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Morphological transformations are commonly used to perform a variety of image process-
ing tasks. However, morphological operations are time-consuming procedures since they
involve ordering and min/max computation of numbers resulting from image interaction
with structuring elements. This paper presents a new method that can be used to speed
up basic morphological operations for binary images. To achieve this, the binary images
are first decomposed in a set of non-overlapping rectangular blocks of foreground pixels
that have predefined maximum dimensions. Then off-line dilation and erosion of all rect-
angular blocks are arbitrary obtained and stored into suitable look-up array tables. By
using the look up tables, the results of the morphological operations to the rectangular
blocks are directly obtained. Thus, first all image blocks are replaced by their look-up
array tables. Then the morphological operations are applied only to the limited number
of the remaining pixels. Experimental results reveal that starting from a block repre-

sented binary image morphological operations can be executed with different types of
structuring elements in significantly less CPU time. Using the block representation, we
are able to perform dilation 16 times faster than non-fast implementations and 10 times
faster than an alternative fast implementation based on contour processing. Significant
acceleration is also recorded when using this approach for repeated application of di-
lation (for 10 iterations, dilation using the block representation is over 20 times faster
than non-fast implementations and over four times faster than using the fast contour
based approach).

Keywords: Mathematical morphology; binary image block decomposition; binary
processing; erosion; dilation.
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1. Introduction

Mathematical morphology is an active and growing area of image processing and

analysis. It is based on set theory and topology.1,2 Mathematical morphology stud-

ies the geometric structure inherent within the images. For this reason, it uses a

predetermined geometric shape known as the structuring element. Mathematical

morphology has provided solutions to many tasks, where image processing can be

applied, such as remote sensing,3 optical character recognition,4 image restoration,5

medical imaging6 etc.

Erosion and dilation are the fundamental operations of mathematical morphol-

ogy. Let the set A denote the image to be processed and the set B the structur-

ing element. Binary erosion and dilation operations are defined by the following

relations2:

AΘB =
⋂

b∈B

(A)−b , (1)

and

A ⊕ B =
⋃

b∈B

(A)b (2)

respectively. A and B are sets in 2D integer space Z2 and (A)x is the translation

of A by x, which is defined as follows:

(A)x = {c ∈ Z2|c = a + x for a ∈ A} . (3)

Erosion and dilation are the basic morphological operations. Other significant mor-

phological operations are composed through erosions and dilations. The two most

important are the opening and closing operations, which are defined as follows7

AoB = (AΘB) ⊕ B , (4)

and

A • B = (A ⊕ B)ΘB , (5)

respectively.

In order to perform all the above morphological operations, each pixel of the

binary image should be accessed and transformed according to the morphological

equations. Since morphological operations provide solutions to a wide range of ap-

plications, it is very useful to have fast algorithms for efficient execution of morpho-

logical operations independently of the shape of the structuring elements. Various

techniques have been described in the literature which deal with fast implemen-

tation of morphological operations. Several of these techniques are only applicable

to gray scale images and are not suitable for pure B/W images.8,9,10,11 However,

a few fast implementations of morphological operators applicable to B/W images

have been reported. For example, a contour processing based approach described

in Ref. 12 achieves an application-dependent speed up when a small structuring
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element (3 × 3) is applied to a binary image. According to this approach, only

the pixels belonging to the external contour of binary objects are involved in mor-

phological processing. A significant reduction in the CPU time is obtained when

many iterations of the same morphological operations are required. Also, several

approaches mentioned in Ref. 13 process regional extrema in order to detect con-

nected sets in gray scale images. When applied to B/W images, those techniques

result to the contour processing approach of Ref. 12. Fast implementation of mor-

phological operations to binary images in the case that the same structuring element

is applied many times is also reported in Ref. 14. According to this approach, in

order to speed up morphological operations with respect to large convex structuring

elements, the logarithmic decomposition of structuring elements is employed. Addi-

tionally, bitmap data representation is used and found efficient in terms of memory

requirements and in terms of algorithm efficiency because the CPU operates on 32

pixels in parallel.

