
INTEGRATING SEMAGROW

AND BIG DATA STORES

UoA Technical Workshop24-25 May 2016

Antonis Troumpoukis

NCSR “Demokritos”

Motivation

 Semagrow is a SPARQL endpoint federation engine

 Offers the basis for big data integration beyond triple stores

 RTD work during FP7 ICT SemaGrow:

o Modular architecture allows for different executors to connect to

different stores

o Extremely efficient, minimal overheads over the federated stores’

latency and throughput

o Optimizes execution plan to account for different stores’ characteristics

o Applies vocabulary transformations to integrate data on the fly

24-mai-16www.big-data-europe.eu

Work in BDE/WP4

 Develop executors for BDE storage solutions

o Started with Cassandra

 A new dimension of heterogeneity to handle:

o Different QL syntax

o Weaker QL than SPARQL, so Semagrow must often carry out

substantial computation to fill the gap

 A new opportunity to make Semagrow more efficient

o Distribute the execution of the Semagrow engine itself

24-mai-16www.big-data-europe.eu

Cassandra Data model and CQL

 Hybrid between key-value pair and tabular database

 3 types of columns w.r.t. primary key

o Partition columns (data distribution across the nodes)

o Clustering columns (efficient retrieval of data belonging to the same partition)

o Regular columns (the remaining columns)

 CQL – Cassandra Query Language

o SQL-like syntax

o No JOIN, UNION, ORDER BY operators

o WHERE clause:

 only AND operator between column restrictions

 some of the operators IN,=,<,<=,>=,>, based on the column type.

www.big-data-europe.eu

Example CQL queries

author (partition) year (clustering) title (regular) rating (regular) publisher (regular)

George R.R. Martin 1996 A Game of Thrones 5 Bantam Spectra

 SELECT author, title FROM books WHERE author=‘George R.R. Martin’;

 SELECT title, year FROM books WHERE year=1996 ALLOW FILTERING;

o year is a clustering column, partition columns are not restricted => keyword ALLOW

FILTERING is needed

 SELECT author, title FROM books WHERE title=‘A Game of Thrones’;

o Not a valid CQL query, since title is a regular column

o User has to issue a query that returns all books and filter the result set

Cassandra Rows to RDF Tuples

author (partition) year (clustering) title (regular) rating (regular) publisher (regular)

George R.R. Martin 1996 A Game of Thrones 5 Bantam Spectra

 The above row is mapped to the following set of tuples:

 _:node1aj25hg65x22 <http://example.org/books#author> “George R.R. Martin”.

 _:node1aj25hg65x22 <http://example.org/books#year> “1996”^^xsd:int.

 _:node1aj25hg65x22 <http://example.org/books#title> “A Game of Thrones”.

 _:node1aj25hg65x22 <http://example.org/books#rating> “5”^^xsd:int.

 _:node1aj25hg65x22 <http://example.org/books#publisher> “Bantam Spectra”.

Accessing Cassandra via Semagrow (1/3)

 Example query:

 SELECT ?title ?year WHERE {

?s <http://example.org/books#author> “George R.R. Martin”.

?s <http://example.org/books#year> ?year .

?s <http://example.org/books#title> ?title }

 It is transformed by the Query Executor of the Cassandra Connector into the equivalent

CQL query

SELECT author, year, title WHERE author=‘George R.R. Martin’;

 This query is a valid CQL query

The above row is mapped to the following set of tuples:

Accessing Cassandra via Semagrow (2/3)

 Semagrow can perform queries that cannot run directly on Cassandra.

 SELECT ?author WHERE {

?s <http://example.org/books#author> ?author .

?s <http://example.org/books#title> “A Game of Thrones” }

 Cassandra Connector assists the Decomposition process by consulting the Cassandra schema
and analyzing the initial query.

 This query is transformed as follows:

 SELECT ?author WHERE {

{ ?s <http://example.org/books#author> ?author .

?s <http://example.org/books#title> ?temp } @Cassandra

FILTER (?temp = “A Game of Thrones”) }

www.big-data-europe.eu

Accessing Cassandra via Semagrow (3/3)

 Semagrow can join results coming from SPARQL endpoints and a Cassandra
store.

 Example: all authors liked by Joe are contained in a triple store.

 SELECT ?title WHERE {

<http://example.org/people/joe> <http://example.org/likes> ?author .

?s <http://example.org/books#author> ?author .

?s <http://example.org/books#title> ?title }

 The query is transformed as follows:

 SELECT ?title WHERE {

{ <http://example.org/people/joe> <http://example.org/likes> ?author } @4s

?s <http://example.org/books#author> ?author .

?s <http://example.org/books#title> ?title } @Cassandra }

www.big-data-europe.eu

Tests

 We performed two simple tests against a
Cassandra Store that contains NetCDF file
metadata.

 We compare it with a custom-tailored Java code
that performs the same operation.

o Test 1.

 Federates: Cassandra.

 Query: a simple term search on the attributes of
the NetCDF headers.

o Test 2.

 Federates: 4store/Cassandra.

 Query: Returns all dataset names that contain
dimension-names that are retrieved from the
4store endpoint.

Term #Results SemaGrow Java

time 16 18150 14478

whoknows 115 14026 13818

yield 2 13975 13858

Time 120 14102 13819

#Results SemaGrow Java

Run 1 (cold) 7 6498 2722

Run 2 7 2434 2653

Run 3 7 2446 2630

www.big-data-europe.eu

Conclusions

 Current state

o Cassandra connector developed and tested for triple store/Cassandra

federations

o Hot-runs are time-equivalent to custom-tailored Java code

o No show-stopper in our TODO list, the essentials are there and pilots can

already deploy triple store/Cassandra federations

 Next steps

o Optimizations

o DISCUSS with JJ: Semagrow over Lucene/Solr

24-mai-16www.big-data-europe.eu

