hosen by random instead ofusing a ative method). The results obtained have proven that ative learningan eventually help, espeially when the training set ontains very few labeledexamples.





7Conlusions
Contents 7 .1 Contributions . . . . . . . . . . . . . . . . . . . 1137 .2 Future Perspetives . . . . . . . . . . . . . . . . 1147 .1 ContributionsThis study was motivated by the ost of labeling doument olletions andthe ability of aspet models to explain the generation of textual observations.We foused on semi-supervised and ative learning for the task of doumentlassi�ation. This thesis was realized in the framework of a Cifre grant inXerox Researh Centre. We studied the possible extensions of the urrentlassi�ation system and new models were proposed.In the �rst part of this thesis, we presented a literature review of existingstate-of-the-art methods. We foused on the frameworks of Semi-SupervisedLearning, Mislabeling Error Models and Ative Learning. The di�erent ap-proahes of these frameworks and their motivation have been disussed.In the seond part, we presented and evaluated the proposed models.



114 Chapter 7 . ConlusionsIn partiular, the ontributions of this thesis inlude:
• Two semi-supervised variants of the PLSA algorithm. The motivationwas to take advantange of both the huge amount of available unlabeleddata and the properties of aspet models. Our results have provedour initial intuition, that aspet models an bene�t from the unlabeledexamples. In addition, the inorporation of a model whih an apturethe mislabeled examples an ameliorate more the performane of ourlassi�er.
• Combination of the above semi-supervised variants with two di�erentative learning tehniques. We wanted to bene�t from the propertiesof both frameworks. The evaluation we performed has shown that thisombination an further inrease lassi�er's performane. Using ativelearning we manage to hose our training labeled set arefully, usingthe most informative results. That way, we an ahieve a better perfor-mane using less labeled examples.7 .2 Future PerspetivesThis thesis was foused on the PLSA model. Nevertheless, this does notmean that the developped models an exlusively used with the latter. Onthe ontrary, the proposed tehniques are very easily appliable to di�erentaspet models, suh as Latent Dirihlet alloation (LDA) (Blei et al., 2003).It would be interesting to see how the latter would perform under the frame-work of semi-supervised and ative learning, by inorporating the proposedmislabeling error model.Another possible extension is the use of di�erent ative learning teh-niques. Also, the ombination of more than one ative learning tehniqueould be onsidered.A di�erent axis of researh inludes the further investigation of determin-ing the number of omponents. As we disussed in the evaluation hapter,



7 .2. Future Perspetives 115this is an important parameter in aspet models. To the best of our knowl-edge, there has been little e�ort so far to solve this issue.The domains of semi-supervised and ative learning have still many openproblems and further researh on the several open problems ould be provedfruitful, both in theoritial bases as well as in pratial appliations.
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