In this paper, we propose a new fast technique for performing morphological

operations in binary images. The proposed technique can be applied with any type

of structuring element independently of the shape and size, and is also efficient

for repeated applications of the structuring elements. According to it, the binary

documents are first decomposed to a set of non-overlapping rectangular blocks of

foreground pixels.15,16,17 Also, suitable look up array tables that contain the results

of applying erosion or dilation to all related rectangular blocks, are constructed

off-line. By using these look up tables and superposition, the application of the

structuring element to all image blocks are directly obtained and all blocks are

replaced by their look-up array tables. Then, the morphological operations are

applied only to the limited number of the remaining pixels. The final image obtained

is exactly the same as the image produced by the classical morphological procedures.

It must be noticed that the look up array tables must be initially obtained and then

can be applied to any binary morphological operation.

The proposed technique was extensively tested with a variety of images and

structuring elements. Experimental results reveal that starting from a block repre-

sented binary image we can execute morphological operations using different types

of structuring elements with significant reduction in the CPU time.

2. Binary Image Block Decomposition

The representation of binary images using rectangular blocks as primitives has

been applied with great success to several image processing tasks, such as im-

age compression,18,19 fast implementation of the Hough transform15,16,17 and

skeletonization.20 In our approach, we consider binary image decomposition into

non-overlapping rectangular blocks. Since we want to process these blocks off-line,

it is preferable to limit their maximum length and width (constrained block de-

composition). We use a modified algorithm based on Ref. 16 in order to limit the

maximum size of the extracted blocks. This algorithm involves one raster scanning
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of the image. According to it, the image is scanned in a top-down direction until

the first foreground pixel (x0, y0) is found. Then, a procedure that searches and

constructs the “best fitting block” at (x0, y0), which is the block with the largest

area that has the (x0, y0) pixel as its upper left corner is applied. All pixels of

the “best fitting block” are transformed to background pixels and the procedure is

repeated until the whole image is scanned.

Consider a binary image I(x, y), x = 1, 2, . . . , xmax, y = 1, 2, . . . , ymax, defined

as follows:

I(x, y) =

{

1 , for foreground pixel,

0 , for background pixel.
(6)

A function B(x1, y1, x2, y2) is defined to specify if the pixels with coordinates

(x1, y1) and (x2, y2) are the opposite vertices of a rectangular block consisting of

foreground pixels:

B(x1, y1, x2, y2) =

{

1 , if I(x, y) = 1 ∀ x , y : x ∈ [x1, x2] ∧ y ∈ [y1, y2]

0 , otherwise,
(7)

where x1, x2 ∈ [1, 2, . . . , xmax] and y1, y2 ∈ [1, 2, . . . , ymax].

Defining that xm and ym are the maximum width and length of the rectangular

blocks, respectively, the algorithm for the constrained block decomposition is as

follows:

Step 1: Set iter = 1.

Step 2: Perform a raster scanning of the image to find a foreground pixel (x0, y0).

That is I(x0, x0) = 1.

Step 3: Find the opposite vertex (xop, yop) of the “best fitting block” at (x0, y0),

as follows:

(a) Find x1 ≥ x0 : B(x0, y0, x1, y0) = 1 ∧ x1−x0 is maximized ∧ x1−x0 ≤

xm.

(b) Find y1 ≥ y0 : B(x0, y0, x1, y1) = 1 ∧ y1 − y0 is maximized ∧ y1 − y0 ≤

ym.

(c) Find y2 ≥ y0 : B(x0, y0, x0, y2) = 1 ∧ y2 − y0 is maximized ∧ y2 − y0 ≤

ym.

(d) Find x2 ≥ x0 : B(x0, y0, x2, y2) = 1 ∧ x2 − x0 is maximized x2 − x0 ≤

xm.

(e) Find q ∈ {1, 2} : (xq − x0)(yq − y0) = max. Set xop = xq and yop = yq.

Step 4: Set XF [iter] = x0, XL[iter] = xop, Y F [iter] = y0, Y L[iter] = yop.

Step 5: Set I(x0, x0) = 0 ∀ x ∈ [XL[iter] · · ·XF [iter]]∧y ∈ [Y F [iter] · · ·Y L[iter]].

