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Abstract

Machine learning techniques have been used for various information ac-
cess tasks, such as categorization, clustering or information extraction. Ac-
quiring the annotated data necessary to apply supervised learning techniques
is a major challenge for these applications, especially in very large collections.
Annotating the data usually requires humans who can read and understand

them, and is therefore very costly, especially in technical domains.

Over the last years, two main approaches have been explored towards this
direction, namely semi-supervised (SSL) and active learning. Both paradigms
address the issue of annotation cost, but from two different perspectives. On
the one hand, semi-supervised learning tries to learn by taking into account
both labeled and unlabeled data. On the other hand, active learning tries to
find the most informative examples to label, in order to minimize the number
of labeled examples necessary for learning. Either methods try to reduce the

human labeling effort.

In this thesis, we address the problem of reducing this annotation burden.
In particular, we investigate extensions of aspect models for the classifica-
tion task, where the training set is partially labelled. We propose two semi-
supervised PLSA algorithms, which incorporate a mislabeling error model.
We then combine these semi-supervised algorithms with two active learning
algorithms. Our models are developped as extensions of the classification
system previously developed in Xerox Research Centre Europe. We evaluate
the proposed models in three well-known datasets and in one coming from a

Business Group of Xerox.

Keywords: Aspect Models, Semi-Supervised Learning, Active Learning,

Categorization






Résumé

L’apprentissage automatique a été utilisé pour diverses taches d’ accés a |’ in-
formation, tels que la catégorisation, le clustering ou I’ extraction d’ informa-
tion. Acquérir les données annotées nécessaires pour appliquer les techniques
d’ apprentissage supervisé est un défi majeur pour ces applications, en par-
ticulier pour les trés grandes collections. L’annotation des données nécessite
généralement ’effort humain et c’est donc trés colteux, en particulier dans

les domaines techniques.

Au cours des derniéres années, deux grandes approches ont été explorées
dans ce sens, 'apprentissage semi-supervisé et I’apprentissage actif. Les deux
paradigmes abordent la question du cotit d’annotation, mais de deux points de
vue différents. D’une part, apprentissage semi-supervisé essaie d’apprendre
en tenant compte & la fois des données annotées et non-annotées. D’autre
part, ’apprentissage actif tente de trouver les meilleurs exemples & annoter,
afin de réduire au minimum le nombre d’exemples annotés necessaire. Cha-

cune des méthodes tentent de réduire 'effort humain d’annotation.

Dans ce travail, nous abordons le probléme de la réduction du cott an-
notation. En particulier, nous étudions des extensions de modeéles d’aspect
pour le tache de la classification, ou les données sont partiellement annotées.
Nous proposons deux variants semi-supervisé de ’algorithme PLSA, qui in-
corporent un modéle d’erreur. Nous combinons ensuite ces algorithmes semi-
supervisé avec deux algorithmes d’apprentissage actif. Nos modéles sont
concus comme des extensions de le systéme actuel pour la classification de
Xerox. Nous évaluons les modeéles proposés sur quatre bases de données, dont

une en provenance d’un Business Group de Xerox.

Mots-clés: modéles d’aspect, apprentissage semi-supervisé, apprentissage

actif, catégorisation
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Introduction

Contents

1.1 General . . .. . . . . i i i i i ittt 1
1.2 Contributions . . .. .. .. ... ...
1.3 Outline of thisthesis . . . ... ... ... ... 4

1.1 General

The explosion of available information during the last years has increased the
interest of the Machine Learning (ML) community for different learning prob-
lems that have been raised in most of the information access applications. In
this thesis we are interested in the study of two of these problems which are
the ability of algorithms to handle partially labeled data and the capacity to

model the generation of textual observations.

On the one hand probabilistic models (such as Naive Bayes) explaining
the generation of observations based entirely on their classes have shown their
limits in the sense that there are more and more textual documents which
potentially cover different topics. New generative aspect models have recently
been proposed which aim to take into account data with multiple facets. In

this class of models, observations are generated by a mixture of aspects, or
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topics, each of which being a distribution over the basic features of the ob-

servations (such as words in a document, or pixels in an image).

Aspect models have been succesfully used for various textual information
access and image analysis tasks such as document clustering and categoriza-
tion or scene segmentation. In many of these tasks, acquiring the annotated
data necessary to apply supervised learning techniques is a major challenge,
especially in very large data sets. These annotations require humans who can
understand the scene or the text, and are therefore very costly, especially in

technical domains.

To this end, the paradigm known as Semi-Supervised Learning, has emerged
in the Machine Learning community in the late 90’s. Under this framework,
the aim is to make a decision rule based on both labeled and unlabeled training
examples. To achieve this goal, the decision rule is learned by simultaneously
optimizing a supervised empirical learner on the labeled set, while respecting

the underline structure of the unlabeled training data in the input space.

Different cluster, smoothness and manifold assumptions have been pro-
posed to this end and have led to a number of semi-supervised algorithms,
such as EM-based generative models, graph-based methods and transductive

models.

In the same vein, Active Learning addresses also the issue of the an-
notation burden, but from a different perspective. Instead of using all the
unlabeled data together with the labeled one, it tries to minimize the anno-
tation cost by labeling as few examples as possible and focussing on the most
useful examples. Different types of active learning methods have been intro-
duced in the literature, such as uncertainty-based methods, expected error

minimization methods and query by committee methods.

By combining semi-supervised and active learning, an attempt is made

in order to benefit from both frameworks to address the annotation burden
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problem. The semi-supervised learning component improves the classification
rule and the measure of its confidence, while the active learning queries for
labelling the most relevant and potentially useful examples. In this thesis, we
move also towards this direction, that is the combination of semi-supervised

aspect models with active learning.

In this thesis, we explore the possibility to learn aspect models with the

help of a training set containing both labeled and unlabeled examples.

1.2 Contributions

In this thesis we address the problem of learning aspect models with par-
tially labeled examples. We propose different algorithms which benefit from
both semi-supervised and active learning frameworks. To the best of our
knowledge, there has been little effort so far to extend aspect models to these
frameworks. Our models are now in use in the context of a classification
system developed previously in Xerox Research Centre Europe, namely the
CategoriX /ClusteriX system. The motivation is to extend the latter under
the semi-supervised and active frameworks, in order to take advantage of the

huge amounts of available unlabeled datasets.

In particular we have elaborated:

e Two semi-supervised PLSA algorithms, which incorporate a mislabeling
error model. The motivation is to reduce the annotation cost by taking

advantage of aspect models properties.

e Combining two active learning techniques with the two semi-supervised
PLSA methods above. The idea is to benefit from both the frame-
works of Semi-Supervised and Active Learning, as they offer different

advantages.

e Finally, an evaluation of the results in three widely used dataset and in
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one coming from a Business Group of Xerox show the efficiency of our

approach.

1.3 Outline of this thesis

The first part of this manuscript is composed of two chapters presenting a
literature review of semi-supervised and active learning algorithms. The mo-
tivation is to give an global view of the different aspects of learning using
partially labeled data. In chapter 2 we present the existing methods in semi-
supervised and the mislabeling error models are discussed. In chapter 3 the

active learning framework is presented.

In the second part of this thesis, we present our contributions. We are
focusing on the task of document categorization and we present an extension
of aspect models to the case of semi-supervised learning for this task. More
precisely, in chapter 4 we present the semi-supervised PLSA models that
we proposed. In chapter 5 we combine these methods with two different
active learning techniques. Then, in chapter 6 the evaluation of all the above
models is presented in four datasets: the three widely used collections of
20Newsgroups, Reuters and WebKB and on the Xerox XLS dataset. Finally,

in chapter 7, the conclusion and the future directions are given.
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2 .1 Introduction

One of the major challenges in many Machine Learning (ML) tasks, such as
textual Information Access (IA), Natural Language Processing (NLP) and
image analysis applications, is the constitution of consistent databases, re-
quired in order to apply supervised learning techniques. Very often, skilled
humans are needed in order to annotate the data, especially, in technical do-

mains (e.g. biological data). In addition, the explosion of information during
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the last years has led to a considerable increase of the cost and the difficulty
of acquiring annotated data. The labeling process is so time-consuming that
just a part of the available data could be labeled. On the other hand, huge
amounts of unlabeled data are available and easy to obtain. The latter has
stirred up the interest of the ML community to design new algorithms able
to learn from partially labeled training sets. These algorithms, referred to
as Semi-Supervised Learning (SSL) algorithms in the literature, rely on the
assumption that unlabeled examples carry some useful information about the

problem we try to solve.

A representative example is the information retrieval tasks in the World
Wide Web. Due to the perpetual growth of the available web pages, it is
impossible to have a sufficient and consistent labeled training set. On the
contrary, billions of (unlabeled) web pages are available. In this case, semi-
supervised learning could be of great practical value, as it could take advan-

tage of the information contained in these data.

On the other side, the majority of the inductive methods take the quality
of the training dataset for granted. Nevertheless, very often, noise is intro-
duced in the labeling of the training set. Of course, the presence of noise
can reduce the system performance in terms of classification accuracy. This
led to several mislabeling learning models which have been introduced in the
pattern recognition literature in the early 70’s. These studies aim at solv-
ing some practical applications such as remote-sensing, where the presence of

noise is inevitable.

In this chapter, we start by presenting a synthesis of semi-supervised learn-
ing algorithms. We do not present an exhaustive list of all existing methods
which have been presented in the literature. Instead, we refer to the dif-
ferent families of semi-supervised learning, their motivation, and the most
representative methods in each of them. We start with a short discussion
of the usefulness of unlabeled data. We distinguish transductive from induc-

tive semi-supervised learning, and some transductive methods are presented.
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Then, some methods coming from the two main families of semi-supervised

learning models are detailled: the generative and the discriminative ones.

In the second section of this chapter, we present the problem of learning
with the presence of noise in the training data. We review some existing tech-
inques and we distinguish random from non-random imperfect supervision.
We then present some work which combines mislabeling error models and

semi-supervised learning.

2 .2 Semi-Supervised Learning

Semi-supervised learning can be placed in between supervised and unsuper-
vised learning. As a result, it can be conceived from two different perspectives:
either as a supervised task with some additional unlabeled data or as an un-
supervised task with some additional constraints. The former is considered
as semi-supervised classification, whether the latter as semi-supervised clus-

tering.

A related family of methods is transductive learning. In this context,
a partially labeled set of examples is available but, in contrast with semi-
supervised learning which is inductive, the goal is to predict the labels only
for the unlabeled examples in the given set, and not to derive a function.
In other words, in the transductive setting, we do not have to possibility to

classify any new data, but only the ones included in the training set.

Are unlabeled examples beneficial?

At this point, the question which arises is if, and under which circumstances,
the amount of unlabeled data can be proved helpful. The research already
conducted to answer this question has demonstrated, with theoretical and ex-
perimental results, that unlabeled examples could, under some assumptions,
help and improve performance in the classification task. Nevertheless, there

exists also some literature which has put some doubts about the beneficial
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role of unlabeled data under certain circumstances.

From a theoretical point of view, the crucial issue to understand in what
situations the unlabeled may be beneficial is still open. Some authors have
tried to understand the role of unlabeled examples in the learning process.
A first study was realized by (O’Neill, 1978), who considered the problem
of estimating the Fisher linear discriminant using additional unlabeled data
and concluded that unclassified observations should certainly not be discarded.
(Castelli and Cover, 1995) showed that the classification error has an exponen-
tial convergence to the Bayes optimal solution, when the number of unlabeled
examples grows to infinity. They generalized their finding to the situation
where a finite number of labeled and unlabeled examples are available, the
class-conditional densities are known, but the class priors are not (Castelli
and Cover, 1996). The role of unlabeled data under the PAC framework was
also analyzed by (Ratsaby and Venkatesh, 1995). Also, (Cozman et al., 2003)
suggests that the unlabeled data can degrade the classification performance,
when the modelling assumptions are incorrect, and it would be better if they
are discarded. Finally, (Grandvalet and Bengio, 2005) proposed an estima-
tion principle applicable to any probabilistic classifier, which benefits from

the unlabeled data, especially when classes have small overlap.

Figure 2 .1 demonstrates a simple example, where we can easily notice that
unlabeled examples can help (b), but sometimes not only they cannot (c), but

they can even mislead the model (d), when the model assumptions are wrong.

Taking into account the above, it becomes apparent that some assump-
tions should hold, in order for the unlabeled examples to be meaningful. The

most common assumptions are:

e Smoothness assumption: if two points are close, then they should be
labeled similarly. In other words, data which belong to the same cluster
(i.e. a high-density region) are likely to be in the same class. This

assumption, does not imply that classes are formed from single compact
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clusters. It only requires that objects from two distinct classes are not

part of the same cluster.

o Cluster assumption (a.k.a. Low density separation): the search of a
decision boundary should take place in low-density regions. If we recall
to our example in figure 2 .1 (b), where the cluster assumption holds,

we can see that the decision boundary lies on the low-density region.

o Manifold assumption: the high-dimensional data lie on a low- dimen-
sional manifold. In other words, the examples which belong to the same
manifold, have the same class. It also does not imply that classes are
formed from single compact clusters. This assumption is related to the

cluster assumption, but it inspires different algorithms.

Labeled data alone Unlabeled data (small dots) can help... But not always They can even hurt...
(a) (b) (c)

Figure 2 .1: A simple example which demonstrate the usefulness of unlabeled
examples (small dots), in different cases. The dotted line shows the correct
decision border. The dark line is the estimated border, taking into account
the available data in each case. When the cluster assumption holds, unlabeled
data can help (b). But when it does not (c), they cannot provide any useful
information. When the modelling assumption is incorrect, they can even
degrade the performance (d)

In the next sections, different techniques based on each of these assump-
tions are presented. At this point we have to mention that the importance of
the unlabeled data also depends on the choice of features or, equivalently, the
similarity metric we use, as the latter plays an important role on the clusters
the data form.
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To sum up, we can conclude that unlabeled data are helpful, as long as
certain assumptions hold. So, before using semi-supervised learning, it would

be wise to verify if some of the assumptions mentioned above hold.

Notation

Before presenting the existing methods on semi-supervised learning, some no-

tation needs to be introduced.

We suppose that we have a collection of data X = A} U &,,, where AX]
and X, are respectively the set of labeled and unlabeled examples in X. We
also suppose that labeled data are sampled from the real joint distribution
p(z,y) and that unlabeled examples come from the marginal distribution
p(z). All examples from A&; have a class label y € C = {y1,...,yr}, while
for the examples from X, the class label is unknown. Also, we suppose that
Xiest 18 the test set, which will be used for testing our learner, denoted as

f: X — Y. The test set is not available during the training.

2 .2.1 Transductive Learning

Transductive learning is closely related to semi-supervised learning. It was
first introduced by (Vapnik, 1982, 1998). In transduction, in contrast with
inductive learning, no general decision rule is inferred. The goal is just to
annotate the unlabeled examples of the training set. In other words, it tries
to find the labels y € C = {y1,...,yx } of the unlabeled examples X,. Trans-
ductive learners cannot handle any unseen data (for example data from the

test set Xjest). This approach is more often used for constrained clustering.

2 .2.1.1 Transductive Support Vector Machine

One of the most popular transductive methods, is the Transductive Support
Vector Machine(TSVM) algorithm, which was first introduced by (Vapnik,
1998). TSVM is the extention of the standard SVM, where additional unla-

beled data are available. It uses the information of these unlabeled samples
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and predicts the optimal labels for them. The goal is to find a maximum mar-
gin hyperplane classifier based on the labeled training examples, but at the
same time try to place this hyperplane away from the unlabeled data. TSVM
follows the low density separation, as it tries to place the decision boundary

in the less dense regions (e.g. figure 2 .2).

margin

SVM TSVM

Figure 2 .2: In TSVM, the unlabeled examples (small dots) put the decision
boundary in low density regions

Let us suppose that our hypothesis space H is a set of hyperplanes h(z) =
sign{xw + b}. It tries to predict the labels y,...,y» of the unlabeled data,
and to find a hyperplane with parameters (w, b) which separates both labeled
and unlabeled data with the maximum margin. In order to achieve the above

criterion, we try to minimize the function

k n
1
Sl + oY 6+er S g 21
=0 =0
———
labeled unlabeled

over (yfv"'7y;7w7b7§17"'7§k7§f7'”76:;,)
and subject to

szl LY [’U)sz + b] > 1— 52
=1 ¢y (wap +b =21 =&
Ve, &6 >0

o & >0
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where &; are slack variables and C, C, are parameters, set by the user.

This function corresponds to the task of finding the exact solution of an
transductive SVM and is considered as an NP-hard problem. This is the
reason why much effort has been done in order to find some efficient approx-

imation algorithms.

In this context, (Joachims, 1999) introduced a different formulation of the
optimization of TSVM, and proposed his SVM!9" software. The idea is to
start by labeling the test data A}, based on the inductive SVM classification.
Then, in order to increase the influence of the unlabeled data, we increase the
values of the parameters C*,C% (which allow trading off margin size against
misclassifying training examples or excluding test examples and which are
initialized to some small number), until the value C* defined by the user is
reached. Then, we switch labels of test data in order to decrease the objective

function. A description of this procedure is given in algorithm 1.

