
Knowledge Representation &
Reasoning
Antonis Troumpoukis
NCSR “Demokritos”

Angelos Charalambidis
NCSR “Demokritos”

Stasinos Konstantopoulos
NCSR “Demokritos”

November 7, 2019

Overview of the Course

1. Logic Programming

2. Logic Programming for AI

3. Negation in Logic Programming

4. Answer Set Programming

5. Constraint Satisfaction

6. Higher-order Logic Programming

7. Preference Representation

8. Knowledge Representation in the Semantic Web

9. Reasoning on the Semantic Web

10. Inductive Logic Programming

Logic Programming

▶ Prolog (“PROgramming in LOGic”) is the most successful example of the family of logic
programming languages.

▶ A Prolog program is a subset of first-order logic
▶ Statements (facts, rules, queries)
▶ Terms (data structures)

▶ Prolog is declarative: a Prolog programmer concentrates on what the program needs to
do, not on how to do it.

▶ Many applications in Artificial Intelligence (use in expert systems, search problems etc.)

Facts

▶ are the simplest kinds of statements

▶ are means of stating that a relation holds between objects

Example

parent(john,mary).

▶ John is a parent of Mary.

▶ The relation parent holds between the constants john and mary.

▶ Relations like parent are also named as predicates.

▶ parent is a binary predicate (takes two arguments).

Facts (cont.)

▶ representation of a family tree using Prolog facts

Example

parent(john,mary).
parent(john,anne).
parent(anne,mike).
parent(liza,jack).
male(john).
male(mike).
male(jack).
female(mary).
female(anne).
female(liza).

Queries

▶ are means of retrieving information from a logic program

▶ ask whether a certain relation holds between objects

Example

?- parent(john,mary).

▶ Is John a parent of Mary?

▶ Does the relation parent holds between the constants john and mary?

Queries (cont.)

▶ example queries on a family tree

Example (Input program)

parent(john,mary).
parent(john,anne).
parent(anne,mike).
parent(liza,jack).
male(john).
male(mike).
male(jack).
female(mary).
female(anne).
female(liza).

Example (Queries)

?- parent(john,mary).
true

?- parent(mary,anne).
false

Queries with variables

▶ Prolog allows the use of variables.

▶ A variable stands for an unspecified individual.

▶ Variable names always begin with a capital letter.

Example

?- parent(X,mary).

▶ Who is the parent of Mary?

▶ Does there exist an individual that is a parent of mary?

▶ If the query succeeds, Prolog’s execution mechanism will return the corresponding answers.

Queries with variables (cont.)

Example (Input program)

parent(john,mary).
parent(john,anne).
parent(anne,mike).
parent(liza,jack).
male(john).
male(mike).
male(jack).
female(mary).
female(anne).
female(liza).

Example (Queries)

?- parent(X,mary).
X = john.

?- parent(john,X).
X = mary ;
X = anne.

?- parent(mary,X).
false.

Complex queries

▶ A complex query consists of several subqueries.

Example

?- parent(X,mary), parent(X,anne).

▶ Does there exist an individual X that is both a parent of mary and a parent of anne?

▶ the symbol , reads as “and”.

Example

?- parent(X,Z), parent(Z,mike).

▶ “Who is the grandparent of Mike?”

Rules
▶ are means of defining new relations in terms of existing relations.

Example

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

▶ X is a grandparent of Y if there exists some Z such that
X is a parent of Z and Z is a parent of Y.

▶ the symbol :- reads as “if” and the symbol , reads as “and”.

Example

?- grandparent(X,mike).

▶ Who is the grandparent of Mike?

Prolog’s execution mechanism

parent(john,mary).
parent(john,anne).
parent(anne,mike).

grandparent(X,Y) :-
parent(X,Z),
parent(Z,Y).

?- grandparent(X,mike)

?- parent(X,Z),parent(Z,mike)

?- parent(Z,mike)

fail

?- parent(Z,mike)

□

?- parent(Z,mike)

fail

X=john
Z=mary

X=john
Z=anne

X=mary
Z=mike

Rules (cont.)

▶ examples of family members relations

Example

father(X,Y) :- parent(X,Y), male(X).
mother(X,Y) :- parent(X,Y), female(X).

son(X,Y) :- parent(Y,X), male(X).
daughter(X,Y) :- parent(Y,X), female(X).

child(X,Y) :- son(X,Y).
child(X,Y) :- daughter(X,Y).

Rules (cont.)

▶ How about an ancestor relation?

Example

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,A), parent(A,Y).
ancestor(X,Y) :- parent(X,A), parent(A,B), parent(B,Y).
ancestor(X,Y) :- parent(X,A), parent(A,B), parent(B,C), parent(C,Y).
...

▶ This approach is not elegant and

▶ it would require an infinite number of rules to define ancestor relation correctly.

Recursive Rules

▶ Prolog allows the definition of relations that are defined in terms of themselves.

Example

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

▶ X is an ancestor of Y
1. if X is a parent of Y, or
2. if there exists some Z such that

X is a parent of Z and Z is an ancestor of Y.