Step 6: Set iter = iter + 1

Step 7: Until there remains no unscanned foreground pixel, continue with the raster

scanning of Step 2.

After following the above steps, the image is represented with a number of

rectangular blocks, bmax, whose opposite vertices have coordinates (XF [b], Y F [b])
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 (a)                           (b)                                        (c)                           (d) 

T3 

T1 

Fig. 1. Block decomposition of a simple binary image.

(a) (b)

Fig. 2. Block decomposition of a binary image that contains text.

(upper left vertex) and (XL[b], Y L[b]) (lower right vertex), where b ∈ [1, . . . , bmax].

The decomposition of an image into rectangular blocks is demonstrated in Fig. 1. By

using a top-down raster scanning a foreground pixel (x0, y0) is obtained (Fig. 1(a)).

Then two candidate blocks T1 (Fig. 1(a)) and T2 (Fig. 1(b)) are obtained, of which

T1 has the larger area. Block T1 is considered as the first block of the image.

To proceed with the extraction of the next rectangular block, all pixels of T1 are

transformed to background pixels. Then using the raster scanning process we arrive

at pixel (x0, y0) of Fig. 1(c). Similarly block T3 is considered as the second block of

the image. In this way the original image is decomposed into the two rectangular

blocks T1 and T3 (Fig. 1(d)). In the general case, this procedure is repeated until

the whole image is decomposed into blocks. An example of binary image block

decomposition of an image that contains text is demonstrated in Fig. 2.

3. Morphological Operations

This section describes how basic morphological operations are performed in a block

decomposed binary image.



December 1, 2003 9:4 WSPC/164-IJIG 00136

6 B. Gatos et al.

3.1. Dilation

Based on the following property of dilation21:

(X ∪ Y ) ⊕ B = (X ⊕ B) ∪ (Y ⊕ B) , (8)

we can state that dilating the original image with structuring element B is equivalent

to applying dilation to every rectangular block and then replacing all blocks by their

corresponding dilated images. In order to speed up the dilation process, a look up

the array table is constructed off-line, containing the dilation results of all rectangles

of predefined maximum dimensions. Thus, the dilation results for these blocks are

directly obtained during the dilation process. Below follows a detailed step-by-step

description of the entire algorithm.

Step 1: Binary image constrained block decomposition. We extract a set of bmax

non-overlapping rectangular blocks with maximum dimension xm by ym.

Step 2: Construction of a look up array table

L(ν) =

[

λ11 · · ·λK1

λ1Λ · · ·λKΛ

]

, v = 1 · · ·xm · ym ,

assigning for every block C of dimension i× j the K×Λ array L(j ·xm + i),

in the following way:

L = C ⊕ B . (9)

Step 3: Every block of the image is replaced by its corresponding L table and all

values are added in order to construct a new image.

Step 4: The final dilated image is extracted, from the image obtained in Step 3, by

considering as foreground points all points that have values greater than 0.

It should be noted that the look up array tables are initially calculated and

then can be used for any binary image. This is obvious for all the morphological

operations procedures described in this paper. Figure 3 illustrates a simple example

of the application of dilation with structuring element B to an image that consists

of two rectangular blocks A1 and A2.

3.2. Erosion

Based on the property that erosion is an increasing transformation, that is15:

X ⊆ Y ⇒ XΘB ⊆ Y ΘB , (10)

and since every rectangular block is a part of the original image, we can state that

pixels belonging to the eroded rectangular blocks also belong to the eroded original

image. To find other possible points that belong to the eroded image but not to the

eroded blocks, we use the following property of erosion:

XΘB ⊆ X . (11)
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(a)                                       (b)                                    (c) 

                 
       (d)                                (e)                                           (f) 

Fig. 3. (a) Original image consisting of two rectangular blocks A1 and A2. (b) Structuring
element B. (c), (d) Dilation of two blocks. (e) Final image after replacing the blocks by their
lookup tables. (f) Final dilated image.