Algorithm 1: Transductive SVM (Joachims, 1999)
Input

e A set of partially labeled data X = X3 U X},

e parameters C, C*
e Initialize the cost factors C*,C} to some small numbers

Increment the cost factors C*, CY up to the user defined value C*
repeat

e Locate two test examples for which changing the class labels
leads to a decrease in the current objective function 2 .1

e If these two examples exist, switch them

until Objective function 2 .1 doesn’t decrease anymore ;
Output : predicted labels of the test examples

(Chapelle and Zien, 2005) presented a different implementation which is
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based on the optimization of the objective function using the gradient descent
algorithm. The VTSVM, as it is known, directly optimizes the objective func-
tion according to the cluster assumption. The equation 2 .1 can be rewritten,

without the need of constraints, as

k n
1
5HMHQ + O L(yi(w - 2 + b)) + C* Y L(jw - ; + b)) (2 .2)
=1 =1

with L(t) = max(0,1 —t).

Before performing a standard gradient descent in the above equation, as

it is not differentiable, the expression is transformed in

k n
1
inHQ—i—C’ZL(yi(w-$i+b))+C*ZL*(w-xi+b) (2.3)
=1 =1

with L*(t) = max(3t?).

VTSVM uses similar heuristics for the C*, as TSVM of (Joachims, 1999)

described above.

(De Bie and Cristianini, 2004) proposed a relaxation of the transductive
SVM algorithm, using Semi-Definite programming (SDP). However, due to
the high dimensionality of the feasible region of the relaxed parameters, the
computation remains complex and, as a result, it cannot handle large datasets.
They further proposed a spectral clustering method, which approximates the

original SDP method, and shrinks the feasible region of the variables.

More recently, (Collobert et al., 2006) suggested an algorithm for TSVM,
which uses the concave-convex procedure (CCCP) (Yuille and Rangarajan,
2002). CCCP iteratively optimizes non-convex cost functions that can be
expressed as the sum of a convex function and a concave function. The opti-
mization is carried out iteratively by solving a sequence of convex problems

obtained by linearly approximating the concave function in the vicinity of the
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solution of the previous convex problem. They report an important increase

in the training speed using this method.

(Sindhwani et al., 2006) used a deterministic annealing approach in order
to optimize the objective function. The motivation is to solve the problem of
local minima in the TSVM optimization procedure. The idea is to start by
minimizing a smoothed convex version of the objective function and gradually
deform it into the TSVM one.

In the same vein, (Chapelle et al., 2006) proposed a continuation approach,
which also starts by minimizing a convex objective function, and uses the
solution as initialization of the next less smooth function. It iterates until it

reaches the original objective function.

2 .2.1.2 Graph-based methods

Another family of transductive learning algorithms consists of graph-based
methods. They rely on the idea of creating a graph G = (V, E), where the
set of nodes V represents the labeled A} and unlabeled X, data, and the set
of edges E represents the similarities between the nodes. These similarities
are defined by an adjacency (or weight) matrix W, where W;; is the simi-
larity between nodes x; and x;. The weights can be calculated in different
ways. For example, using the k-nearest neighbor method, we can assign 1
for the k nearest neighbors of a node, and 0 for the others. Another, widely
used, method of assigning the weights in a fully directed graph, is to use the
Gaussian kernel:

llwg—a; 12

Wij =e 202 (2 '4)

These methods suppose that the smoothness assumption holds, in other
words, they assume that nodes connected with heavy weighted edges, tend to
have the same label. This section discusses some representative algorithms

and their motivation.

At this point, we have to mention that the main drawnback of all graph-
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based methods, is the construction of the graph. The latter is very important
for the performance of the algorithms, even more important than the choice
of the algorithm itself. Nevertheless, little work has been performed towards

this direction. A discussion on this matter can be found in (Zhu, 2005).

Graph Mincuts. (Blum and Chawla, 2001) proposed a method based on
graph cuts (known as s-¢ mincut). The idea is to try to find a minimum cut
on the graph (that is the cut with the smallest sum of weights), such as to sep-
arate labeled examples of different classes. Assuming we have a binary clas-
sification problem, the algorithm tries to find a minimum cut (cut(G*,G™))
on the graph G = (V, E), where GT and G~ are the set of examples (ver-
tices) which include the labeled examples with labels y; = +1 and y; = —1
respectively. Then, it annotates as positive the unlabeled examples which
belong to GT and as negative the ones which belong to G~. A summary of

this algorithm is shown in algorithm 2.

Algorithm 2: Graph mincuts (Blum and Chawla, 2001)
Input : A weighted graph G = (V, E)

e Find a minimun cut of the graph, such that G contains the
positive labeled examples and G~ the negative ones.

e Assign the positive label to the nodes (examples) which belong
to G and the negative label to the ones of G~

Output : predicted labels of the unlabeled examples

One of the problems of the above algorithm is that the predictions are
based on hard classification. This is why an extension of the mincut approach
is presented in (Blum et al., 2004). The idea is to add some randomness to
the graph. In particular, the algorithm creates different versions of the graph,
by adding each time, some random noise to the edge weights. Then, the
algorithm of mincut is applied to each of these graphs and their predictions
is calculated. The final predictions of the labels is determined by majority

vote. That way, a kind of confidence on the predictions is calculated.
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Figure 2 .3: A simple example which demonstrates the minimum cut in the
graph, and annotation the unlabeled examples (white nodes) accordingly

Markov Random Walks. (Szummer and Jaakkola, 2002) proposed a graph-
based algorithm, which uses Markov random walks on the graph. The idea is
to start from a randomly chosen unlabeled node and walk on the graph, with

transition probabilities between nodes ¢ and j defined as

Wi,
Dij = = (2.5)
’ ZWik
%

(pij = 0if ¢ and j are not connected).

We denote by FPyg = (j|7) the t-step transition probabilities, where t is a
user defined parameter. Supposing that we have a transition matrix A, which
contains the transition probabilities p;; for all the nodes of the graph, we can

then calculate the t-step transition probabilities as

Pyo(jli) = [A"y (2 .6)

This is the probability that the Markov process starts from a given node i
and ends in node j after ¢ steps. These conditional probabilities Py, (i[5)
define our new representation for the examples. In other words, each point j
is associated with a vector of conditional probabilities Py (ilj),i =1,..., N.
Using this representation, the points are close whenever they have nearly the

same distribution over the states.
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The classification model assumes that each data point has a label or a
distribution P(yli) over the class labels. These distributions are unknown
and represent the parameters to be estimated. Now, given a point j we
interpret it as a sample for the ¢ step Markov random walk. As labels are
associated with the starting points, the posterior probabilisty of the label for
point j is given by

Ppost(y‘j) = Z P(yh)PO\t(Z‘j)

To classify the j-th point, we choose the class that maximizes the poste-
rior:

c; = argmax Ppoq(y = clj)
C

One of the problem of this algorithm, is the choice of the value of ¢ (i.e.
the length of the random walk), which is very important for the performance
of the algorithm. If, for example, its value is very small, then the data are
merged in small clusters. On the other hand, if it is very big, all nodes become
indistinguishable. In general, the latter is calculated either by cross-validation

or heuristics.

Label Propagation. In the literature, several transductive graph-based
methods are based on label propagation. The idea is to start by the labeled
nodes, propagate their labels to their neighbors, and iterate the process until

convergence.

In this context, (Zhu and Ghahramani, 2002) presented such an algo-
rithm. The idea is to combine random walks and clamping. The weights of
the nodes and the transition probabilities are defined as in the Markov Ran-
dom Walks algorithm (equations 2 .5 and 2 .6). The labels are propagated
across the graph until convergence. The initial labels of the labeled exam-
ples are enforced to stay unchangeable through the iterations, in order not to

loose the information they provide. This method is described in algorithm (3).
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Algorithm 3: Label propagation (Zhu and Ghahramani, 2002)
Input

e A weighted graph G = (V, E), with weights W

e The diagonal matrix D;; = Z Wik
k

e Initial labels (% = (3, 7,), with 7; = ; for the labeled examples

and y, = 0 for the unlabeled examples
repeat
e Propagate label g(tt1) — D=1wg®
e Row-normalize §

e Clamp the labeled data (i.e. y; = y;)

until convergence of J ;
Output : predicted labels of the unlabeled examples

(Zhou et al., 2004) presented a similar method. It uses the normalized
Laplacian L «— I — D™Y2WD~1/2 where D is the diagonal matrix and W
the weight matrix. In each iteration, the labels are propagated on the graph
taking into account the neighbors but also the initial value of each node.
Supposing we have a parameter v € [0,1), the estimation of the labels is
calculated as: gt — yLg® + (1 — 4)5®, where 7 are the estimated
labels of the previous iteration and 7(°) are the initial labels. The algorithm
stops when ¥y converges. An extention of this method in directed graph is
presented in (Zhou et al., 2005).

Linear Neighborhood Propagation (LNP). In the same vein, (Wang
and Zhang, 2008) presented a method based on a linear neighborhood model,
which assumes that each data point can be linearly reconstructed from its
neighborhood. This algorithm can propagate the labels from the labeled
points to the whole dataset using these linear neighborhoods with sufficient

smoothness. It approximates the graph by a series of overlapped linear neigh-
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borhood patches. It then aggregates the weights which are calculated for each
of the above patches, in order to determine the final weights of the graph.
They proved that the resulting Laplacian matrix is an approximation of the
standard Laplacian matrix of a weighted undirected graph, and as a result,
it can be considered as a smoothed version of the latter. The propagation of
the labels is done using a similar technique as in (Zhou et al., 2004), taking
into account the neighbors labels but also keeping some information of the

initial labels.

Gaussian Fields and Harmonic functions. (Zhu et al., 2003a) formu-
lates the problem in terms of a Gaussian random field on the graph. It can
be seen as a nearest neighbor approach, where the neighbors are calculated
using random walks on the graph. The Gaussian random field differs from
the Markov random field on the fact that it is defined on a continuous state
space. The goal is to find a real-valued function f : V — R according to
which we will assign labels to the unlabeled examples. For the labeled ex-
amples we assume that f; = y; (their real values). We define the following

energy function:

B(f) = 5 3wy (@) = £(a) @.7)

As we can notice, according to the above function, low energy corresponds
to slowly varying function over the graph. We assume the Gaussian Ran-
dom field ps(f) = %ﬁm where 3 is an “inverse temperature” parameter and
Zg=|[ flfi=uL e PEU)Af can be considered as a normalization over all func-
tions, under the constraint that labeled examples keep their labels. It can
be proved than the minimun energy function f = argming,,— E(f) is Har-
monic. In other terms, the value of the function f of each unlabeled example
is averaged over the values of f on the neighboring points in the graph. Also,
according to the maximun principle of harmonic functions (Doyle and Snell,
1984) f is unique and either satisfies the constraints 0 < f(z;) < 1 for X,
or is a constant. As a result, we can assign the example x; to class 1 if
f(x;) > 0.5 and to class 0 differently. Algorithm 4 describes the solution

using matrix methods.
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Algorithm 4: Gaussian Fields and Harmonic Functions

Input
e A weighted graph G = (V, E), with weights W (equation 2 .4),
and f; the labels of the labeled examples

e The diagonal matrix D;; = Z Wik
k

e The combinatorial Laplacian matrix L = D — W. We split the matrix
according

Ly Ly, }

to labeled and unlabeled examples as: L = [ I I
ul uw

Output

i fu: _L@_“}*Lul*fl

Spectral Graph Transducer. (Joachims, 2003) presented another trans-
ductive algorithm, which can been seen as the transductive version of the k
nearest-neighbor (kN N) classifier. This algorithm has three main steps.

First, it constructs a similarity-weighted k£ nearest neighbor graph G, where

the weights are calculated as

sim(x4,25)

if x; € knn(x;)

Z sim(x;, xy) @ 8)

zr€knn(z;)

Wij =

0 else

Then, it decomposes the G into spectrum. In order calculate the latter, it

tries to minimize the normalized graph cut with constraints:

) cut(GT,G7)
min
v iy = +1}H{m 0y = —1}
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subject to

y; = +1,if x; € C and positive
yi = —1,if z; € C and negative
Yy = {+1? _1}n

where the cut(G*,G7) is the sum of the edges weights across the cut of the
graph, and G and G~ are the set of examples (vertices) with y; = +1 and
y; = —1 respectively. In other words, it tries to minimize the average weight
of the cut, instead of the sum of weights of the cut, as in s — ¢ mincuts algo-
rithm described above. The motivation is to avoid unbalanced cuts. As the
minimization is an N P-hard problem, Spectral Graph Transducer proposes
an approximation to this problem, using a spectral graph method. The algo-
rithm can be seen as an extention of the work of (Hagen and Kahng, 1992),
who presented a method which uses spectral clustering for minimizing the
ratio cut of a graph, but in the case of unsupervised learning. In the final
step, the unlabeled examples are classified according to the subgraph (G or
G™) they belong to.

Conditional Harmonic Mixing. (Burges and Platt, 2006) presented an
algorithm applicable to directed graph. This method supposes that we have
a directed graph and a conditional probability matrix associated to each link.
The posterior class probability for each node is updated by minimizing the
Kullback-Leibler (KL) divergence between the current distribution and the
one predicted by its neighbors.

2 .2.1.3 Manifold methods

In the literature high interest has been shown for the knownledge of manifold
learning. The motivation behind these methods is the fact that the structure
of data can affect the answer, as it changes the notion of similarity. These
methods are based on the manifold assumption, mentioned in the previous

section: High dimensional data are distributed on some low dimensional man-
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ifold. The goal is to find a low dimensional structure in high dimensional data.
In other words, supposing that we have as input the training data X = A;JUX},
with 2; € RP, we want to find their projection in the d-dimensional space,
that is 1; € R? (where d << D). Originally, the existing methods addressed
manifold learning in the context of unsupervised learning. The idea is to use
the unlabeled data in order to estimate the geometry of the data. As such,

they are very close to transductive framework and they are worth mentioning.

At this point we have to note that manifold methods do not perform
classification, but they rather try to simplify the structure of the data. Nev-
ertheless, they can use also unlabeled data in order to find a lower dimensional

structure of the data, this is why there are worth mentioning.

Linear dimensionality reduction. The most known methods for linear
dimensionality reduction, are the Principle Component Analysis (PCA) (Jol-
liffe, 1986) and the Multidimensional Scaling (MDS) (Cox and Cox, 1994).
Both methods are used in the algorithms for nonlinear dimensionality reduc-

tion, described below.

The motivation of Principle Component Analysis is to try to preserve
the covariance structure of the data set. In other words, it tries to find a
d-dimensional projection of the input patterns xz; € R? in such way that

distance of examples are presented as:

m

EPCA = Z s — Z(ﬂfz‘eT)eTHQ
7 T=1
where vector e,, with 7 = 1,...,d represents a partial orthonormal basis of

the input space.

The solution to this problem is the d eigenvectors having the highest eigen-

values of the centered covariance matrix (C' = Ni E zixl).
x
i
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On the other hand, Multidimensional Scaling, initially designed to pre-
serve the distance between pairs, tries to preserve the inner product between

the input data. In other words, it aims at minimizing the function:

emps = Y _(wixj — it;)?
]
It starts by calculating the Gram matrix G;; = x;x;. Supposing that v,
and A\, are its eigenvectors and eigenvalues respectively, the outputs ¢ are
calculated as ¥, = Vv, with 7 =1,...,d.

Nonlinear dimensionality reduction. Spectral methods have played an
important role for nonlinear dimensionality reduction and different methods
have been proposed in this context. The general framework of all proposed

methods is:
1. Create a k nearest neighbor graph
2. Derive a matrix from the graph weights
3. Yield low dimensional embedding from eigenvectors

At this point we have to mention that graph-based methods are nothing

else than one-dimension spectral methods.

(Tenenbaum et al., 2000) proposed the Isomap algorithm. It can be seen
as a variant of Multidimensional Scaling (MDS), where instead of Euclidean
distances, it uses the geodesis ones. For the latter, it calculates the pairwise
distances between all nodes along the shortest paths through the k nearest
neighbor graph. It therefore uses Djikstra’s algorithm. In step 3, it feeds

MDS with the matrix containing the distances of the previous step.

In the same vein, Maximum variance unfolding has been proposed by
(Weinberger and Saul, 2006; Sun et al., 2006). Like Isomap, it starts again
with a k nearest neighbor graph, and it uses the top eigenvectors of the learned

inner product matrix in order to calculate the low-dimensional embedding.
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Nevertheless, it does not use the geodesic distances. Instead, it attempts to
“unfold” the graph, with the help of semidefinite programming (SDP) (Van-
denberghe and Boyd, 1996). Instead of learning the output vectors directly,
the semidefinite programming aims to find an inner product matrix that max-
imizes the pairwise distances between any two inputs that are not connected
in the neighborhood graph, that is K;; = v; - ;.

(Roweis and Saul, 2000; Saul and Roweis, 2003) presented an algorithm
known as Locally Linear Embedding (LLE). It starts also by creating a k near-
est neighbor graph, but this time directed. It then creates a sparse matrix,
which tries to capture the local geometric properties. The idea is to find a
linear combination for each x; and each neighbors, and then try to represent
the same linear combination for ¢; and its neighbors. This latter is expressed
by the matrix (I — W)T(I — W), where the weight matrix W is computed
by reconstructing each x; from its neighbors. Finally, in order to calculate
the d-dimensional embedding, it uses the d bottom eigenvectors of the above

sparse matrix.