▶ The second rule is recursive; it uses ancestor to define ancestor.

▶ The first rule stops the predicate from calling itself.

Prolog’s execution mechanism (cont.)

parent(john,anne).
parent(anne,mike).

ancestor(X,Y) :-
parent(X,Y).

grandparent(X,Y) :-
parent(X,Z).
ancestor(Z,Y).

* failing proof tree

?- ancestor(john,mike)

?- parent(john,Z),ancestor(Z,mike)

?- ancestor(Z,mike)

*?- parent(Z,mike)

□

Z=mary

?- parent(john,mike)

fail

Terms

▶ How to define a plus relation using constants?

Example

plus(zero,zero,zero).
plus(one,zero,one).
plus(zero,one,one).
plus(one,one,two).
plus(two,zero,two).
plus(zero,two,two).
...

▶ This approach would require an infinite number of constants and facts.

Terms (cont.)

▶ A term can be one of the following:
1. a constant
2. a variable
3. a n-ary functional symbol applied to n terms.

Example
▶ Representation of natural numbers using compound terms:

1. the constant 0 which denotes the number 0
2. a unary functional symbol s which denotes the successor function.

0 ≡ 0, 1 ≡ s(0), 2 ≡ s(s(0)), 3 ≡ s(s(s(0))), . . .

Natural numbers and compound terms

▶ Implementation of plus using compound terms

Example

plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

▶ 0 + x = x

▶ s(x) + y = s(x+ y), where s(n) = n+ 1.

▶ plus(X,Y,Z): X, Y and Z are natural numbers such that Z is the sum of X and Y.

Example

?- plus(s(0),s(0),K).
K = s(s(0))

Natural numbers and compound terms (cont.)

▶ Multiple uses can be made for a single program

Example

?- plus(s(0),s(0),s(s(0))).

▶ Confirm that 1 + 1 equals 2.

Example

?- plus(s(0),s(s(0)),X)).

▶ Calculate the sum 1 + 2.

Example

?- plus(s(0),X,s(s(s(0)))).

▶ Calculate the difference 3− 1.

Example

?- plus(X,Y,s(s(s(0)))).

▶ Find all pairs that add up to 3.

Natural numbers and compound terms (cont.)

Example

times(0,X,0).
times(s(X),Y,Z) :- times(X,Y,W), plus(W,Y,Z).

▶ 0 · x = 0

▶ s(x) · y = (x+ 1) · y = x · y + y.

▶ times(X,Y,Z): X, Y and Z are natural numbers such that Z is the product of X and Y.

▶ Using this representation we can define additional numeric operators, such as power,
factorial, etc.

▶ This approach is not so efficient, used an introductory example to compound terms.

Arithmetic operators in Prolog

▶ Prolog supports integers and real numbers

▶ Prolog offers built-in predicates for numerical comparison (<, =<, >, >=, etc.)
▶ Prolog offers built-in predicates for arithmetic operations (+, -, *, /, etc.)

▶ These operators are actually functional symbols:
e.g., 1+2 corresponds to +(1,2) and not to 3 as in other programming languages

▶ We can “force” Prolog to evaluate things using the built-in binary operator is
▶ Usage: V is E succeeds if V is equal to the number that E evaluates.

Arithmetic operators in Prolog (cont.)

Example

?- 8 is 5+3. % Evaluate 5+3 and confirm that this is equal to 8
true.

?- 5+3 is 8. % +(5,3) is different from 8
false.

?- X is 5+3. % Evaluate 5+3 and place it in variable X
X = 8.

?- 8 is 5+Y. % Cannot evaluate 5+Y
ERROR: is/2: Arguments are not sufficiently instantiated

Compound terms and data structures
Example

▶ Representation of lists using compound terms:
1. the constant nil which denotes the empty list
2. a binary functional symbol list used to denote the head and the tail of the given list.

a ≡ list(a,nil), a b c ≡ list(a,list(b,list(c,nil)))

Example
▶ Representation of binary trees using compound terms:

1. the constant void which denotes the empty tree
2. a ternary functional symbol tree used to denote the root of the tree, the left and the right

subtrees of the given tree.

a

cb

≡ tree(a,tree(b,void,void),tree(c,void,void))

Lists in Prolog

▶ The empty list is represented as []
▶ Non-empty lists: e.g., a b c is represented as [a,b,c]
▶ The operator | shows the head and the tail of the list.

▶ [X|L] denotes that X is the head of the list and L is the tail of the list.
▶ [a,b,c] can be written as [a|[b,c]] and

[a] can be written as [a|[]]
▶ Used for pattern matching:

[a|L]matches any list that begins with a and
[a,b|L]matches any list that begins with a,b

Lists in Prolog (cont.)
▶ Membership of a list

Example

member(X,[X|Xs]).
member(X,[Y|Xs]) :- member(X,Xs).

▶ X is a member of L
1. if X is the head of L, or
2. X is a member of the tail of L.

Example

?- member(b,[a,b]).
true

Example

?- member(X,[a,b]).
X = a;
X = b

Lists in Prolog (cont.)

▶ List concatenation.