Based on Eqs. (10) and (11), it can be stated that in order to find the erosion

of a binary image we can replace all blocks by their eroded images and just check if

we have to include points that belong to the original image but not to the eroded

block images. In order to track those points we add the original image C to the

eroded block image CΘB. As a result we obtain for every block the value 2 for every

original pixel that has not been removed and the value 1 for every pixel that has

been removed through erosion. First, all blocks are replaced by their corresponding

look up arrays, and then, the erosion is obtained by applying the structuring element

only to pixels with value 1. The entire algorithm consists of the following steps:

Step 1: Binary image constrained block decomposition. A set of bmax non-

overlapping rectangular blocks with maximum dimension xm by ym is ex-

tracted.

Step 2: Construction of a look up array table L(v), v = 1 · · ·xm · ym, assigning for

every block i × j the K × Λ array L(j · xm + i), in the following way:

L = (CΘB) + C , (12)

where C is the corresponding block of the table L.

Step 3: Every block of the image is replaced by its corresponding L table and all

values are added in order to construct the final image.
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Step 4: The erosion is obtained by applying the structuring element only to points

with value 1 considering as foreground points all points with values greater

than 0. The points that turn to foreground have value 2. The final eroded

image is extracted considering as foreground points all points having

value 2.

For example, if the look up table is constructed to support blocks of maximum

dimension 30 × 30 and we want to apply the structuring element B of Fig. 3(b),

then block C of dimension 5 × 3 corresponds to the look up table L(153) (since

5 · 30 + 3 = 153) which is constructed in the following way:

L =  (C Θ B ) + C  =

  

+     =     

 

⊕

⊕

Figure 4 illustrates the application of erosion with structuring element B to an

image that consists of two rectangular blocks A1 and A2.

3.3. Closing

The closing morphological operation for binary images is defined as7:

X • B = (X ⊕ B)ΘB . (13)

Taking into account the following property12:

X ⊆ X • B ⊆ X ⊕ B , (14)

we extract a closed block represented binary image by first performing a dilation

(Sec. 3.1) and then applying an erosion to pixels that belong to X ⊕ B and not

to X . To achieve that, we construct a look-up table L = (C ⊕ B) + αC for every

block C, where B is the structuring element of size n×m and a is the surrounding

area of the structuring element B(a = n ·m). As a result we have for every block a

⊕

⊕

(a) (b) (c) (d)

Fig. 4. (a) Original image consisting of two rectangular blocks A1, A2. (b) Resulting image after

applying Step 3 of the erosion algorithm described in Sec. 3.2. (c) Final image after applying
Step 4 of the erosion algorithm described in Sec. 3.2. (d) Final eroded image.
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value of 1 only for pixels that must be checked for erosion at the next step. Then,

all blocks are replaced by their corresponding look up arrays. All points that must

not be candidates for erosion have values less than a. The parameter a is used

to increase the value of the original block pixels in order to ensure that they will

not be candidates in the erosion process. The complete description of the closing

algorithm is as follows:

Step 1: Binary image constrained block decomposition. We extract a set of bmax

non-overlapping rectangular blocks with maximum dimension xm × ym.

Step 2: Construction of a look up array table L(v), v = 1 · · ·xm · ym, assigning for

every block of size i× j the K ×Λ array L(j ·xm + i), in the following way:

L = (C ⊕ B) + αC , (15)

where C is the corresponding block of the table L, B is the structuring

element Bn × m and α = n × m.

Step 3: Every block of the image is replaced by its corresponding L table and all

values are added in order to construct the final image.

Step 4: We proceed with erosion by applying the structuring element only to points

with values less than a considering as foreground points all points with

values greater than 0. The points that turn into foreground are given value

α. The final closed image is extracted considering as foreground points all

points that are greater or equal to α.

For example, for maximum block 30 × 30, structuring element B (Fig. 3(b)),

a = 9, block C 5 × 3 corresponds to look up table L(153) which is constructed in

the following way:
way: 

L = (C ⊕ B) + αC =  

 

Bo

(

Figure 5 illustrates the application of closing.