Laplacian eigenmaps (Belkin and Niyogi, 2003) as the Locally Linear Em-
bedding, uses sparse matrix methods for the derivation of the matrix of the
graph weights. The weight matrix W can be computed by the Gaussian ker-
nel (equation 2 .4). Then it derives the matrix L = I — D~Y2W D~/2  which
is the normalized and symmetrized form of the Laplacian matrix. The idea
is to preserve proximity relations between data. As in LLE, we choose the d

bottom eigenvectors for yielding the low-dimensional structure.

2 .2.2 Inductive Learning

In semi-supervised learning, the idea is to learn a decision rule based on
labeled and unlabeled data, in such a way that this decision rule can be used
for the annotation of other unseen data. The semi-supervised algorithms can

be separated in two main families: Generative and Discriminative methods.
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2 .2.2.1 Generative Methods

In these algorithms, the goal is to start from a generative model and try to
estimate the density P(x). These methods are making assumptions on the

nature of the data and their density.

Most generative SSL methods rely on mixture models. These ap-
proaches follow the cluster assumption. The mixture model is used to model
both the input distribution and the labeling process. The labeled examples
are used jointly with the unlabeled examples to estimate the mixture model,
for example using the EM algorithm, and the labeled examples are used as
a basis to assign labels to the mixture components (i.e. unlabeled data are
considered as missing values in the EM algorithm (we calculate P(z|y). Then
we use the Bayes rule to calculate P(y|x)). As a consequence, the decision
boundary falls in between clusters of data, and therefore in low density re-

gions.

The introduction of the Ezpectation-Maximization (EM) algorithm for learn-
ing from incomplete data, was first proposed and formalized by (Dempster
et al., 1977). The idea is quite simple. The method starts by initializing the
model parameters using the labeled data. Then, the model is re-estimated
based on unlabeled data using the EM algorithm. The process repeats until
EM converges. The final model can be used to measure the performance on
test data.

The idea of using EM algorithm to learn from labeled and unlabeled data
has been brought to the attention of the Machine learning community by
(Miller and Uyar, 1997), and has been applied to document classification
task by (Nigam et al., 2000).

Semi-Supervised Naive Bayes. (Nigam et al., 2000) proposed a semi-

supervised version of the Naive Bayes classifier' for document classification.

! A nice review of different variants of Naive Bayes classifier can be found in (Lewis,
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The Naive Bayes classifier assumes that each example is generated by a

mixture model, where each mixture component corresponds to a class y € C:

K

p(z,0) => p(yk | O)p(x | v, ©) (2.9)
k=1

In this model, each mixture component y; may be selected with probability
p(yr | ©), and document z is generated entirely from the selected mixture
component, with probability p(x | yx, ©). For examples with no known label,
the probability is given by the sum over all mixture components (equation
2.9). In this case, each document is represented as a vector x = (n(w, x))wew

The Naive Bayes assumption is that the features of a document are gener-
ated independently, without taking order into account. Under this assumption

the probability of an example = given the class yj is given by
T ()
(@ |y, ©) o< [[ o " (2 .10)
j=1

Where, pj, is the probability of generating feature w; € W in class y;. Thus,
the complete model parameters, O, is a set of class priors and a set of multi-

nomial parameters:

© = {p(yx) : v € C;pji : w; € W, yx, € C}.

Parameter estimation in a semi-supervised learning context is carried out us-
ing an EM algorithm, as detailed in algorithm 5. Parameters are first initialized
using Maximum Likelihood estimates over the labelled data A; C & only. It
then iteratively estimates the probability that each mixture component y; € C
generates each example z € X using the current parameters ©U) (E-step),
and updates the parameters ©U+1) by maximizing the complete-data log-
likelihood (M-step). During the M-step, a parameter A € [0, 1] is introduced.

The motivation is to weight the effect of unlabeled data. In other words, its

1998)



2 .2. Semi-Supervised Learning 29

Algorithm 5: Semi-supervised Naive-Bayes algorithm

Input
e A set of partially labeled data X = X; U X},

e Initial model parameters ©(©) estimated over the labeled set Aj.
e 70
repeat

e E-step: Estimate the posterior class probability that each
example z € X belongs to each mixture component
yr : Vo € X, Vyi, € C,

p(yi | ©)p(x | yg, OW))
p(z | ©0))

p(yr | 2,00 =

e M-step: Estimate the new parameters ©U+1) which maximize
the complete-data log-likelihood:

14+ 6@)p(ye | 2,09)

@(j—l—l) _ zEX
Pl [9777) C+ X1+ A
1+ Z 5(%‘)?7,(1%, :L‘)p(yk ‘ x, @(J))
eu+l zeX
ko W '
W+ b(@)n(wr, )p(yr | ,00))
=1 zeX

where, §(z) =1if z € A and 6(z) = N if x € &),

*j—J+1

until convergence of the complete-data log-likelihood ;
Output : A Naive Bayes classifier with parameters ©U)

goal is to control the influence of unlabeled data over labelled examples.

Semi-supervised clustering with constraints. At this point, it is worth

mentioning another family of approaches, namely the semi-supervised cluster-
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ing with constraints, which can be considered as semi-supervised generative
methods. The idea is to perform clustering on the data in order to define
the clusters they rely on, and use the labeled examples in order to define

constraints which clusters should respect.

Different methods have been presented in the literature. They can be dis-
tinguished in two main families: the constraint-based and the distance-based.
In the former the idea is to perform clustering by incorporating some kind of
penalties for the violation of the constraints. Such methods have been pro-
posed by (Demiriz et al., 1999; Wagstaff et al., 2001; Basu et al., 2002). In
the distance-based methods, the idea is to perform clustering using a distance
function which is parametrized using the labeled examples. Methods of this
category include (Cohn et al., 2003; Xing et al., 2003).

As clustering is out of the scope of this thesis, for more details of the

above methods, the reader can refer to (Basu et al., 2006).

2 .2.2.2 Discriminative Methods

Discriminative approaches focus on directly estimating the decision boundary
between classes, that is the probability P(y|z), without implementing the
cluster assumption. Note that, although discriminative training is known
to be asymptotically better than generative approaches, the latter may be
preferable when the number of annotated data is limited. They make few
assumptions on the nature of the data, and these hypotheses are generally

weak.

Self-training. The probably earliest idea of SSL is based on the principle
of self training. It has appeared early in the literature (Scudder, 1965; Spra-
gins, 1966; Agrawala, 1970) and has been applied to different problems such
as adaptive signal processing (Widrow and Stearns, 1985), natural language
processing (Yarowsky, 1995), object detection systems from images (Rosen-
berg et al., 2005), gene identification (Lomsadze et al., 2005) and others.
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Figure 2 .4: Self-Training algorithm

The process of self-training begins with building a classifier that is trained
with few labeled examples. The trained classifier is used to annotate the unla-
beled examples. The ones among them with the highest confidence are added
to the training set together with their predicted labels. The classifier is re-
trained and this procedure is repeated until there no unlabeled examples left.
Another variant of self-training proposes to train the model until there is no
changes in the label predictions, when a margin-based criterion is used label
the unlabeled examples. This method finds the decision boundary following
the low density separation assumption, as it tends to push the boundary far
from the unlabeled data.

One of the drawbacks of self-training is the fact that it reinforces its

classification errors.

Co-training. Based on the idea of self-supervised learning, (Blum and
Mitchell, 1998) presented the co-training algorithm. This method supposes
that we have two different modalities of the data set, under the assumption
that each of them is rich enough to learn the parameters of a classifier. That

is, each example x; has two different views x; 1 and x;2. It also supposes that
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Algorithm 6: Self Training
Input : A partially labeled dataset X = A3 U &,
repeat

e Train the classifier with the labeled examples Xl(i)

)

e Annotate the unlabeled examples Xéi
classifier

using the trained

e Add the most confident unlabeled examples (X,) with
their predicted labels to the labeled set (XZ(ZH) = Xl(z) U,
and XY = X0\ &)

until all unlabeled data have been labeled ;
Output : The model parameters

the two views of the data are consistent:
A1, ho, i - WP (27) = sgn(ha(21,)) = sgn(ha(xa,))

It is also assumes that the two views are independent given the label:

p(r1ilras,yi) = pl@1aly)
p(r2ilri,yi) = plo2ly)
Classifier h1 Classifier h2

Figure 2 .5: Co-Training algorithm
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Initially, two separate classifiers h; and hy are trained with the labeled
set, each using one view. Then, they classify the unlabeled examples, and a
subset of these examples classified with classifier h; are chosen randomly and
used as input to classifier ho, considering that the labels predicted by hy are
the correct ones. Each classifier is retrained with the additional examples and
their labels predicted by the other classifier. This process repeats for a given
number of iterations. A more detailed description of the co-training method

is given in algorithm 7.

(Nigam and Ghani, 2000) proposed a similar semi-supervised, multi-view
algorithm (the algorithm Co-EM) which can be seen as a probabilistic version
of the Co-training. The algorithm runs EM in each view and, before each it-
eration, it inter-changes the probabilistic labels generated in each view. The
basic idea of both Co-EM and co-Training, is to use the knowledge learned in
one view to train the other one. The difference between them is that Co-
EM uses probabilistic labels for the labeled examples that may change from

one iteration to the other.

The assumption of consistence and independence between the two views
of the data that co-training (and Co-EM) is making is very strong, and it is
difficult to be met in real-world applications. And this can even result a de-
crease in performance (Nigam and Ghani, 2000). This is why an effort has
been made in order to relax these assumptions. (Goldman and Zhou, 2000)
proposed a variant of co-training which does not suppose independence and
consistency of the data views. Instead, it learns two different classifiers on
the labeled set. Then, they annotate the unlabeled examples and they enrich
the labeled sets of each other. The motivation is that the two classifiers will
learn two different models which can eventually complement each other. A
different way to relax this assumption is presented by (Balcan et al., 2004). In
the latter, an expansion property on the underlying distribution of the data
is proposed, in order to replace the conditional independence assumption of

co-training.
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The idea of using two classifiers has appeared earlier than co-training in
the literature. For example, in the work of (De Sa, 1993, 1994) a similar
algorithm is presented. The so-called self-supervision algorithm uses two
different classifiers, which play alternatively the role of teacher and student.
The output of the one is used as desired input for the other. This procedure

continues until the convergence of the output.

Algorithm 7: Co-Training (Blum and Mitchell, 1998)
Input

e A partially labeled dataset X = A} U X,

where X = {(214, 22, }i=1,..m and Xy = {(T1,4, T2 bimm+1,..mtn
e Two classifiers hy and hy
e Create a set X, by choosing randomly N examples from X,
repeat
e Train classifier h; with the labeled examples A
e Train classifier ho with the labeled examples X

e Annotate p positive and n negative unlabeled examples
from X, using the trained classifier hy

e Annotate p positive and n negative unlabeled examples
from X using the trained classifier ho

e Add the above examples with their predicted labels to
the labeled set

e Add 2p + 2n examples from the X, to X,

until a fized number of iterations ;
Output : The predicted labels and the classifiers hq and hs

Co-boosting. (Collins and Singer, 1999) proposed the co-boosting algo-
rithm, which is based on the algorithm of Adaboost (Freund and Schapire,
1997; Schapire and Singer, 1999). It builds two additive models in parallel,
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with an objective function that bounds the rate of agreement. It can be con-

sidered as a variant of co-training.

We suppose that each example z; is an instance pair (21, 2,;), which
represents the two modalities of the example. We also suppose that we have
a partially labeled dataset of size m + n, where the first m pairs have labels
yi, for ¢ = 1,...,m and the rest n are unlabeled. The algorithm makes the
fairly strong assumption, that each of the two modalities of each example z1 ;

and w9 ; is sufficient in order to determine its label.

Let us denote with g; and go the two classifiers. For the labeled data we
suppose that sign(gi(x1,:)) = sign(g2(x2,)) = y;. For the unlabeled data,
we suppose that sign(gi(x1,)) = sign(g2(z2,)). The two classifiers, are built

during the iterations of the algorithm, by updating each time the equation:
Vi, g (wj.) = g5 (w0) + cuhd () (2 .11)

The o4 corresponds to the confidence value and is calculated also during the

1 W++€
=—I 2 .12
o 2n<W_+e> ( )

iterations as follows:

where W, and W_ are computed for each possible hypothesis h:(x;) (see al-
gorithm 8 for details).

The € corresponds to a smoothing parameter, and it is introduced in order
to avoid the extreme confidence values, which may appear when, for example,

a feature is present in very few examples.

The algorithm tries to minimize the sum of the classification error on the
labeled examples and the number of disagreements between the two classifiers

on the unlabeled data. In other words, on each step, the algorithm searches
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Algorithm 8: Co-boosting (Collins and Singer, 1999)

Input  : {(z1,...,22:) }i=1,..n4m and (Ys)i=1,..m

Initialize: ¥i,j : g\ (2;) = 0

repeat
e Set pseudo-labels:

- Yi H1<i<m
sign (gé:;(xg_j,i)) ifm<i<n+m

e Set virtual distribution:

DiGs) = Lo @)

j
Zi
n+m
7 - . . . 7 (—g-gt._l(a:- ))
where Z; is the normalization term, i.e. Z; = E e\ 7 e
i=1

e Train the classifier h{ using the distribution Dg
(i.e. each observation is weighted differently for different t)

e Choose the weights a; € R of the obtained classifier oy = %ln (%jj:),
where Wy = Y Di()and W_= > DI
i:he(zi)=y; i:he(z;)=—y;

e Update the global classifier taking into account the classifier
of step t Vi, g}(x;:) = g;fl(:vj7i) + azhi (z)

until a fized number of iterations t and for j = 1,2 ;

2
Output : Final hypothesis: f(x) = sign Zg;f(a;])
j=1

to minimize the function:

Zeo def Z [e(_yigl($1,i)) + e(_yi92($2,i))]
=1
m4n

+ Y [e<—sz‘gn<g2<x2,i)>gl(an,z-»+e(—sz‘gn(gl(:vl,mg?(a:z,i))

i=m-+1
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As we can see for the above function, small values of Z., means that the
two classifiers have low error rate on labeled examples and there is also low

disagreement in the predictions of labels for unlabeled examples.

Each iteration of the algorithm is composed by two rounds: in each of
them, one of the classifier is updated while the other remains fixed. This

procedure continues for T iterations, by alternating the two classifiers.

2 .3 Mislabeling Error Models

As we mentioned in the introduction of this chapter, very often, noise can
be introduced in the labeling of the training set which can reduce the sys-
tem performance in terms of classification accuracy. Some proposed solutions
try to capture the mislabelings within the learning algorithm. That is, they
learn with the noisy data, by using mechanisms in order to capture the mis-
labelings. The existing studies distinguish between random and no-random
imperfect supervisions: the probability of misclassification of an observation

does depend on its feature vector while it does not for the former.

Random imperfect supervision. It can occur when the noise in the data
depends on their feature vector. In the context of medical diagnosis for ex-
ample, this could be the labeling of test blood results (Aitchison and Begg,
1976). (McLachlan, 1972) studied conditional error rates using their asymp-

totic expansions for the case where one group does not get mislabeled sample.

(Chittineni, 1980) considered the problem of learning from imperfectly
labeled data. He used noisy data in order to analyse the Bayes classifier error
and to calculate the error bounds on the performance of nearest neighbor
classifiers. In the same vein, (Lugosi, 1992) investigated the asymptotic be-
havior of the error probability of two methods under very general conditions:
the nearest neighbor algorithm and a method based on the maximization of
the estimated a posteriori probabilities. In (Chhikara and McKeon, 1984),

an analysis of the importance of mislabeled training data is done, and it is
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proved that the training of classifiers by ignoring mislabeling in the training
set can degrade classification performance. (Krishnan and Nandy, 1987) pre-
sented the derivation of the likelihood estimation of parameters for two group
multivariate normal mixtures with a common covariance matrix using the
maximum likelihood principle, for a binary classification problem. Following
this work, Krishnan compared an imperfect and a perfect supervision scheme
by measuring the Asymptotic Relative Efficiency, that is the number of sam-
ples needed in each of the schemes in order to achieve the same performance
(Krishnan, 1988).

More recently, (Karmaker and Kwek, 2005) presented a boosting ap-
proach, namely the ORBoost (Outlier Removal Boosting). It is based on
the well-known AdaBoost algorithm (Freund and Schapire, 1997; Schapire
and Singer, 1999). The idea is to introduce a threshold which puts an up-
per bound on the weights of the noisy examples. During the iterations, the
examples which are identified as outliers (that is, the examples with weights
larger than the limit bound) are eliminated. As the iterations increase, the
remained examples have hopefully the correct labels and the classifier have

better performance.

In (Lawrence and Scholkopf, 2001), an algorithm for constructing a ker-
nel Fisher discriminant from noisy training data is presented. The idea is to
assign to each example a probability of its label being flipped. They use then
the EM algorithm in order to update these probabilities. They assume that the
class conditional densities are Gaussian distributions. (Li et al., 2006), based
on the latter algorithm, presented two extensions to non-Gaussian datasets,
namely the Clustering-based Probabilistic Algorithm (CPA) and the Prob-
abilistic Kernel Fisher (PKF): the former applies the algorithm introduced
by (Lawrence and Scholkopf, 2001) to a Mixture-of-Gaussians (MoG) in the
input space (algorithm 9), while the latter gives a similar framework to their

algorithm, but this time no distribution assumption is made.