Example

append([],Xs,Xs).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

▶ the concatenation of an empty list and a list L is the list L
▶ the concatenation of an non-empty list L with a list M is a list which has as head the head of

L and as tail the concatenation of the tail of L and M.

▶ The structure of append resembles the structure of plus.

Lists in Prolog (cont.)

▶ Uses of append:

Example

?- append([a,b],[c,d],L).
L = [a, b, c, d].

Example

?- append([a,b],L,[a,b,c,d]).
L = [c, d].

Example

?- append(X,Y,[a,b,c]).
X = [],
Y = [a, b, c] ;
X = [a],
Y = [b, c] ;
X = [a, b],
Y = [c] ;
X = [a, b, c],
Y = []

Lists in Prolog (cont.)

Example

prefix(P,L) :- append(P,Z,L).

▶ P is a prefix of L if there exists a list Z such that if we append Z in P we have the list L.

Example

reverse([],[]).
reverse([X|Xs],R) :- reverse(Xs,Rs), append(Rs,[X],R).

▶ the reverse of an empty list is the empty list

▶ the reverse of a non-empty list L can be obtained by appending a list that contains only
the head of L at the end of the reverse of the tail of L.

A classic riddle

▶ A man travels with wolf, goat and cabbage

▶ Wants to cross a river from west to east

▶ A rowboat is available, but only large enough for
theman plus one possession

▶ Wolf eats goat if left alone together

▶ Goat eats cabbage if left alone together

▶ How can the man cross without loss?

Configurations

▶ Represent a configuration of this system as a list [Man,Wolf,Goat,Cabbage]
showing which bank each thing is

▶ w denotes the west bank

▶ e denotes the east bank

▶ Initial configuration: [w,w,w,w]
▶ If man crosses with wolf, new state is [e,e,w,w]

but then goat eats cabbage, so we can’t go through that state!

▶ Desired state: [e,e,e,e]

Moves

▶ In each move, man crosses with at most one of his possessions
▶ We will represent these four moves with four constants:

1. wolf denotes that the man crosses the river with wolf
2. goat denotes that the man crosses the river with goat
3. cabbage denotes that the man crosses the river with cabbage
4. nothing denotes that the man crosses the river alone

▶ Each move transforms one configuration to another
▶ e.g., wolf transforms the [w,w,w,w] into [e,e,w,w]

Moves (cont.)

▶ Ιn Prolog, we will write this as a predicate move(Config,Move,NextConfig)
1. Config is a configuration (like [w,w,w,w])
2. Move is a move (like wolf)
3. NextConfig is the resulting configuration (in this case, [e,e,w,w]

change(e,w).
change(w,e).

move([X,X,Goat,Cabb],wolf,[Y,Y,Goat,Cabb]) :- change(X,Y).
move([X,Wolf,X,Cabb],goat,[Y,Wolf,Y,Cabb]) :- change(X,Y).
move([X,Wolf,Goat,X],cabbage,[Y,Wolf,Goat,Y]) :- change(X,Y).
move([X,Wolf,Goat,Cabb],nothing,[Y,Wolf,Goat,Cabb]) :- change(X,Y).

Safe configurations

▶ A configuration is safe if:
▶ wolf and goat are either guarded by man or are in different banks
▶ goat and cabbage are either guarded by man or are in different banks

guarded_or_separated(X,X,X).
guarded_or_separated(_,w,e).
guarded_or_separated(_,e,w).

safe([Man,Wolf,Goat,Cabbage]) :-
guarded_or_separated(Man,Wolf,Goat),
guarded_or_separated(Man,Goat,Cabbage).

Solutions

▶ A solution for a starting configuration is a list of moves that takes you to the goal
configuration, where all the intermediate configurations are safe.

1. A solution for [e,e,e,e] would be the empty list (no moves are needed).
2. Otherwise, a solution for Config is defined recursively as one move that takes you to a new

safe configuration NextConfig followed by the solution for NextConfig .

solution([e,e,e,e],[]).
solution(Config,[FirstMove|OtherMoves]) :-

move(Config,FirstMove,NextConfig),
safe(NextConfig),
solution(NextConfig,OtherMoves).

Finding a solution

?- solution([w,w,w,w],L).
ERROR: Out of local stack

▶ Nothing in this Prolog program specifies how long the solution has to be.

▶ It gets lost looking at possible solutions like [goat,goat,goat,goat,goat,...].
▶ To solve this, we force the lengths of the solution to be of finite length.

Finding a solution (cont.)

▶ length(L,N): the length of the list X is equal to N.

Example

?- length(L,N).
L = [],
N = 0 ;
L = [_],
N = 1 ;
L = [_, _],
N = 2 ;
L = [_, _, _],
N = 3 ;
...

Finding a solution (cont.)

?- length(L,N), solution([w,w,w,w],L).
L = [goat, nothing, wolf, goat, cabbage, nothing, goat],
N = 7

▶ “First cross with the goat, then cross back empty,
then cross with the wolf, then cross back with the goat,
then cross with the cabbage, then cross back empty,
and finally cross with the goat”.

▶ this solution has the minimum number of steps.