3.4. Opening

The opening operation of a binary image X with a structuring element B, denoted

X ◦ B, is defined as7:

XoB = (XΘB) ⊕ B . (16)

As it can be observed, the opening operation is obtained by calculating the

erosion of X by B, followed by a dilation of the result by B.
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               (a)                       (a) (b)

(c) (d)

Fig. 5. (a) Original image consisting of rectangular blocks A1 and A2. (b) Resulting image after
applying Step 3 of the closing algorithms described in Sec. 3.3. (c) Final image after applying
Step 4 of the closing algorithm described in Sec. 3.3. (d) Final closed image.

The following morphological property12:

XΘB ⊆ XoB ⊆ X (17)

leads us to the conclusion that all points of the eroded image belong to the opened

image and a further check must be made only for points that belong to the original

image and not to the eroded image. First we follow Steps 1–3 of Sec. 3.2 in order to

extract the eroded image. To trace the points that must be checked for belonging

to the opened image, we give value 3 to all pixels that belong to the original image

but not to the eroded image. At a next step we check only those pixels for dilation.

The algorithm is as follows:

Step 1: We follow Steps 1–3 of Sec. 3.2.

Step 2: We proceed with erosion applying the structuring element only to points

with 1 value considering as foreground points all points with values greater

than 0. Points that turn into foreground are given value 2 while points that

turn to background are given value 3.

Step 3: We proceed with dilation by applying the structuring element only to points

with value 3 considering as foreground points all points with value 3. Points
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that turn to foreground are given value 1. The final closed image is extracted

considering as foreground pixels only pixels equal to 1 or 2.

Figure 6 illustrates the application of closing with structuring element B

(Fig. 3(b)) to an image that consists of two rectangular blocks A1 and A2.

(a) (b) (c)

(d) (e)

Fig. 6. (a) Original image consisting of two rectangular blocks A1 and A2. (b) Resulting image
after applying Step 1 of the opening algorithm described in Sec. 3.4. (c) Resulting image after
applying Step 2 of the opening algorithm described in Sec. 3.4. (d) Image after the dilation of
Step 3 of Sec. 3.4. (e) Final opened image.

4. Experimental Results

Experiments were conducted with a variety of binary images. All methods were im-

plemented in C++ language at a Pentium II/800 MHz with Windows 2000 O/S. We

constructed the final images after applying the four basic morphological operations

of dilation, erosion, opening and closing, with a variety of structuring elements. The

resulting images were found to be identical to the corresponding images that result

from point represented images. Tables 1–4 show the execution times when applying

the four basic morphological operations to the 8 CCITT benchmark b/w images

(ftp://ftp.funet.fi/pub/graphics/misc/test-images/) with a variety of structuring

elements, starting from point or block representations or the contour processing

method described in Ref. 12. Since for the contour processing method only 3 × 3

structuring elements are directly applicable (12), application of 5 × 5 elements is

implemented through twofold application of 3 × 3 elements. Figures 7–10 show

the average execution times for all images. Using the block representation, we are

able to perform dilation 16 times faster than using the points representation and
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Table 1. Processing times for dilation, erosion, opening and closing using a 3×3 square structuring
element starting from point or block representations or the contour processing method described
in Ref. 12. 

     Structuring 

       element: 