In the first step of algorithm (9), the optimal number of mixture com-
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Algorithm 9: The sequential steps in the Clustering-based Probabilis-
tic Algorithm (CPA)

1. Estimate the number of mixture components K

2. Estimate the mixture density parameters and priors by the
Mixture-of-Gaussians

3. Map clusters to classes

4. Optimize the mixture parameters by applying the modified
algorithm of (Lawrence and Scholkopf, 2001) to each of the
components

5. Map updated clusters to classes

6. Create a Bayes classifier

ponents must be calculated. In (Li et al., 2006) the latter is determined as
the K value that produces the highest total log-likelihood on the test set. In
their paper, more details on alternative techniques for estimating the number

of mixtures can be found.

No-random imperfect supervision. The imperfect supervision can be
no-random in the case where the noise is not uniform in the features space.
In other words, the noise depends on the feature vector. In the context of
medical diagnosis (if we want to compare with the example given in the previ-
ous section) a no-random imperfect supervision can occur when humans label
a patient disease by its symptoms. As in the case of random imperfect super-
vision, different techniques have been proposed in order to deal with this kind
of data. (Lachenbrunch, 1974) presented such a technique, by calculating the
conditional error rates using Monte Carlo methods. Also, (Titterington, 1989)
used an EM algorithm in order to estimate the parameters of a logistic-normal

distribution.
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(Ambroise and Govaert, 2000) proposed an EM algorithm which estimates
the posterior distribution of the true label class with respect to the incomplete
data. They are based on the concept of Maximum Likelihood Estimators
(MLE) computed on observations which may be either labeled, unlabeled
or partially labeled. The idea is to introduce a distribution which indicates
the subset of classes an example could belong, including the true class. In
other words, it tries to identically distribute its doubts about the label of an
example in the other possibles classes. They compared this method with the
transferable belief model (TBM), first introduced by (Denoeux, 1995): the
latter is a non-probabilistic approach, based on the “Dempster-Shafer” theory

(Smets, 1994), and can also handle mislabeling data.

2 .3.1 Semi-Supervised learning with mislabeled data

The methods we presented above were all proposed in the context of super-
vised learning. (Amini and Gallinari, 2003) introduced another method which
takes into account the mislabelings, but in addition performs semi-supervised
learning. Their method could be placed in the random imperfect supervision
framework, as the mislabeling of an example does not depend on its feature
vector. In contrast with the other methods of this framework, this method
does not assume that the label errors come from the manual labeling of the
data. Instead, it assumes that the mislabeling errors occur by the classifica-
tion algorithm itself and it uses the label error model to correct them. Their
algorithm is based on the Logistic-CEM first introduced in (Vittaut et al.,
2002). The idea is to incorporate in the latter a mislabeling error model.
The algorithm is first trained on the labeled part of the training set and it
iteratively assigns class labels to unlabeled training examples. These newly
labeled examples, together with the labeled part of the training set, are then
used to re-train the classifier. At each iteration, the semi-supervised learning

system is acting as an imperfect supervisor on unlabeled training examples.

In order to model the mislabeling errors, supposing there is a set of n

labeled and a set of m unlabeled examples, they introduced the following
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probability, where y; and g; are the perfect (i.e. the real but unknown) and
the imperfect (i.e. the predicted by the classifier) labels of the unlabeled
example x; € Xy:

Vk,Vh, cp, = p(§ = kly = h)

subject to the constraints:
Vh, Y oy =1
k

They assume that the density of an example, given its true label, does

not depend on its imperfect label:
p(zilg = k,y = k) = p(zily = h)

In order to train their model, they use the CEM? algorithm. The latter

tries to maximize the following log-likelihood:

n

Lo = Y trilog Py = klz;, 3)

=1 k=1
n+m ¢ c

+ )Y [tkz‘ log (Z oen P(§ = h‘ajiaﬂ))] (2.13)
i=n+1 k=1 h=1

where t; = {tj;}, is the indicator vector class associated with the labeled

examples x;:
Vie{l,...,n} Yy, =k < ty; =1and Yh # k,tp; =0

The fkj corresponds to the respective indicator vector class, based on the
estimated labels g; for the unlabeled examples ;. The parameters 3 are the

parameters of the logistic classifier.

2CEM refers to Classification EM. The latter was introduced by (Symons, 1981) and
was applied to semi-supervised learning by (McLachlan, 1992). The idea is to introduce
an additional step (C-step) in the EM algorithm. During this step, each of the examples is
assigned to the most likely class.
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Algorithm 10: SSL with an explicit label-error model for misclassified
data
Input : A partially labeled dataset X = A3 U &,
A logistic classifier f
Initialize:

e Train f with the labeled examples.
We denote with 3(9) the obtained parameters

e Initialize a() by random
° j — 0
repeat

e C-step: Estimate the imperfect class posterior probabilities
using the output of the classifier, and get an imperfect label
for each x; € X,:

c
Va; € Xy, g}Z(JH) = argmaxzagh)p(g(j) = h|z;)
ko=

Let 701 be the new partition obtained from this classifier
for the unlabeled data

e M-step: Estimate the new parameters U+ qU+1)
which maximize L.(7UtD), 50) o)) (eq. 2 .13):
— BUHYD = argmax L. (70D g0) o))
30)

— Find the parameters U which maximize
Le(mnU+D g0+ (),
subject to constraints Vk, Vh, a,g:rl) € [0,1]
and VA, Y aftt =1

k

*j—J+1

until convergence of L ;
Output : The labels of the examples x € X,
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In algorithm (10) the different steps of the method are described. The
E-step does not appear explicitly in the algorithm, as it is trivial, since the

posterior estimates are given by the classifier outputs directly.

Additional methods. It is worth mentioning that in the literature there
exist some methods which try to solve the problem of noisy data from a
different perspective. Istead of modeling the mislabeling errors, they try to
“clean” the data, by finding and removing the mislabeled data. In other words,
they employ some preprocessing mechanisms to handle noisy instances before
a learner is formed. These filtering techniques (as they are known) usually
result in a reduced training set. Such methods include (Brodley and Friedl,
1999) who used cross-validation over the training data to find mislabeled
instances. Also, (John, 1995) tried removing the training instances that are
pruned by the C4.5 algorithm (Quinlan, 1993). In each iteration the tree was
rebuilt from the filtered set of training instances. This procedure was repeated
until no further pruning could be done. (Van Hulse et al., 2007) introduced
an approach (called Pairwise Attribute Noise Detection Algorithm (PANDA))
which tries to identify the most noisy examples. Due to the potential risk of
data cleaning when noisy examples are retained while good examples are
removed, in which cases the reduced training set can be much less accurate
than the full training set, efforts have been taken to construct noise tolerant

classifiers directly.

FILTER

Trash

Mislabeled data

Figure 2 .6: Filtering Techniques: They try to clean the dataset by removing
the mislabeling data (the small dots and lines) and keeping only the correct
labeled examples (big circles and lines)
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2 .4 Conclusion

In this chapter we have first introduced the idea of semi-supervised learning
and the motivation behind this concept. The huge amount of available unla-
beled data and the cost of labeling these examples have led to the design of
algorithms which try to take advantage of both labeled the unlabeled data.
Several of these methods have been inspired from techniques presented first
in the statistical community. Before presenting the different families of semi-
supervised learning techniques, we have discussed the assumptions in which
they rely on. A distinction between transductive and semi-supervised learn-
ing has been made and a synthesis of different methods in each of the two

approaches has been presented.

In the second part of this chapter, we discussed the presence of noise in a
training dataset. Very often there are mislabelings in the training data and
that can lead to a decrease of the performance. This is why different methods

have been introduced in the literature, which try to deal with this problem.

The goal was not to present an exhaustive list of all existing methods.
Instead, the concepts of semi-supervised learning and mislabeling error mod-
els have been presented. Some representative methods, together with their

motivation, from each of the different frameworks have been discussed.
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3 .1 Introduction

Active learning (AL), as semi-supervised learning, addresses the issue of an-
notation cost. In contrast with semi-supervised learning which, as mentioned
in the previous chapter, uses the unlabeled data in addition with the labeled
ones, active learning suggests to choose the most informative examples among
the unlabeled ones to annotate, in order to obtain better performance than,
if unlabeled examples are not taken into account in the learning process or

if they are labeled at random. This form of active learning is also known as
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selective sampling (Cohn et al., 1994).

The typical active learning setting consists of a partially labeled dataset
X = X UAX,, a classifier f and a query module gq. The classifier is ini-
tially trained with the labeled subset &;. Then, using the query module g, it
chooses the unlabeled examples X, C X, which can bring more information
in our classifier. These examples are labeled by the user and the classifier is
retrained with the enriched labeled set X; U X, (figure 3 .1). The measure of
efficiency for an active learner can be either the reduction of the labeled set
size needed to achieve a certain performance, or the performance achieved for

a certain size of the labeled set.

Enriched
Labeled set

Learning
algorithm Query
i
—>| Classifier _—)T module
Labeled
data

Unlabeled
data

Figure 3 .1: Active learning: The classifier is trained with the labeled exam-
ples. Then, using a selection strategy, it chooses and demand the annotation
of the most informative examples among the unlabeled ones. This procedure
continues until a certain performance or a certain size of the labeled set

Active learning has been applied in various tasks. For example, (Schohn

and Cohn, 2000) presented very good results for text classification using ac-
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tive learning. (Vogiatzis and Tsapatsoulis, 2008) proposed an active learning
method in the field of bioinformatics and they presented results on DNA mi-
croarray data sets. (Kuo et al., 2008) presented an adaptive learning frame-
work for Phonetic Similarity Modeling (PSM) that supports the automatic
construction of transliteration lexicons. (Cooper et al., 2007) used active
learning to identify which motion sequence the user should perform next,
in order to improve the quality and responsiveness of a kinematic character
controller. (Hakkani-Tiir et al., 2006) applied active learning in the task of
spoken language understanding.(Chawla and Bowyer, 2007) proposed a learn-
ing framework for the face recognition task. They proposed to actively learn
the face space in order to achieve a good performance using just a subset of

the training set.

3 .2 Active Learning Techniques

The existing active learning algorithms can be placed in three main categories:
the certainty-based sampling, the query by committee and the expected error
manimization. In the following sections the motivation of these categories are

discussed and some well known methods are presented.

3 .2.1 Certainty-based sampling

Certainty-based sampling is based on the confidence of the current classifier
on unlabeled data. This method was first introduced by (Lewis and Gale,
1994), where a probabilistic classifier is used (Naive Bayes), which assigns all
possible labels to the unlabeled data with certain probabilities. Then, based
on these probabilities, the most ambiguous examples are chosen for annota-
tion, i.e. the examples with the highest entropy (high entropy suggests high

uncertainty for an example).

In (Tong and Koller, 2000) a similar idea is presented. In their method,
the uncertainty of the unlabeled data is measured as the closeness to the
decision boundary of an SVM classifier. Also, (Campbell et al., 2000) pro-
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posed an algorithm for the training of support vector machines using instance
selection. In each iteration the example which is the closest to the current

hyperplane of the SVM algorithm is chosen.

In the same vein, (Ertekin et al., 2007) proposed an active learning method
which selects informative examples from a randomly picked small pool of
examples rather than making a full search in the entire training set. That
way, the active learning method can be applicable to very large datasets. They
used the SVM algorithm, but instead of using a traditional SVM solvers (e.g.
SVM'9ht (Joachims, 1999)), they used an online SVM algorithm, LASVM
(Bordes et al., 2005). LASVM works in an online setting, where its model is
continually modified as it processes the training examples one by one. The
proposed active learning method selects the examples closest to the margin
as in (Tong and Koller, 2000; Campbell et al., 2000). They used the proposed
active learning strategy in order to address the class imbalance problem, and
they presented some encouraging results. The intuition is that we can achieve
more balanced class distributions in the earlier steps of the learning, if we

focus the learning on the examples around the classification boundary.

3 .2.2 Query By Committee

A second type of active learning which is met in the literature is the query
by committee (QBC). It was first introduced by (Seung et al., 1992; Freund
et al., 1997). The idea here is to measure the agreement among a committee of
classifiers. The classifiers are trained with the labeled data and they classify
then the unlabeled examples. The algorithm chooses the examples with the
biggest disagreement among the classifiers. These examples are annotated by
the user and they are incorporated in the labeled examples. The intuition
behind this method is that if different classifiers disagree about the label of
an example, it means that the later is difficult to label. Here we must note
that in order this method to be efficient, the results of the classifiers should

not be correlated.



3 .2. Active Learning Techniques 49

(Muslea et al., 2000) presented the co-Testing algorithm which can be
applied in multi-view tasks, that is the tasks where there are more than one
signal to describe observations (like in co-training, described in the previous
chapter). The idea is to use different classifiers for the different views of the
data and to query the unlabeled examples on which the views predict differ-

ent labels.

Enriched
Labeled set

Y

classifier 1

classifier2 [——> Query
module
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Labeled 9/79/
data ”

classifier n

T

Unlabeled
data

Figure 3 .2: Query By Committee. The active learner chooses the example
with the biggest disagreement among the different classifiers

(Dagan and Engelson, 1995) presented a general committee-based active
learning method for selective sampling, which is appicable to probabilistic
classifiers. In their work, they focused on the task of tagging, where an
example is a word sequence and each word w is labeled with a tag ¢ by each

committee member. In order to quantify the committee disagreement for a
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word, they use the vote entropy defined as:

Vt,w), V(tw)
VEw)=— lo
(w) zt: - log —
where V(¢,w) is the number of committee members (out of &k members) vot-
ing for tag ¢ for the word w. The vote entropy can be seen as a measure
of classification uncertainty based on the training data. They then measure
the disagreement over an a word sequence by averaging the voting entropy

of all words in the sequence. They applied their method to training Hidden
Markov Models (HMM) (Rabiner, 1990).

(Davy and Luz, 2007) proposes the History Kullback-Leibler Divergence
(HKLD) algorithm. The idea is to incorporate the predictions made in pre-
vious iteration of active learning into the selection of informative unlabelled
examples. The past k predictions, of the previous k iterations, can be thought
of as the output of a committee of size k. In this context we can measure
uncertainty as the disagreement among committee members using Kullback-
Leibler divergence to the mean (McCallum and Nigam, 1998). KL divergence
to the mean is an average of the KL divergence between each distribution and

the mean of all the distributions.

3 .2.3 Expected error minimization

The third type of active learning algorithms tries to minimize the expected
error (for example (Iyengar et al., 2000)). According to this paradigm, the
unlabeled data which reduce the expected classification error are chosen for
annotation. This last type of active learning methods is the most sophisti-
cated, as it is based on a statistically optimal solution. The idea is to consider
each of the unlabeled examples as the next query. Then the reduction of the
classification error is calculated. The unlabeled data with the largest esti-
mated reduction is asked to be annotated by the system. For example, in

(Roy and McCallum, 2001) a sample estimation method is used for the Naive
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Bayes classifier. The idea is to train the classifier using the current labeled
examples and then produce an estimated output distribution Pp(y|z) for the
unlabeled examples which are candidates (as the true output distribution is
unknown). The best candidate is the one for which the knowledge of the
true label will cause the largest reduction of the risk (expected loss). Using
this estimated distribution, they calculate the expected loss for an candidate
unlabeled example z* by either a log loss (as the real labels are not known

we use the estimated ones):

Z > Po-(ylw) log(Pp- (y])) 3 1)

wEX yey

or a 0/1 loss:

o 2 (1= maxPo- oo 52

:ceX
where D* = D + (z*,y*). Of course, before making the query, the true label
of x* is also unknown. Again, the current learned classifier gives an estimate
of the distribution Pp(y|z*) from which the estimated label of the z* would
be chosen. The latter is used in order to calculate the estimated error for

each possible label y € Y. Algorithm (11) presents the above method.

Also (Dénmez et al., 2007) proposed a similar approach (the so-called
“dual”) where the strategy selection parameters are adaptively updated based

on estimated future residual error reduction after each actively sampled point.

3 .3 Theoretical views of Active learning

Except the different techniques of active learning presented in the previous
sections, some effort has been made in a theoretical basis, and some interrest-

ing works have appeared in the literature.

In this context, (Cohn et al., 1995) considered the problem of actively

selecing examples as a the statistically optimal manner. They studied two
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Algorithm 11: Active Learning by expected Error Minimization (Roy
and McCallum, 2001)

1. train a classifier using the current labeled examples X

e consider each unlabeled example = in the pool as a candidate for
the next labeling request

— consider each possible label y for x and add the pair (z,y) to
the training set
— re-train the classifier with the enlarged training set X + (x,y)
— estimate the resulting expected loss using equation (3 .1 or
3 .2)

e Assign to z the average expected losses for each possible labeling
y weighted according to the current classifier’s posterior, Pp(y|x)

2. Select for labeling the unlabeled example = that generated the lowest
expected error on all other examples.

well known statistical models, Mixtures of Gaussians and Locally Weighted
Regression and they derived a greedy optimality criterion for the selection of

examples.

More recently, (Castro and Nowak, 2007) tried to come up with some lim-
its in active learning. Using minimax analysis techniques, they achieved some

bounds under which one can expect significant gains through active learning.

(Hanneke, 2007b) studied the label complexity of pool-based active learn-
ing in the PAC model with noise. They derived upper and lower bounds
on the label complexity in terms of generalizations of extended teaching di-
mension. They claimed that their bound is the first nontrivial general upper

bound on label complexity in the presence of persistent classification noise.

(Balcan et al., 2006) presented an algorithm, the so-called Agnostic Active

learning or A? learning (which is essentially the active learning algorithm of
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(Cohn et al., 1994)), and they provided a label-complexity upper bound for
learning linear separators under the uniform input distribution. (Hanneke,
2007a) extended this work by deriving a general bound on the number of label
requests, applicable to any concept space and distribution. Also, in (Balcan
et al., 2007a) presented a framework for margin based active learning of linear

separators.

In (Balcan et al., 2007b) the problem is considered from a different angle
and the asymptotic complexity of active learning is analyzed. They proved

that in many interesting cases active learning does help asymptotically.

(Krause and Guestrin, 2007) came up with a theoretical bound on how
much better a sequential algorithm can perform than an a priori design strate-
gies. They considered Gaussian Processes (GPs) with unknown parameters
and they presented some bounds which motivate the switch between explo-
ration and exploitation approaches to active learning. They extended their
algorithm to handle nonstationary Gaussian Processes, exploiting local struc-

ture in the model.

3 .4 Combining SSL and Active Learning

The idea of combining active and semi-supervised learning was first intro-
duced by (McCallum and Nigam, 1998). The idea is to integrate an EM algo-
rithm with unlabeled data into an active learning framework, and more par-
ticularly in a query by committee (QBC) method. The commitee members
are created by sampling classifiers according to the distribution of classifier

parameters specified by the training data (algorithm 12).

In (Muslea et al., 2002), Co-EMT is proposed. This algorithm combines
Co-Testing and Co-EM. As opposed to Co-Testing algorithm, which learns hy-
potheses h; and ho based only on the labeled examples, Co-EMT learns the
two hypotheses by running Co-EM on both labeled and unlabeled examples.

Then, in the active learning step, it annotates the example on which the pre-
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dictions of h; and hs are the most divergent, that is, the example for which

h1 and hy have an equally strong confidence at predicting a different label.

Algorithm 12: Combining active learning and semi-supervised learn-
ing using EM (McCallum and Nigam, 1998)
Input : The labeled and unlabeled training documents

while more labeled data are required do
Build an initial estimate of the model parameters from the labeled

documents only

for each of the k committee members (i.e. for each classifier) do
e Create a committee member by sampling a classifier for

each class from the appropriate Dirichlet distribution

e Starting with the sampled classifier apply EM with
the unlabeled data:

e repeat

— Use the current classifier to probabilistically label
the unlabeled documents

— Recalculate the classifier parameters given the
probabilistically-weighted labels

until parameters convergence ;

e Use the current classifier to probabilistically label
all unlabeled documents

end

Calculate the disagreement for each unlabeled document, multiply
by its density, and request the class label for the one with the
highest score.

end

Output : The new labeled set and all the predicted labels

(Zhu et al., 2003b) also present a combination of semi-supervised and ac-
tive learning using Gaussian fields and harmonic functions (the semi-supervised
method is described analytically in the previous chapter 2 .2.1.2). In brief,

under this semi-supervised framework, the expected generalization error after



3 .4. Combining SSL and Active Learning 55

querying a point is calculated, and the one which gives the largest reduction
is chosen for annotation (algorithm 13). The estimated risk ]:?(f) can be cal-
culated as follows (here, the f; values are considered as “proxy” for the class

probabilities:

n

R(f) = Y [sign(fi —05) # —1] (1= f;) + [sign(f; — 0.5) # 1] f;

i=1
= D min(fi,1 - fi)
=1

We then retrain the classifier on the new labeled training set (augmented
by the annotated unlabeled example). If we denote by fHERue) the new

harmonic function, the estimated risk becomes:

f+($k7yk me +(@kYx) 1 f"f'(ffkyyk))

2

As we do not know the value of ¥y, in order to estimate the expected risk,

after querying the example k, we use the following equation:
E(f+xk) =(1- fk)ﬁ(f‘F(CEk,*l)) + fkﬁ(er(ka))

In each iteration, we choose the next example k that minimizes the ex-

pected estimated risk:
k = argming R(fT°) (3.3)

(Zhou et al., 2006) presented the so-called method Semi-Supervised Ac-
tive Image Retrieval (SSAIR) for a different task of relevance feedback. The
method was inspired by co-training (Blum and Mitchell, 1998) and co-testing
(Muslea et al., 2000), but instead of using two sufficient but redundant views
of the dataset, it employs two different learners on the same data. Initially,
the two learners are trained on the labeled data. Then, each of them ranks
the unlabeled data by giving them a value between {—1,1}, where negative
and positive indicates whether the learner believes that the example is ir-

relevant or relevant resectively. The bigger the absolute value is, the more
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Algorithm 13: Combining active learning and semi-supervised learn-
ing using Gaussian fields and harmonic functions

Input
A graph G = (V, E) and weight matrix W

The labels of the labeled examples f;

The diagonal matrix D;; = Z Wi
k

The combinatorial Laplacian matrix L =D — W.

We split the matrix according to labeled and

Ly Ly, }

unlabeled examples as: L =
P |: Lul Lyu

while more labeled data are required do

e Compute harmonic function f, = —L_.l % Ly * f;
e Find best example to annotate, using equation (3 .3)
e Query point xzj, and receive answer ¥y

e Add (xg,yx) in A&}, and remove xj, from X,

end
Output

e The new labeled set and the classifier f

confident the learner is about its decision. According to this ranking each
learner passes the most relevant images to the other one. After re-training
with the additional labeled data, the learners rank the data again and then
their rankings are merged by summation, which gives the final ranking for the
unlabeled data. The examples for which the learners are confident to be rele-
vant are returned as the retrieval result. The ones which have low confidence

are placed into the pool which is used in the next round of relevance feedback.
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Figure 3 .3: Combining semi-supervised and Active learning

In the context of multi-view active learning, (Probst and Ghani, 2007)
proposed a method which combines semi-supervised and active learning. The
first step uses co-EM with naive Bayes as the semi-supervised algorithm. They
present an approximation to co-EM with naive Bayes that can incorporate user
feedback almost instantly and can use any sample-selection strategy for active

learning.

Why the combination should work? Intuitively, the combination of
both semi-supervised and active learning appears to be particularly beneficial
in reducing the annotation burden. Semi-supervised learning is more focused
on exploitation, while active learning is more dedicated to exploration of the
data. As a result, used alone, it can lead to poor performance in certain
cases, as semi-supervised strongly suffers from poorly represented classes,
while being very sensitive to noise. On the other hand, active learning could

be too slow, as it does not really exploit the information given by unlabeled
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data. In the same vein, semi-supervised learning tends to over-weight easy-
to-classify examples that will dominate the process, while active learning has
the opposite strategy, resulting in exploring more deeply the hard-to-classify
examples. Also, active learning based on the confidence scores calculated on
the whole dataset and not only on the labeled examples, can be expected
to be more efficient. The reason is that the confidence score will be more

accurate based on both label and unlabeled data.

3 .5 Conclusion

In this chapter, we presented the existing methods in active learning. The
latter, as semi-supervised learning, tries to reduce the annotation burden.
The general idea of the latter is to annotate actively the most informative
examples in order to ameliorate the performance of the classifier. We have
presented the main types of active learners and representative algorithms
in each of them. In the last section, the combination with semi-supervised
learning has been discussed. The reasons that the combination is interesting
and promising have been demonstrated, together with some works towards

this direction.
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In the first part of this thesis, we have presented three frameworks that
aim to reduce the annotation burden and to model possible mislabelings in a
training set. In particular, we first presented semi-supervised paradigm and
mislabeling error models. Then, we focused on the effort that has been made
to combine these two frameworks. Finally, we presented the paradigm of ac-

tive learning and the combination of the latter with semi-supervised learning.

In this second part, we combine these three frameworks. We are focusing
on the task of text categorization and we present an extension of the aspect
models to the case of semi-supervised learning for this task. This study is
motivated by the cost of labeling document collections and the ability of
aspect models to explain the generation of textual observations. In this part,
we propose two semi-supervised variants of aspect models, especially of the
PLSA algorithm, which incorporate a mislabeling error model. We further
extend these semi-supervised models by combining them with two different

active learning strategies.
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4 .1 Introduction

In this chapter, we start by presenting the framework of aspect models. Then,
we describe the Probabilistic Latent Semantic Analysis (PLSA) algorithm
introduced by (Hofmann, 2001). We continue by introducing our three semi-

supervised variants of the PLSA model.

The motivation of the first variant is to try to handle the uncertainty

posed by the unlabeled data clusters. In the second and third variants, we
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try to capture the possible mislabeled data which occur during the training of
our model. The idea is to iteratively assign class labels to unlabeled examples
and estimate the probabilities of the mislabeling errors. These probabilities
are taken into account in the estimation of the new model parameters before
the next round. In the third variant, as opposed to the second one, we perform

soft clustering on the unlabeled data.

4 .2 Aspect Models for Document Classification

As we saw in chapter 2, semi-supervised methods relying on a generative
model usually implement a local independance assumption (similar to the
Naive Bayes assumption), which is unlikely to be met in practice. In addi-
tion, some simple models (such as the Naive Bayes model) assume that an
observation is generated in its entirety from the class it belongs to. This
makes it inconvenient to model data that may comprise several aspects, for
example textual documents which potentially cover different topics. This has
led to the development of Aspect Models (Hofmann, 2001), which can take
into account such data with multiple facets. The aspect models differ in the
statistical assumptions they impose on the model: They are based on the as-
sumption that examples cover one or more different topics. In other words, an
example can be modeled as a mixture of topics. They specify a simple prob-
abilistic procedure by which theses examples can be generated. In this way,
examples are now characterized in terms of topics instead of simple features.
Observations are generated by a mixture of aspects, or topics, each of which
being a distribution over the basic features of the observations (such as words
in a document, or pixels in an image etc). Interestingly, these models allow to
capture interesting application-dependent phenomena. When modeling tex-
tual content, for example, they take into account linguistics properties® such
as synonymy (different terms with the same meaning) and polysemy (differ-
ent meanings of the same term). Both may have a crucial influence on the

modelling of the relationship between documents.

3Further details on these linguistics properties are given in the evaluation chapter, where
the representation of the data is discussed
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4 .3 Probabilistic Latent Semantic Analysis

One of the first aspect models introduced in the literature, is the Probabilistic
Latent Semantic Analysis (PLSA), proposed by Hofmann (Hofmann, 2001).
The latter has been presented in terms of document classification, but it can
be applicable to different tasks, such as image classification. It has been
presented as a probabilistic version of the Latent Semantic Analysis (LSA)
method (Deerwester et al., 1990).

PLSA is a probabilistic model which characterizes each word in a doc-
ument as a sample from a mixture model, where mixture components are
conditionally-independent multinomial distributions. This model, also known
as the aspect model (Saul and Pereira, 1997), associates an unobserved latent
variable (called aspect, topic or component) a € {aq,...,aa} to each obser-
vation corresponding to the occurrence of a word w € W within a document
x € X. One component or topic can coincide with one class or, in another
setting, a class can be associated to more than one component. Although orig-
inally proposed in an unsupervised setting, this latent variable model is easily

extended to classification with the following underlying generation process:

e Pick a document = with probability P(z),

e Choose a latent variable e according to its conditional probability P(« |
x)
o Generate a feature w with probability P(w | «)
e Generate the example’s class y according to the probability P(y | «).
The probability P(y | «) is fixed, by forcing to zero the component « that
Lifaey

do not belong to a certain class y, i.e. P(yla) = _ (as we
0, otherwise

know how many components per class we have).

Hence, the model parameters are

E={Pla|z),Pw]|a):ac Az e X, weW}
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ollo

\ examples

Figure 4 .1: Graphical model representation of the PLSA model. Latent
variables are double circled.

The generation of a feature w within an example z can then be translated

by the following joint probability model:

P(w,z) =P(z) Y P(w|a)P(a|z) (4 1)
a€cA

So, the log-likelihood of the model can be estimated as:

L= Z Z n(x,w)log P(x,w) (4 .2)

weW zeX

where n(w,x) denotes the frequency of the word w in instance x. At this
point we have to note that y appears in the log-likelihood indirectly, through

Q.

In algorithm (14) the training of this model is described. The idea is to
perform one clustering per class by fixing the number of components per class.
The latter is done during the initialization of the model (2(?)), where we force
to zero the P(a | z) for an example = which does not belong to a particular

topic « (that is the labeled training examples). The algorithm used ensure
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to maintain the forced zeros during the iterations. The P(w | «) is initialized

by giving random values for all w and a.

After the training of the model, we run the PLSA for the test set,(algorithm
(15)) using the calculated model (i.e. P(w|a)), in order to learn the P(«|z)
and we classify the examples of the test set with the maximum posterior

probability using chain rule:
P(y|z) o< ) P(al)P(y|a)
(07

We choose as label for each example, the one with the highest probability.

In chapter 2, we presented (together with its semi-supervised variant) the
Naive Bayes model (Lewis, 1998). In the latter, some simplifying assump-
tions are considered, which PLSA overcomes in two important ways. First,
it relaxes the assumption that a class y is associated to a single topic. In
PLSA, the number of topics |A| may be larger than the number of classes K.
The second and crucial difference is that in Naive Bayes, all features must
be generated from the same topic. This requires the use of clever smoothing
strategies to counter the fact that some features that are unrelated to a topic
may appear by coincidence in an example from that topic. On the other
hand, in PLSA, a topic is drawn independently from P(a | x) each time a
new feature is generated in an example. This provides a much more natural

way to handle unusual features or multi-topicality.

The complexity of PLSA is O(|A| x M), where M = #{(w, z)|n(w,z) >
0}, is the number of pairs (w,x) co-occuring at least once in the collection
(or, in other words, the number of non-zero entries in the example-feature

matrix).
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Algorithm 14: Probabilistic Latent Semantic Analysis (PLSA) for
Document Classification: Training

Input
e A labeled set X = X,

e Random initial model parameters Z(©).
e 70
repeat

e E-step: Estimate the latent class posteriors:
Vo e X,Vw € W,Va € A of the class y(z)

P(J’)(a|x)p(j) (w|a)
> PO |2)PY) (w]o)
o’eA

P(ajw,z) = 70)(w, z) =

e M-step: Estimate the new model parameters 20+
by maximizing the complete-data log-likelihood:

PUD (pla) o Z n(w, z)7{) (w, z)

x

PUt)(a|z) o Z n(w, z)7Y) (w, z)

w

*j—J+1

until convergence of the complete-data log-likelihood ;
Output : A generative classifier with parameters Z()

4 .4 Semi-Supervised PLSA with a “missing values”

model

The most straight forward semi-supervised variant of the PLSA algorithm is
to treat it as a “missing values” model. The latter can be seen as a cluster-
ing with constraints. In this case, our model will be identical with the one

presented in the previous section and in algorithm (14). The difference lies
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Algorithm 15: Probabilistic Latent Semantic Analysis (PLSA) for
Document Classification: Testing

Input
o A test set X’/

e the learned model P(w|«)
repeat

e E-step: Estimate the latent class posteriors:

Ve e X',Vw e W,Va € A

PU)(a|z)P(w|a)
> PU ) Pwla)

a’€A

P(afw,z) = 7)) (w, z) =

e M-step:
PUT) (a|z) o Zn (w, x)
w

until convergence of the complete-data log-likelihood ;
Calculate the labels of the test set:

P(ylz) o ZP (alz)P(y|a)

Output : The labels of the test set

to the initialization process: instead of forcing to zero the P(«a | x) for all
examples z of the training set which do not belong to a particular topic «,
this time we force P(« | ) only for the labeled examples and we give random
values for all the unlabeled examples of the training set, under the constraint
to sum up to 1. This happens because we do not know the labels of the un-
labeled examples, and as a result, we cannot find in which topic they belong
(by P(y|a)), as we do with the labeled data.

This “missing values” model is the simplest way to perform semi-supervised

learning with the PLSA model. The drawback is that it does not capture any
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of the problems created because of the very low ratio of labeled and un-
labeled examples. This is why we will focus on the three semi-supervised
variants described in the next sections, which are more sophisticated. The
first one (with the “fake label” model) solves the problem of the unlabeled
components, while the other two variants (with the mislabeling error model)
capture and modelize the mislabelings produced by the classifier during the

iterations.

4 .5 Semi-Supervised PLSA with a fake label model

As the aspect PLSA model characterizes the generation of the co-occurrence
between a feature w and an example x, for learning the semi-supervised mod-
els we have to form two labeled Q; and unlabeled Q,, training sets from X; and
Xu. We consider now each observation as a pair ¢ = (w, z) such that observa-

tions in Q; are assigned to the same class label as the example z they contain.

We recall that we still characterize the data using a mixture model with
|A| latent topic variables «, under the graphical assumption of aspect mod-
els (that z and w are independent conditionally to a latent topic variable «).
(Krithara et al., 2006), following the work of (Gaussier and Goutte, 2005), pre-
sented a semi-supervised variant of PLSA, where additional “fake” labels were
introduced for the unlabeled data (namely the ssPLSA-fake). The motivation
for the latter was to try to solve the problem of the unlabeled components
(which contain only unlabeled examples and for which a class assignation is
risky). Indeed, the lack of labeled examples in these components can lead to
arbitrary class probabilities, and as a result, to arbitrary classification deci-
sions. So all labeled examples in Q; (where Q; are the co-occurrences for the
labeled data) are kept with their real class labels and all unlabeled examples
in Q, (the co-occurrences for the unlabeled data) are assigned a new fake

label y = yo.



4 .5. ssPLSA with a fake label model 71

In this case the model parameters are
A={Pla|z),P(z=y |a),Plw|a):ac A,z e X,weW,z€ {y+y}}

The above model parameters A are obtained by maximizing the complete
data log-likelihood

Ly = Z log P(w, x, z) (4 .3)
r€QweW

using the Expectation-Maximization EM algorithm. In algorithm 16, the

training of this model is summarized.