  Square 3 x 3          

Dilation Erosion Opening Closing 

Points 1.74 sec 0.24 sec 1.98 sec 2.04 sec 

Contours 0.71 sec 0.84 sec 1.67 sec 1.56 sec 

 
Blocks 0.04 sec 0.26 sec 0.46 sec 0.24 sec 

Points 1.74 sec 0.24 sec 1.98 sec 2.04 sec 

Contours 0.64 sec 0.84 sec  1.66 sec 1.54 sec 

 
Blocks 0.06 sec 0.26 sec 0.44 sec 0.22 sec 

Points 1.66 sec 0..28 sec 2.00 sec 2.04 sec 

Contours 0.71 sec 0.84 sec 1.87 sec 1.68 sec 

 
Blocks 0.10 sec 0.32 sec 0.54 sec 0.28 sec 

Points 1.18 sec 0.30 sec 1.60 sec 1.60 sec 

Contours 0.83 sec 0.93 sec 2.04 sec 1.97 sec 

 
Blocks 0.16 sec 0.40 sec 0.62 sec 0.34 sec 

Points 1.26 sec 0.26 sec 1.56 sec 1.60 sec 

Contours 0.71 sec 0.84 sec 1.85 sec 1.70 sec 

 
Blocks 0.08 sec 0.30 sec 0.50 sec 0.26 sec 

Points 1.30 sec 0.22 sec 1.56 sec 1.58 sec 

Contours 0.64 sec 0.84 sec 1.74 sec 1.61 sec 

 
Blocks 0.04 sec 0.26 sec 0.46 sec 0.24 sec 

Points 1.24 sec 0.26 sec 1.58 sec 1.6 sec 

Contours 0.83 sec 0.93 sec 1.95 sec 1.99 sec 

 
Blocks 0.14 sec 0.34 sec 0.58 sec 0.30 sec 

Points 0.84 sec 0.66 sec 1.58 sec 1.56 sec 

Contours 0.90 sec 0.67 sec 1.76 sec 1.63 sec 

 Blocks 0.24 sec 0.56 sec 0.78 sec 0.42 sec 

Points 1.37 sec 0.31 sec 1.73 sec 1.76 sec 

Contours 0.75 sec 0.84 sec 1.81 sec 1.71 sec 

 

Average 

Blocks 0.11 sec 0.34 sec 0.55 sec 0.29 sec 
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Table 2. Processing times for dilation, erosion, opening and closing using a 3× 3 cross structuring
element starting from point or block representations or the contour processing method described
in Ref. 12. 

     Structuring 

       element: 

  Cross 3 x 3          

Dilation Erosion Opening Closing 

Points 1.30 sec 0.22 sec 1.54 sec 1.58 sec 

Contours 0.95 sec 0.89 sec 2.46 sec 2.23 sec 

 
Blocks 0.04 sec 0.24 sec 0.44 sec 0.22 sec 

Points 1.30 sec 0.24 sec 1.56 sec 1.58 sec 

Contours 1.04 sec 0.89 sec 2.34 sec 2.29 sec 

 
Blocks 0.04 sec 0.26 sec 0.44 sec 0.22 sec 

Points 1.24 sec 0.26 sec 1.56 sec 1.58 sec 

Contours 1.04 sec 0.89 sec 2.66 sec 2.54 sec 

 
Blocks 0.08 sec 0.32 sec 0.52 sec 0.26 sec 

Points 1.18 sec 0.30 sec 1.58 sec 1.62 sec 

Contours 1.13 sec 0.93 sec 2.99 sec 2.87 sec 

 
Blocks 0.16 sec 0.40 sec 0.64 sec 0.34 sec 

Points 1.26 sec 0.26 sec 1.56 sec 1.58 sec 

Contours 1.13 sec 0.89 sec 2.68 sec 2.50 sec 

 
Blocks 0.08 sec 0.30 sec 0.52 sec 0.26 sec 

Points 1.30 sec 0.24 sec 1.54 sec 1.58 sec 

Contours 0.96 sec 0.89 sec 2.59 sec 2.37 sec 

 
Blocks 0.06 sec 0.26 sec 0.46 sec 0.24 sec 

Points 1.24 sec 0.26 sec 1.60 sec 1.62 sec 

Contours 1.13 sec 0.93 sec 2.92 sec 2.93 sec 

 
Blocks 0.12 sec 0.34 sec 0.58 sec 0.32 sec 

Points 0.84 sec 0.66 sec 1.56 sec 1.56 sec 

Contours 1.31 sec 0.71 sec 2.58 sec 2.42 sec 

 Blocks 0.26 sec 0.56 sec 0.76 sec 0.42 sec 

Points 1.21 sec 0.30 sec 1.56 sec 1.59 sec 

Contours 1.09 sec 0.88 sec 2.65 sec 2.52 sec 

 

Average 

Blocks 0.10 sec 0.33 sec 0.54 sec 0.28 sec 



December 1, 2003 9:4 WSPC/164-IJIG 00136

14 B. Gatos et al.

Table 3. Processing times for dilation, erosion, opening and closing using a 5×5 square structuring
element starting from point or block representations or the contour processing method described
in Ref. 12. 