OO,

\ examples

Figure 4 .2: Graphical model representation of the ssPLSA model with a fake
label model.z € {y + yo}

At this point we have to note that the values of P(z|a) depend on the
value of latent topic variable . The cardinal of « is given, and in addition,
the repartition of the « in different classes is also known, that is, the number
of latent topic variables per class. So, in order to initialize, for the true classes
(i.e. for all z # yo) we force to zero the P(z|a) for the latent topic variables «
which do not belong to the particular class z, and for z = yg we give random

values for all a.



72 Chapter 4 . Semi-Supervised Aspect Models

The complexity of this algorithm is O(|A| x M) where, as before, M =
#{(w, z)|n(w,z) > 0}.

Once the model parameters are obtained, if we want to assign the unla-
beled data used in the learning stage to a class (i.e. transductive learning),
for each example x, we distribute the probability obtained for the "fake" label

z = 1o, on the "true" labels using the following equation:

P(ylz) o< Y Plalz) [P(yla) +AP(z=yo|a)] (4 4)

where \ € [0, %] (where A = % corresponds to a uniform repartition of

uncertain “fake” label on the other labels) and y = 1,..., K.

The ssPLSA-fake, can be seen as a confidence measure for each unlabeled
example to belong to a given class. That is, after training, unlabeled examples
for which the model is more confident, are assigned to one of the real classes.
On the other hand, examples for which the classifier has no confidence will
keep their fake labels and, from the above equation, their influence will be

downweighted.

A new example z is assigned to the class with maximum posterior prob-
ability using the same rule as before (equation 4 .4), using the P(z = yp|«)

estimated during the training of the model.

If we want to test our model on new data, after having trained the model,
we assign a new example = to the class with maximum posterior probability
using the equation (4 .4) above (as in the case of the unlabeled examples in

the training set).
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Algorithm 16: Semi-Supervised PLSA (ssPLSA) with fake labels
Input

e A set of partially labeled data X = X; U X,

e Random initial model parameters A(®.
e 70
repeat

e E-step: Estimate the latent class posteriors:

VeeXVzeC=C+yo , YweW\VacA
p(j)(a|g3)p(j)(w|a)p(j)(z|a)
PO (w, z|z)

Wg)(w,x,z) =

where PU) (w, z|z) = ZPU (a|2) PY) (w]a) PY) (z])
acA

e M-step: Estimate the new model parameters AU+1)
by maximizing the complete-data log-likelihood:

pU+D) (wla) o Z n(w, x)ﬂg) (w, z, 2(z))

xT

PU) (alz) Zn(w o)) (w, z, 2(x))

PUD (4 ZZ n(w, z)ry’ (w, x, z)

w T,z

*j—J+1

until convergence of the complete-data log-likelihood ;
Output : A generative classifier with parameters A)

4 .6 Semi-Supervised PLSA with a mislabeling er-

ror model - hard clustering

In this section we introduce a semi-supervised variant of the PLSA model

in which a misclassification error is incorporated (namely the ssPLSA-mem
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hard). We assume that the labeling errors made by the generative model
for unlabeled data come from a stochastic process and that these errors are
inherent to semi-supervised learning algorithms. The idea here is to charac-
terize this stochastic process in order to reduce the labeling errors computed

by the classifier for unlabeled data in the training set.

We assume that for each unlabeled example x € X,,, there exists a perfect,
true label y, and an imperfect label ¢, estimated by the classifier. Assuming
also that the estimated label is dependent on the true one, we can model

these labels by the following probabilities:
W(k, h) € C x C, B = P = kly = h) (4 .5)

subject to the constraint that Vh,) . Bxn = 1.

In figure 4 .3 below the graphical representation of this model for both

labeled and unlabeled data is given.

. 00@

\ examples |
Labeled data

L examples

Unlabeled data

Figure 4 .3: Graphical model representation of the semi-supervised PLSA
with a mislabeling error model, for labeled (left) and unlabeled (right) docu-
ments.
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The underlying generation process associated to this latent variable model

for unlabeled data is:
e Pick an example x with probability P(x),

e Choose a latent variable a according to its conditional probability P(« |

x)
e Generate a feature w with probability P(w | «)

e Generate the latent document class y according to the probability P(y |

@)
e The imperfect class label § is generated with probability 8, = P(7 | y)

As in the ssPLSA-fake presented in the previous section, the values of
P(y|a) depend on the value of the latent topic variable a. The cardinal of
« is given (as is considered as a hyper-parameter). The repartition of the
« in the classes is also known for both labeled and unlabeled examples. We
initialize by forcing to zero the P(y|«a) for the latent topic variables o which
do not belong to the particular class y. These values remain fixed. In other
words, we perform hard clustering. We have to note that the hard clustering
is done in terms of classes, as an example can be a mix of several components,

as far as these components are related to the same class (y).

With this new graphical model, the joint probability between an unlabeled
example ¢ € Q,, and its imperfect class label estimated by the classifier can

be expressed as

Vg € Qu, P(w,z,5) = Y _ P(wla)P(alz) > By, P(yla)

acA yel

The model parameters are in this case:
¢ ={P(al|z),P(w]|a),By:zrecX ,weW acAyecCjeCl}

and they are estimated by maximizing the complete data log-likelihood:
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Ly = Z Z n(w, logZP P(w|a)P(alz)P(y|a)

reX; w

+ Z Z n(w, logZP P(w|a)P(ax) Zﬁmy (yla)

IBGXu w

(4 .6)

The Maximum likelihood estimates of model parameters are:

PU“)(w\a) ~ Z n(w, z)m (J)(w’m’y(gj)) + Z n(w,m)frg)(w,x,z}(x))

reX; reXy
(4.7)
where P(of) P(w]a) P(y]a)
a|z)P(w|a)P(y|a
T2 9) = S~ b al) Plwla) P(yla) (48)
and
Pla|lx)P(w|a Plyla)3-
o) = PEDPEI0) S, Pl Lo

2o Plafz)P(wla) 32, P(yla)By)y

are the latent topic posteriors for respectively the labeled and unlabeled data.

(J)(w x,y(x)), for z € X
PUHD (az) Zn (4 .10)
v ﬁg)(w,x,gj(az)), for z € X,

The mislabeling probabilities are estimated over the unlabeled training

set:

y{y“ oYY n(w,2) Y 7D (w, 2, 5) (4 .11)

w reXy alaey
In algorithm 17 the estimation of model parameters ® is described. This
algorithm is also an EM-like algorithm as the previous semi-supervised model.
For the initialization of the model parameters ®© are assigned random values
by respecting the constraints. Then, at each iteration j during the E-step ,
latent topic posteriors are estimated for labeled and unlabeled data using the

current parameters o), During the M-step, new parameters ®U+D) are es-
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timated by maximizing the complete data log-likelihood (equation 4 .6). We
alternate these two step until the convergence of the complete data likelihood

to a local maximum.

Algorithm 17: ssPLSA-mem hard
Input

e A set of partially labeled data X = X; U X,

e Random initial model parameters ®(©.
° j — 0
e Run a simple PLSA algorithm for the estimation of the initial g

repeat
E-step: Estimate the latent class posteriors

P(a|z)P(w|a)P(y|a)
Yo Plajz)P(w|a) Py|a)
P(alz)P(w|e) 32, P(yle) By,

Ralw28) = S~ Bl Plula) S, Pala)gy, ¢ €

Ta(Ww, z,Y) ,ifrx e X

M-step: Estimate the new model parameters ®U+1)
by maximizing the complete-data log-likelihood

PU) (w]a) o Z n(w, 2)r{) (w, z, y(z)) + Z n(w, )7 (w, z, §(x))
$€Xl $€Xu

PU(alr) o Y n(w,z) x { e (w,,9()), for 2 € X)

ﬁg)(w,x,gj(x)), for z € X,

U o 3N mw,w) Yo 7D (w,w,5)

w zeXy alacy

Je—J+1
until convergence of the complete-data log-likelihood ;
Output : A generative classifier with parameters ®(/)

The complexity of this algorithm is O(]A| x M x C), which is comparable
to the one of PLSA and ssPLSA-fake.
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4 .7 Semi-Supervised PLSA with a mislabeling er-

ror model - Soft clustering

In this section we present an extention of the previous model, namely the
ssPLSA-mem soft. We mentioned that in ssPLSA-mem hard we perform
hard clustering by fixing the values of P(y|a). The idea here is to perform
soft clustering for the unlabeled data. In other words, the repartition for the
unlabeled data is not fixed. We denote by P(y|) the values for the unlabeled
data, which are obtained during the training of the model. For the labeled
examples, we initialize, as before, by forcing to zero the P(y|a) for the latent

topic variables o which do not belong to the particular class y.

We decided to perform hard clustering for the labeled examples, because,
as discussed in (Gaussier and Goutte, 2005), the soft clustering potentially
faces the problem of cluster impurity: all components contain examples from
several classes instead of “specialising” to one or few classes. As a conse-
quence, even if we use the unlabelled data to better model these components,
this will not help to discriminate the different classes. On the other hand, by
allowing soft clustering only on the unlabeled examples, we do not face this
problem and in addition we give the possibility to the unlabeled examples to

be distributed over all components.

Hence, in this case the joint probability between an unlabeled example ¢ €
O, and its imperfect class label estimated by the classifier can be expressed

as

P(w,z,§) = P(z) ) P(w|a)P(alz) Y By, P(yla)

a€cA yeC

The model parameters
UV ={Pla|x),Pw| oz),ﬁg‘y,ﬁ(y\a) xeX,weW,ac AjyeC,yeC}

are estimated by maximizing the complete data log-likelihood:
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L3 = Z Z w,x logZP P(w|a)P(alz)P(y|a)

reX; w

+ Z Z n(w, x logZp p(w|a)p(alr) Zﬁyly (ylev)

IBGXu w

(4 .12)

As we can notice, the difference with the ssPLSA-hard strategy, relies
on the introduction of P(y|a) for unlabeled data, which is not fixed, but
is estimated during the EM algorithm. In order to initialize this parameter,
we do not force to zero any of its values, but nevertheless, we favorize the
components for which the P(y|a) of the labeled examples is not zero, by
giving them bigger values. In other words, we initialize this parameter in
such a way so that it is not very far from the P(y|«) (but on the other hand
we do not forced to zero any value, as we want to perform soft clustering).
We decided to initialize that way in order to avoid identifiability problems
which can occur. For the training of the current model, we use again the
equations (4 .7), (4 .10), (4 .11) and (4 .8), but this time the latent topic

posterior 7, (w, z,7) for the unlabeled data is defined as follows:

P(alz)P(wla) 3, Pyla)By,
Yo Plaf) P(w|a) 32, P(ylo)y,

Ta(w, 2, §) = (4 .13)

In addition, the P(y|a) is estimated over the unlabeled training set:

P(j+1)(y‘a P(J y‘a Z Z PY (Oz|x)PJ (w|a) ($)|y

= 5 S POl P i) 5, POy )
(4 .14)
The procedure for estimating model parameters W is described in algo-
rithm 18.

The complexity of this algorithm is O(|A| x M x C), which is comparable
with the one of the semi-supervised Naive Bayes (as presented in chapter 2)
and ssPLSA-fake algorithms.
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Algorithm 18: ssPLSA-mem soft
Input

e A set of partially labeled data X = X; U X,

e Random initial model parameters ¥(©).
e 70
e Run a simple PLSA algorithm for the estimation of the initial g

repeat
E-step: Estimate the latent class posteriors

P(a|z)P(w|a)P(y|a)
e P(a\ﬂﬁ)P(wla)P(?{la)
P(alz)P(w|e) 32, P(yle) By

77(0[ w.z, 5 _ _ R if Xu
( 9) Yo Pla|z)P(w|a) Zy P(Z/‘O‘)ﬁﬂly )

To(w, z,y) Jifz e X

M-step: Estimate the new model parameters w(+1)
by maximizing the complete-data log-likelihood

PUTD(wla) o Z n(w, )7 (w, z,y(x)) + Z n(w, z)7) (w, z,§(x))

reX] rEXy
, ()
P(9+1)(a|x) x Zn(w,x) % To})(w,x,g{(az)), for v € X;
” 7o (w,z,g(z)), for x € X,

AU o SN n(w,a) > 7D (w2, 9)

. . PO (alz) PO (w]a) 3L
PUtD (yla) = p(J)(y|a)Z Z n(w, ) : : t ')\y -
w zeX, 2o PO alz) PO (wla) 32, PO (yla) By,

J—J+1
until convergence of the complete-data log-likelihood ;
Output : A generative classifier with parameters ¥()

The experiments in chapter 6 will prove that the soft clustering in the un-
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labeled training data is really beneficial, especially when the ratio of labeled-

unlabeled data is very low.

Remarks The following matrix sums up the models presented in this chap-
ter, comparing the parameters they control and their complexity. As we can
see the complexity of all four is comparable. In chapter 6, we test these meth-

ods and discuss how the different parameters can affect their performances.

All the above models can be performed directly in multiclass classification
tasks, without any modification. And this can be proved a great advantage
with respect to binary classification semi-supervised models, as in may real
world classification problems are multiclass, and many of the existing meth-

ods cannot handle multiclass problem easily.

Parameters Complexity
| Models Pwla) | Palz) [ P(gly) [ Plyle) 00
PLSA v vV O(JA| x M)
ssPLSA-fake v Vv v O(|A| x M)
ssPLSA-mem hard v vV vV O(C x |A] x M)
ssPLSA-mem soft Vv vV vV Vv O(C x |A] x M)

Table 4 .1: Comparison of the different variants of the semi-supervised PLSA
model. For the complexities M = #{(w, z)|n(w,x) > 0}

4 .8 Conclusion

In this chapter we presented three semi-supervised variants of the Probabilis-
tic Latent Semantic Analysis. These aspect models use both label and unla-
beled data and at the same time, they model the possible mislabeling errors.
First a variant (ssPLSA-fake) which uses fake labels is presented and then
two slightly different models were proposed (ssPLSA-mem hard and ssPLSA-
mem soft). In the next chapter, we extend these models by combining them

with two different active learning techniques.
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5.1 Introduction

In this chapter, we extend the presented semi-supervised models, by combin-
ing them with two active learning methods. The motivation is to try to take

advantage of the characteristics of both frameworks.

As discussed in chapter 3, the combination of both semi-supervised and
active learning appears to be particularly beneficial in reducing the annotation

burden for the following reasons:

1. Tt constitutes an efficient way of solving the exploitation/exploration

problem: semi-supervised learning is more focused on exploitation, while
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dataset

. e semi— V
' \supervised Active Query
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Learning learner module

algorithm

dataset

Unlabeled
data

Figure 5 .1: Combining semi-supervised and Active learning

active learning is more dedicated to exploration. Semi-supervised learn-
ing alone may lead to poor performance in the case of very scarce initial
annotation. It then strongly suffers from poorly represented classes,
while being very sensitive to noise and potentially instability. On the
other hand, active learning alone may spend too much time querying
useless examples, as it can not exploit the information given by the
unlabeled data.

. In the same vein, it may alleviate the data imbalance problem due to

each method separately. Semi-supervised learning tends to over-weight
easy-to-classify examples that will dominate the process, while active
learning has the opposite strategy, resulting in exploring more deeply
the hard-to-classify examples (Tiir et al., 2005).

. Semi-supervised learning is able to provide a more motivated estima-

tion of the confidence score associated to the class prediction for each
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example, taking into account the whole data set, including the unla-
belled data. As a consequence, active learning based on these better

confidence scores can be expected to be more efficient.

In the next two sections, we present two different active learning methods
which can be performed on the top of the semi-supervised models presented
in the previous chapter. These model can be also used with any other semi-
supervised probabilistic model. In both methods, we choose to annotate the
less confident example. Their difference lies on the measure of confidence

they use.

5.2 Margin-Based Method

The first active learning method (the so-called margin method) chooses to
annotate the example which is closer to the classes’ boundaries (Krithara
et al., 2006). The latter gives us a notion of confidence the classifier has on
the classification of these examples. In order to measure this confidence we

use the following class-entropy measure for each unlabeled example:

B(x) = —ZP(y|x) log P(y|z), where z € X, (5 .1)

The bigger the B is, the less confident the classifier is about the labeling of
the example. After having selected an example, we annotate it and we add it
to the initial labeled set X;. More than one examples can be selected at each
iteration. The reason is that, especially for classification problems with a big
amount of examples and many classes, the annotation of only one example
at a time, can be proved time-consuming, as a respectful amount of labeled
examples will be needed in order to achieve good performances. If we choose
to do the latter, it is not wise to choose examples that are next to each other,
as they cannot give us more information than each of them does. As a result,
it is better to choose, for instance, examples with big class-entropy which
have been given different labels. That way the classifier can get information

about different classes and not only one.
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Algorithm 19 gives us the general framework under which the above active

learning method can be combined with any semi-supervised variant of the
PLSA model.

Algorithm 19: Combining ssPLSA and Active Learning
Input : A set of partially labeled documents X = A3 U A,

repeat
e Run the ssPLSA algorithm (and calculate the P(y|z))

e Estimate the confidence of the classifier on the unlabeled
examples: Vo € Xy, B(z) = — 3 P(yl|z)log P(y|z)

e Choose the example(s) with low confidence, i.e. higher value of B
(if we choose more than one example to label, we choose examples
with have been classified into different classes )
and add them in the labeled dataset A

until o given number of queries or a certain performance ;
Output : A generative classifier

5.3 Entropy-Based Method

In this section, we present another active learning method, which can be com-
bined with the semi-supervised framework. Based on the method presented
by (Dagan and Engelson, 1995), we calculate the entropy of the annotation
of the unlabeled data, during the iterations of the algorithm. This method
can be seen as a query by committee approach, where, in contrast to the
method of (Dagan and Engelson, 1995), the committees here are the different

iterations of the same model.

In contrast to the margin based method presented previously, the current
one does not use the probabilities P(y|z) of an example x to be assigned the
label y but, instead, is uses the deterministic votes of the classifier during the
different iterations. We denote by V (y, ) the number of times that the label
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y was assigned in the example x during the previous iterations.

Then, we denote as Vote Entropy of an example x as:

VE(x)=— Vig.2), Y .o) (5 .2)

iters iters

where iters refers to the number of iterations.

The examples to be labeled are chosen using equation (5 .2), that is, ex-
amples with higher entropies are selected. As long as we add new examples
during the iterations, the labeling of some examples will change as, new infor-
mation will be given to the classifier. Thus, the strategy chooses the examples
for which the classifier changes its decision more often during the iterations.
We have to note, that during the first 2-3 iterations, we do not have enough
information in order to choose the best examples to label, but very quickly
the active learner manage to identify these examples. The intuition behind
this model is that examples which tend to change labels are those for which
the classifier seems more undecided. In algorithm (20) the combination of
this method with the semi-supervised PLSA is described.

Algorithm 20: Combining ssPLSA and Active Learning
Input : A set of partially labeled documents X = A} U &,

repeat
e Run the ssPLSA algorithm

e Update the V E for each of the examples, according to the
decision of the classifier in the current iteration

e Choose the example(s) with the highest entropy and add them
in the labeled dataset A

until a certain number of queries or a certain performance ;
Output : A generative classifier
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5 .4 Conclusion

In this chapter, we propose the combination of the semi-supervised PLSA
models presented in the previous chapter with two active learning methods.
Both try to measure the confidence of the classifier by using two different
strategies. The less confident examples are chosen for annotation and the
classifier is retrained with the updated training set. In the next chapter we
discuss the performance of these models, and the benefits they can offer to

the semi-supervised learning.
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6 .1 Introduction

In the two previous chapters, different methods for semi-supervised and active
learning have been presented. In the current chapter, we try to evaluate all
these models and compare their performance with some well known state-
of-the-art techniques. We are focusing on document classification, that we
start to describe. Then, we present the datasets we used for the compqrisons.
Then, an evaluation with a real-world dataset, provided by a Xerox Business

Group, is performed.
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6 .2 Document Categorization

Document Categorization (or classification) refers to the task of assigning cat-
egories, to a given set of documents. The automated categorization framework
dates from the early 60’s when knowledge engineering techniques were used in
order to built manually classifiers, by defining a set of rules encoding expert
knowledge (for example (Hayes et al., 1990)). But it was only in the beginning
of the 90’s that document categorization has started to draw the attention
of the Machine Learning community. The motivation was both the applica-

tive interests, and the increasing amounts of available data (Sebastiani, 2002).

Examples of Testing
instances

Trained

classifier or

Learning
algorithm

Examples of Classified testing
Training datasets instances

Figure 6 .1: The procedure of categorization: given some training examples
already labeled (for example a set of documents or a set of images) and the
specified categories, a classifier is trained. Then, the latter is able to classify
new unlabeled instances to the respective categories.

Categorizing data into thematic categories usually follows the supervised
learning paradigm: we train a learner using some already classified instances
and then this trained learner is used to classify new unclassified instances
(figure 6 .1).
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6 .2.1 Data Representation

In order for a learning algorithm to interpret a dataset, the latter has to be
processed to a form which the algorithm can process. One of the most widely
used representations is a multidimensional feature vector. The intuition be-

hind this representation is simple: examples which contain the same features

probably belong to the same topics.

NN 3

N 4
i (>[s]6[a[2[4 2[3[2[8 ]2\
o |3/2]13[1/0]7 0)101/6[7
C |5]4[1]/0/4]1 2]6/3]0]2
g i b
S{215lolg 04 61008 (2
Oolsl8lapo3lsi™ 2]/114/0]6
_8002051"67827
2161810212} w (3/3|0[5]2
7lol6[3[7 /ol 8l0]4a]2]3
\2/0[714lgi v 41714]5|2/

terms

Figure 6 .2: The documents are represented as a term-document matrix,
where the frequency of a term within a document is given.

In the case of document classification, this representation corresponds to
the so-called bag-of-words. In the latter, features are words occuring in the
documents. It is common to do some additional pre-processing before creat-
ing the multidimensional feature vector. That includes stemming, removal of
very common words and collapsing of multiple occurrences of words into one.
That way we are able to decrease the dimensionality of the data and, as a

result, we can gain in terms of time and performance.

After determining the features which are going to be used (i.e. the words
remaining after the pre-processing), we calculate the matrix of the feature

frequencies, that is, the number of times a given word appears in each docu-
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ment in the collection (figure 6 .2). In other terms, we denote each document
x € X as a vector x =< n(w,x) >yew, where w indicates the features from
the set of features W = {wy,...,wn, }, and n(w;, z) the number of times the
word w; occurs in the document x. This count is sometimes normalized to
prevent a bias towards longer documents and results in values in the range

between 0 and 1.

As a particular case, some authors (Lewis and Ringuette, 1994; Koller and
Sahami, 1997; Schapire and Singer, 2000) have used a binary matrix to rep-
resent their datasets, where 1 denotes the presence of a word in a document
and 0 its absence. In general, such a representation is used when the applied

algorithm can only handle symbolic or non-numeric values.

Another very common technique is the weighting of the features, by using
the tf - idf score (for example (Salton and Buckley, 1988)). The latter refers
to the “term frequency-inverse document frequency” weighting function. In
other words, instead of just counting the words in the documents, we weight

the features’ frequencies by using the following transformation:

. |X]
tfidf (wj, x;) = i, T;)log ——— 6.1
fidf (wy, x;) = n(w;, z;) log X (w;) (6.1)
where |X'| denotes the total number of documents in the collection and #X (w;)
the number of documents in which w; occurs at least once (also known as

document frequency of term wy).

Different variants of the bag-of-words representation can be used, accord-
ing to the needs of the learning algorithm used. For example, in graphical
methods, an adjacency (weight) matrix is usually used. The weights repre-
sent the similarity between the examples and can be calculated using different

functions (e.g. the Gaussian kernel).

Nevertheless, the use of the bag-of-words representation has some draw-

backs. In the case of document classification for example, problems can be
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caused by the properties of the human languages: polysemy and synonymy.
According to the former, there exist words which have more than one meaning.
As a result, if two documents contain such a word, they will be categorized
in a similar way, even if they talk about completely different topics. For ex-
ample, let us consider two documents which contain the word “apple” using
the bag-of-words representation they will be classified in the same way, even
if the one talks about fruits and the other about mac computers. The second
property, synonymy, can lead to the opposite situation: if two documents
contain two different words with the same meaning (for example, “car” and
“automobile”) they will not be classified in the same category even if they talk
about the same topic. As we described in chapter 4, we have chosen to use

Aspect models, in order to overcome these problems.

6 .3 Datasets

In our experiments we used four different datasets: two collections from the
CMU World Wide Knowledge Base project - WebKB and 20Newsgroups, the
widely used text collection of Reuters (Reuters — 21578) and a real-world
dataset from Xerox. As mentioned before, we are concentrated in document
classification; nevertheless, the algorithms described in the previous chapters
can be also used for different applications in which there is a relation of co-

occrence between objects and variables such as image classification.

The 20Newsgroups dataset® is a state-of-the-art document collection for
text classification. The data set is a collection of approximately 20000 news-
group documents, organized into 20 different newsgroups, each corresponding
to a different topic. Some of the newsgroups are very closely related to each
other (e.g. comp.sys.ibm.pc.hardware / comp.sys.mac.hardware), while oth-
ers are highly unrelated (e.g misc.forsale / soc.religion.christian). In figure
6 .3 all the different 20 newsgroups are presented, partitioned (more or less)

according to subject matter.

*http://people.csail. mit.edu/jrennie/20Newsgroups/
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20 Newsgroups

COMPUTERS SPORTS SCIENCE RELIGION POLITICS MISC
comp.graphics rec.autos sci.crypt
comp.os.ms—windows.misc |rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware |rec.sport.baseball sci.med
comp.sys.mac.hardware

Figure 6 .3: The structure of the 20 Newsgroups dataset.

talk.politics.misc
talk.politic.guns
talk.politics.mideast

talk.religion.misc
alt.atheism
soc.religion.christian

i

misc.forsale

The WebKB dataset® (Craven et al., 1998) contains web pages gathered
from 4 different university computer science departments (Cornell, Texas,
Washington and Wisconsin). The pages are divided into seven categories. In
our evaluation, we use the four most used entity-representing categories in
the literature (Nigam et al., 2000): student, faculty, course and project, all
together containing 4196 pages.

The Reuters dataset® consists of 21578 articles and 90 topic categories
from the Reuters newswire. We selected the documents which belong only to
one class, and in addition we only kept the classes which contain at least 100
documents. This gave as a base of 4381 documents classified in 7 different
classes: ACQ (1084), EARN (2052), CRUDE (296), GRAIN (286), INTER-
EST (106), MONEY (377) and TRADE (207).

These three datasets were pre-processed as follows:

Email tags as well as other non-alpha numeric terms were removed

All documents were tokenized on white space and punctuation

tokens in less than 5 documents in each test collection were discarded

A total of 608 stopwords from the CACM stoplist” were removed from

each document.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20 /www /data/
®http://www.daviddlewis.com /resources/testcollections /reuters21578/
Thttp://ir.dcs.gla.ac.uk/resources/test _collections/cacm/
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No other form of pre-processing (stemming, multi-word recognition etc.) was

used on the documents. Table 6 .1 summarizes the characteristics of these

datasets.
‘ Dataset ‘ 20Newsgroups ‘ WebKB ‘ Reuters ‘
Collection size 20000 4196 4381
# of classes, K 20 4 7
Vocabulary size, |W| 38300 9400 4749
Training set size, | X; U X,,| 16000 3257 3504
Test set size 4000 839 876

Table 6 .1: Characteristics of the datasets

XLS dataset

Apart from the datasets above which, as we mentioned, are widely used for
evaluation of different classification algorithms in the Machine Learning com-
munity, we used a real world dataset (called XLS) which was provided by a
Xerox Business Group (XLS). As we mentioned in the introduction of this
thesis, the developpement of our models was done in the framework of re-
search project conducted in Xerox Research Centre Europe. The motivation
was to extend a previously developed classification system by adding the as-
pects of semi-supervised and active learning that we developped here. As a
result, we compared our models, with the previous classification system (Cat-

egoriX), in order to evaluate the amelioration they could offer.

The Xerox Litigation Services (XLS) business group is looking to improve
their operations by integrating the Xerox CategoriX Technology into their on-
line portal. XLS technology is intended to provide customers an efficient and
secure way to collaborate with law firms, partners and government agencies on
litigation and regulatory compliance matters. It provides the identification,
filtering, production and storage of relevant data in the form of paper and
electronic documents. Examples of electronic documents include: email, text
files, memos, databases, presentations and spreadsheets. XLS have provided

a sample of documents as well as a list of categories on which we performed
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our experiments.

This dataset contains 20000 documents in the training set and 34770
in the test set. The documents consist of approximately 40% emails, 20%
Microsoft Word documents; 20% Microsoft Excel documents, 10% Microsoft
Power point documents and 10% PDF and other documents. We want to
classify the documents as Responsive and Non-Responsive to a particular
given case. The two categories are balanced (50%/50%). We compared our

results, with the ones of the current version of CategoriX.

6 .4 Evaluation Measures

In order to evaluate the performance of the models, we used the microaverage

F-score measure for all experiments.

For each classifier, Gy, we first compute its microaverage precision P and

recall R by summing over all the individual decisions it made on the test set:

10(k,Gy)
R(Gr) =
(G1) zﬁxwgﬂ w(k,Gy)
PGy = — 2o Uk G1)

Sk (0(k.Gy) + 6 (k. Gp))
Where, §(k,G¢), ¢(k,Gs) and ¥(k,Gs) respectively denote the true posi-

tive, false positive and false negative documents in class k found by Gy. The

F-score measure is then defined as (Lewis and Ringuette, 1994):

2P(Gr)R(Gy)

Fon = P(Gy) + R(Gy)

6 .5 Experiments

We compared the performance of the models on the 4 datasets by varying

the percentage of labeled examples in the training set and using 10-fold cross
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validation. We performed 10 runs for each of the folds and we calculated
the average F-score (as we initialize some of the variables by random, we
wanted to ensure that the obtained results do not depend on this random
initialization). In order to evaluate the significance of the obtained results,

we perfomed a t-test at the 5% significance level.

For the three well-known datasets (WebKB, Reuters and 20Newsgroups),
we compared our models with two state-of-the-art methods in text classifica-
tion: the semi-supervised Naive Bayes classifier (Nigam et al., 2000) and the
transductive SVM classifier (SVM-light package (Joachims, 1999)). For the
latter, we used a linear kernel and we optimized the cost parameter, using a
nested cross-validation. We performed the one vs. all strategy (we fusion the
results by choosing, for each example, the class with the maximum score). We
could pssibly obtain better results from TSVM if we had used a non-linear
kernel, but the latter was computationaly intractable, comparing with the

computational time of the other models.

For the XLS dataset, we compared our models with the supervised PLSA

model, as used for the CategoriX system.

For all four datasets, we fixed the value of A = 0.01 of the ssPLA-fake
algorithm (we have tried different values of lambda, but 0.01 gave us the best

results).

In order to have an upper bound on the performance of the compared clas-
sifiers,we first compare the systems in a fully supervised way, that is when
100% of the documents in the training set have their true labels and are used
for training the classifiers. Table (6 .2) sums up these results. As we can
notice, all PLSA models behave identically, which is expected, if we consider
that there are no unlabeled training documents, and as a result, no fakes or

mislabeling errors to characterize.

In order to evaluate empirically the effect of unlabeled documents for
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20Newsgroups WebKB Reuters
System F-score (%) || F-score (%) || F-score (%)
Naive Bayes 88.23 84.32 93.89
|A| = 40 |A| = 16 |A| = 14
PLSA 89.72 85.54 94.29
SVM 88.98 85.15 89.50

Table 6 .2: Comparison of the F-score measures between the Naive
Bayes and PLSA generative models as well as the SVM classifier on
20Newsgroups, WebKB and Reuters test sets, where |A| is the number of
components. All classifiers are trained in a fully supervised way.

training the models we have also trained the PLSA model in a purely super-
vised way (with the corresponding percentage of randomly selected labeled

documents). We used the supervised PLSA model described in chapter 4.

Number of Components. As we mentioned in the description of the mod-
els, the number of latent variables |A| (i.e. the number of components) must
be defined by the user, during the initialization. The latter depends mostly
on the dataset and its distribution. As a result, the issue of how to choose this
number occurs, as this parameter is quite important for the performance of
the models (especially in the semi-supervised framework). We tried different

techniques, in order to find which is the most convenient one.

We firstly tried to find the best number of components empirically, i.e.
by doing cross-validation using different number of components and compar-
ing the results. In this framework, we perfomed some experiments under
two different scenarios: In the first, we considered that all classes have an
equal number of components (Method 1). In the second, we consider that we
have at least one component per class, and in addition, we have a number of
components that we do not know in which class they belong, i.e. we let the
algorithm to assign them in the different classes during the training process
(Method 2). Table (6 .3) presents some representative results obtained for

the 20Newsgroups dataset for different numbers of components and for 10-
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fold cross-validation.

20Newsgroups
Method 1 Method 2
| Al | F-score (%) |A| | F-score (%)
20 (1 per class) | 88.93+0.51 || 20 (0 additional) | 88.93 4+ 0.51
40 (2 per class) | 89.72 4+ 0.46 || 25 (5 additional) | 88.52 £ 0.63
60 (3 per class) | 89.21 +0.30 || 30 (10 additional) | 89.13 +0.18
80 (4 per class) | 88.77+0.21 || 40 (20 additional) | 89.32 + 0.36
100 (5 per class) | 87.34 £0.49 || 50 (30 additional) | 88.83 + 0.43
120 (6 per class) | 87.73 £0.65 || 60 (40 additional) | 88.49 +0.21

Table 6 .3: Comparison of the F-score measures on 20Newsgroups for the
supervised PLSA. The first variant we have |A| components, equally splited
in the classes and the second one supposes we have one component per class
plus a number of additional components

We also tried to define the number of components using a more sophis-
ticated way: the idea was to start with one component per class, and then
iteratively find and split the most heterogeneous components. In order to

calculate the heterogeneity of a component we used the following equation:

_ 2y Plafz) KL(P(w|z), P(w|))
2., Plalz)
where K L() refers to the Kullback-Leibler divergence (Kullback and Leibler,

1951). The above equation is actually measuring the average distance of the

volume(a)

examples and the component they belong to: the closer the examples are in
the profile of the component, the more homogeneous the component is. The

results of this method are presented in table (6 .4).

As we can see from both tables (6 .3,6 .4), this method do not seem to
obtain better results than the previous one, and in addition is more complex
in terms of computation. The results we obtained for the other datasets in-
dicate the same conclusion. By simply fixing the number of components per

class we obtain good performance for PLSA. We have performed the same
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20Newsgroups

Heterogeneity
| Al | F-score (%) || |A| | F-score (%)
20 (0 splits) 88.93 £0.51 50 (30 splits) 89.11 £0.35
25 (5 splits) 88.72 +0.29 60 (40 splits) 88.21 +0.72
30 (10 splits) | 89.03 £+ 0.11 100 (60 splits) | 88.27 +0.51
40 (20 splits) | 89.73 £ 0.67 || 120 (100 splits) | 87.86 £ 0.55

Table 6 .4: F-score on 20Newsgroups for the supervised PLSA. We start with
one component per class. We calculate the heterogeneity of the components
and we split them approprietily. The |A| indicates the final number of com-
ponents after different splits. In the second one we calculate the AIC and we
choose the number for which the latter is bigger.

kind of experiments for the semi-supervised case (especially when the number
of labeled examples is really small). The results we obtained by performing
the above methods indicated also that the cross-validation seems to be most
efficient for the choice of |A|. The infuence of |A| in the semi-supervised case
is discussed in more details in the next section, as the ssPLSA is more sensi-

tive to the initialization.

For our datasets we obtained the best results by using |A| = 40 for the
20Newsgroups, |A| = 16 for the WebKB, |A| = 14 for the Reuters, and |A| = 4
for the XLS.

All these experiments, were performed in a non nested cross validation.
That is, we performed the methods above in a supervised way, in order to
find the best number of components for each dataset, and then we performed
the experiments with our methods. We have chosen this procedure, for one
main reason: in the semi-supervised setting, and especially when the ratio of
labeled and unlabeled examples is very low, we do not have enough data to

determine the best number of componets.

To sum up, we can conclude that by simply supposing that the classes

have an equal number of components and calculating it using cross-validation,
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we can obtain tquite good performaces, at least for the datasets we used in
our evaluation. As a result, we decided to use this method instead of a more

sophisticated one.

6 .5.1 ssPLSA Results

In this section, we present the results obtained for the semi-supervised mod-
els alone. Figures (6 .4) and (6 .5) show the F-score measure over the test
sets on the three data collections (20Newsgroups, WebKB and Reuters) for
semi-supervised learning for different ratio of labeled-unlabeled documents
in the training set. 5% in the x-axis means that 5% of the labeled docu-
ments (|X;|) in the training sets were used for training, the 95% remain-
ing being used as unlabeled training documents (|X,|). We compared the
three semi-supervised variants of PLSA, as presented in chapter 4, with the
TSVM and semi-supervised Naive Bayes. The ssPLSA-mem soft uniformly
outperforms the other models on these datasets. This is particularly clear for
20Newsgroups which is a more complex classification problem. With only
5% of labeled documents in the training set, the F-score of the ssPLSA
with mislabeling algorithm is about 8% over the ssPLSA with fake labels
on 20Newsgroups. Using only 10% allows to reach 80% of the maximum F-
score on 20Newsgroups while the 90% remaining labeled documents allows
to reach the maximum performance level. The semi-supervised Naive Bayes
model outperforms on the other hand the ssPLSA-fake labels on all datasets.
This might be due to the fact that the ssPLSA-fake algorithm tries to measure

the confidence of the results, rather than directly ameliorate the performance.

As we can notice, the results of the TSVM are bad in these experiments.
This can be explained by the fact that the model was initially designed for
2-class classification problems and the one vs. all strategy does not give ade-

quate recognition of classes.

In order to evaluate empirically the effect of unlabeled documents for

training the models we have also trained the PLSA model in a supervised
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Figure 6 .4: F-Score (y-axis) versus, the percentage of labeled examples in the
training set |X;|, (x-axis) graphs for the various algorithms on 20Newsgroups
(left) and WebKB (right).

manner using only the percentage of labeled documents in the training set.
We can see that semi-supervised algorithms are able to take advantage from

unlabeled data. For example, for the 20Newsgroups dataset (figure 6 .6), with
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Figure 6 .5: F-Score (y-axis) versus, the percentage of labeled examples in
the training set |X;|, (x-axis) graphs for the various algorithms on Reuters
dataset.

5% labeled data, the fully supervised PLSA reaches 52.5% F-score accuracy
while ssPLSA-fake achieve 63% and ssPLSA-mem Hard ssPLSA-mem Soft
achieve 79%. As we can notice on the figure 6 .6, the gain with the use of the

unlabeled data is similar for the other two datasets (WebKB and Reuters).

One interesting aspect of our experimental results is that the behavior of
the three ssPLSA variants is very different when the number of latent vari-
ables per class increases. As we mentioned in the previous section, the latter
is defined during the initialization. In the semi-supervised framework, the
initialization is more sensitive comparing with the supervised case, and as a
result the number of components has an important influence in the perfor-
mance. As we can see in the table 6 .5, for the ssPLSA-fake approach the
variability of the results increases when more components are added to the
model. Overall, this approach yields consistently lower performance than the
ssPLSA-mem approaches, which in addition seem less sensitive to varying

numbers of components. Notice how, when the number of components per
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class is increased from 1 to 2 corresponding respectively to |A| = 20 and
|A| = 40 for 20Newsgroups dataset or 4, |A| = 16 for the WebKB dataset, the
performance of the ssPLSA-mem approach increases slightly, but consistently.
In addition, the variability of the results is mostly well contained and gen-
erally smaller than for the ssPLSA-fake approach. The results for the other
two datasets indicate the same trend of the algorithms. This result, gives
an advantage in the two ssPLSA-mem methods: the choice of the number

of components is not of that crucial importance as it is for the ssPLSA-fake

model.
20Newsgroups
[ 1% | 5% | 20% | 40%
ssPLSA-mem Soft 65.96 £ 0.89 79.13 £0.11 83.59 £ 0.66 85.63 £ 0.42
|A] =20 ssPLSA-mem Hard 57.52 £ 0.59 76.42 £ 0.16 83.24 £ 0.57 85.54 £ 0.3
ssPLSA-fake 57.04 £ 0.68 63.75 £ 0.78 70.05 £ 0.68 79.59 £0.28
ssPLSA-mem Soft 66.23 + 0.52 | 80.01 +0.23 | 84.421+0.73 85.9 + 0.85
|A] =40 ssPLSA-mem Hard 58.24 £ 0.46 77.18 £0.2 83.47 £ 0.35 85.76 + 0.69
ssPLSA-fake 57.87 £ 0.41 59.75 £ 1.09 65.75 = 0.98 78.86 £+ 0.39
WebKB
[ 1% | 5% [ 20% [ 40%
ssPLSA-mem Soft 60.25 £ 0.64 72.97 £0.24 79.84 £0.96 79.57 £ 0.26
Al =4 ssPLSA-mem Hard 49.25 £ 0.73 70.03 £0.63 79.61 £0.52 79.52 £0.17
ssPLSA-fake 44.42 £0.78 59.76 £+ 0.84 68.94 £+ 0.79 72.63 £ 0.59
ssPLSA-mem Soft 60.56 +£0.29 | 73.67+0.33 | 80.56+0.42 | 80.94+0.72
|A| =16 ssPLSA-mem Hard 49.84 £ 0.67 70.85 £ 0.51 80.67 £ 0.32 80.83 + 0.49
ssPLSA-fake 47.97 £ 0.87 62.76 1 0.58 70.65 £ 0.86 73.78 £0.34

Table 6 .5: F-score for varying proportions of labeled-unlabeled training data,
for the three variants of the semi-supervised PLSA (ssPLSA-fake, ssPLSA-
mem Hard, ssPLSA-mem Soft) and different numbers of the latent topics |A].
Bold indicates statistically better results, measured using a t-test at the 5%
significance level.

For the XLS dataset, as we mentioned before, we compare the semi-
supervised models with the current supervised version of the Categorix Sys-
tem. The latter uses the supervised PLSA model. We did not performed any
comparison with semi-supervised Naives Bayes and TSVM as we did for the

other datasets. As we mentioned before, the proposed models are developped
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Figure 6 .6: F-Score (y-axis) versus, the percentage of labeled examples in the
training set | X;|, (x-axis) graphs for the various algorithms on 20Newsgroups,
WebKB and Reuters.

as extensions of the current version of the Categorix System. As there are no
intentions, at least for the moment, to replace it with a completely different
System, we are interrested in the comparison with the current model of this

System, instead of comparing with any other model.

In figure 6 .7 we can see the results for different ratio of labeled-unlabeled
examples. As we can notice, the semi-supervised learning perform better, es-
pecially when very few labels are available. After 10% of labeled examples, the
performance of all classifiers does not change much. These results corroborate
the conclusions we reached over the previous three datasets: semi-supervised

learning can eventually help and the ssPLSA-mem Soft outperforms the oth-
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ers at all times.
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Figure 6 .7: F-Score (y-axis) versus, the percentage of labeled examples in
the training set |X;|, (x-axis) graphs for supervised and all semi-supervised
variants of PLSA algorithm on XLS dataset.

In table 6 .6, we compare ssPLSA-mem Soft and ssPLSA-mem Hard, in
order to give a better insight for the gain of the former method, especially
when the number of labeled examples is relatively small. As we can notice,
for all four datasets, the ssPLSA-mem Soft outperforms the ssPLSA-mem

Hard when very few labeled data are available in the training set.

6 .5.2 Active ssPLSA Results

In this section we present the results of the combination of semi-supervised
and active learning. As introduced in chapter 5, the idea is to perform ac-
tive learning on the top of the semi-supervised algorithms described above.
We run experiments for all semi-supervised variants, for both active learning

techniques, and for all four datasets. In our experiments, we label one exam-
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20Newsgroups WebKB Reuters XLS
ratio | Algorithm F-score F-score || F-score || F-score
0.3% ssPLSA-mem hard 32.62 38.82 47.76 61.41
e ssPLSA-mem soft 44.05 48.78 66.34 65.16
0.5% ssPLSA-mem hard 41.26 40.86 52.02 64.52
070 ssPLSA-mem soft 52.46 51.55 68.74 66.19
0.8% ssPLSA-mem hard 51.2 44.16 57.42 64.87
= ssPLSA-mem soft 60.62 56.33 75.11 67.04
1% ssPLSA-mem hard 58.24 49.84 66.93 65.57
¢ ssPLSA-mem soft 66.23 60.56 77.53 67.17

Table 6 .6: Comparison of the two variants of ssPLSA with a
mislabeling error model (ssPLSA-mem Hard ssPLSA-mem Soft) on
20Newsgroups, WebKB, Reuters and XLS test sets, trained on different ra-
tio of labeled-unlabeled data

ple in each iteration and 100 iterations are performed for WebKB, Reuters and
150 for 20Newsgroups dataset. For the XLS dataset we label 2 examples in
each iteration, and we perform 100 iterations (as the dataset is bigger than
the other three we need more data for achieving a good performance). As
we mentioned in chapter 5, for the Margin Method, it is not wise to choose 2
examples that are next to each other, as they cannot gives us more informa-
tion that each of them does. As a result, we chose the two examples with the

biggest class-entropy but in addition with different assigned labels.

In order to evaluate the performance of the active learning methods, we
also run experiments for the combination of the semi-supervised algorithms
with a random selection method, where in each iteration the documents to

be labeled are chosen at random.

As we can notice from the figure 6 .8 the use of active learning helps, in
comparison with the random query for all three datasets. The performance
of the two different active learning techniques are comparable, and their dif-
ference is not statistically significant. Nevertheless, they clearly outperfom

the random method, especially when very few labeled data are available.
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Figure 6 .8: F-Score (y-axis) versus, the number of labeled examples in the
training set |D;|, (x-axis) graphs for the combination of the two ssPLSA al-
gorithms with active learning on Reuters, WebKB and 20Newsgroups datasets

The results with the ssPLSA-fake gave us the same indications. A com-

parison of the latter with the other two semi-supervised variants using each

of the two active learning methods is presented in figure (6 .9). We can see

150
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that the performance of active ssPLSA-mem Soft is constantly better than
active ssPLSA-mem Hard and active ssPLSA-fake.

Reuters —> Entropy method

aoeeeose®®]
oooooeoeted
- T

—~—ssPLSA-mem Soft | |
——ssPLSA-mem Hard
——ssPLSA-fake

3‘0 4‘0 5‘0 éD 7‘0 80 920 100
# of labeled examples

WebKB —> Entropy method

0.65F

s
JUUSRDVISDRYSS satnlll

R A
oo

st

—~—ssPLSA-mem Soft
—-ssPLSA-mem Hard
——ssPLSA-fake

3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100
# of labeled examples

20 Newsgroups —> Entropy method

—~—ssPLSA-mem Soft
——sspLSA-mem Hard
——ssPLSA-fake

105 120 135 150

1‘5 3“0 4‘5 6‘0 7‘5 B‘D
# of labeled examples

Reuters —> Margin Method

o f

e

s
oo
soeo0T

we*//",'ﬁ,,/v/ \ e\ ]

—~—ssPLSA-mem Soft
——ssPLSA-mem Hard
——ssPLSA-fake 1

3‘0 A‘D 5‘0 6‘0 7‘0 80 90 100
# of labeled examples

WebKB —> Margin method

A —~—ssPLSA-mem Soft

’ poooeeead]
JUSUNDRS a0
o’
o
o . e
o “/.KH,_.-WH« H A

»

——ssPLSA-mem Hard| |
——ssPLSA-fake

10

70 80 90 100

20 3 40 50 60
# of labeled examples

20 Newsgroups —> Margin method
0.8 T T T T T T T T T

0.751
0.7r
0.651
0.6
0.551
0.51
0.451

F-score

0.4 7
la
0.35r )/

03[

—v— ssPLSA-mem Soft
——ssPLSA-mem Hard
—*— ssPLSA-fake

15

?;0 4‘5 66 7‘5 96 165 1éD 155 150
# of labeled examples

Figure 6 .9: Comparison of the three ssPLSA algorithms using the two differ-
ent active learning algorithms, on Reuters, WebKB and 20Newsgroups dataset

For the XLS dataset, the algorithms show again a similar behavior. In
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Figure 6 .10: Comparison of the two different active learning techniques and
the Random selection, on the ssPLSA-Hard and ssPLSA-Soft algorithms, on

XLS dataset

figure 6 .10 the results for the latter are presented. As we can notice, active

learning helps, comparing to the random method, even if the gain is not as big

as in the other three datasets. As before, the two active learning methods give

similar results. In 6 .11 the comparison between the three semi-supervised

PLSA variants combined with each of the active methods is presented. Also,

in this case, the active ssPLSA-mem Soft has the better performance.
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Figure 6 .11: Comparison of the three ssPLSA algorithms using the two
different active learning algorithms, on XLS dataset
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6 .6 Conclusion

In this chapter the evaluation of all the proposed models has been presented
and discussed. We saw that the semi-supervised learning can help when very
few labeled examples are available. We compared the models with some state-
of-the-art algorithms and the results indicate that the ssPLSA-mem Soft is
the more performant model for all four datasets. The combination with active
learning is also evaluated. We compared the two active learning techniques
with a random method (where the examples are chosen by random instead of
using a active method). The results obtained have proven that active learning
can eventually help, especially when the training set contains very few labeled

examples.
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7 .1 Contributions

This study was motivated by the cost of labeling document collections and
the ability of aspect models to explain the generation of textual observations.
We focused on semi-supervised and active learning for the task of document
classification. This thesis was realized in the framework of a Cifre grant in
Xerox Research Centre. We studied the possible extensions of the current

classification system and new models were proposed.

In the first part of this thesis, we presented a literature review of existing
state-of-the-art methods. We focused on the frameworks of Semi-Supervised
Learning, Mislabeling Error Models and Active Learning. The different ap-

proaches of these frameworks and their motivation have been discussed.

In the second part, we presented and evaluated the proposed models.
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In particular, the contributions of this thesis include:

e Two semi-supervised variants of the PLSA algorithm. The motivation
was to take advantange of both the huge amount of available unlabeled
data and the properties of aspect models. Our results have proved
our initial intuition, that aspect models can benefit from the unlabeled
examples. In addition, the incorporation of a model which can capture
the mislabeled examples can ameliorate more the performance of our

classifier.

e Combination of the above semi-supervised variants with two different
active learning techniques. We wanted to benefit from the properties
of both frameworks. The evaluation we performed has shown that this
combination can further increase classifier’s performance. Using active
learning we manage to chose our training labeled set carefully, using
the most informative results. That way, we can achieve a better perfor-

mance using less labeled examples.

7 .2 Future Perspectives

This thesis was focused on the PLSA model. Nevertheless, this does not
mean that the developped models can exclusively used with the latter. On
the contrary, the proposed techniques are very easily applicable to different
aspect models, such as Latent Dirichlet allocation (LDA) (Blei et al., 2003).
It would be interesting to see how the latter would perform under the frame-
work of semi-supervised and active learning, by incorporating the proposed

mislabeling error model.

Another possible extension is the use of different active learning tech-
niques. Also, the combination of more than one active learning technique

could be considered.

A different axis of research includes the further investigation of determin-

ing the number of components. As we discussed in the evaluation chapter,
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this is an important parameter in aspect models. To the best of our knowl-

edge, there has been little effort so far to solve this issue.

The domains of semi-supervised and active learning have still many open
problems and further research on the several open problems could be proved

fruitful, both in theoritical bases as well as in practical applications.
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