     Structuring 

       element: 

  Square 5 x 5          

Dilation Erosion Opening Closing 

Points 3.60 sec 0.30 sec 4.66 sec 4.56 sec 

Contours 1.15 sec 1.83 sec 3.36 sec 3.13 sec 

 
Blocks 0.06 sec 0.32 sec 0.62 sec 0.38 sec 

Points 3.60 sec 0.34 sec 4.60 sec 4.58 sec 

Contours 1.53 sec 1.83 sec 3.29 sec 3.06 sec 

 
Blocks 0.06 sec 0.36 sec 0.60 sec 0.32 sec 

Points 3.36 sec 0.36 sec 4.62 sec 4.52 sec 

Contours 1.37 sec 1.94 sec 3.75 sec 3.35 sec 

 
Blocks 0.10 sec 0.40 sec 0.78 sec 0.46 sec 

Points 3.02 sec 0.38 sec 4.76 sec 4.46 sec 

Contours 1.51 sec 2.04 sec 4.02 sec 3.90 sec 

 
Blocks 0.26 sec 0.46 sec 1.10 sec 0.76 sec 

Points 3.38 sec 0.34 sec 4.64 sec 4.52 sec 

Contours 1.37 sec 1.84 sec 3.66 sec 3.43 sec 

 
Blocks 0.12 sec 0.40 sec 0.78 sec 0.50 sec 

Points 3.52 sec 0.32 sec 4.64 sec 4.54 sec 

Contours 1.19 sec 1.95 sec 3.44 sec 3.18 sec 

 
Blocks 0.08 sec 0.36 sec 0.66 sec 0.38 sec 

Points 3.32 sec 0.34 sec 4.70 sec 4.48 sec 

Contours 1.61 sec 1.93 sec 3.93 sec 4.03 sec 

 
Blocks 0.20 sec 0.40 sec 0.90 sec 0.68 sec 

Points 2.20 sec 1.78 sec 4.48 sec 4.44 sec 

Contours 2.02 sec 1.45 sec 3.49 sec 3.25 sec 

 Blocks 0.28 sec 1.02 sec 1.30 sec 0.58 sec 

Points 3.25 sec 0.52 sec 4.64 sec 4.51 sec 

Contours 1.47 sec 1.85 sec 3.62 sec 3.42 sec 

 

Average 

Blocks 0.14 sec 0.46 sec 0.84 sec 0.51 sec 



December 1, 2003 9:4 WSPC/164-IJIG 00136

Fast Implementation of Morphological Operations 15

Table 4. Processing times for dilation, erosion, opening and closing using a 5 × 5 diamond struc-
turing element starting from point or block representations or the contour processing method
described in Ref. 12. 

     Structuring 

       element: 

  Diamond 5 x 5          

Dilation Erosion Opening Closing 

Points 2.92 sec 0.30 sec 3.32 sec 3.30 sec 

Contours 2.01 sec 1.98 sec 4.98 sec 4.25 sec 

 
Blocks 0.08 sec 0.32 sec 0.58 sec 0.32 sec 

Points 2.92 sec 0.34 sec 3.28 sec 3.32 sec 

Contours 2.05 sec 1.98 sec 4.64 sec 4.28 sec 

 
Blocks 0.08 sec 0.36 sec 0.56 sec 0.30 sec 

Points 2.76 sec 0.38 sec 3.30 sec 3.28 sec 

Contours 2.10 sec 1.88 sec 5.12 sec 5.24 sec 

 
Blocks 0.16 sec 0.42 sec 0.70 sec 0.38 sec 

Points 2.54 sec 0.38 sec 3.38 sec 3.30 sec 

Contours 2.12 sec 2.01 sec 5.89 sec 5.85 sec 

 
Blocks 0.30 sec 0.52 sec 0.96 sec 0.62 sec 

Points 2.76 sec 0.36 sec 3.32 sec 3.32 sec 

Contours 2.35 sec 1.88 sec 5.30 sec 5.12 sec 

 
Blocks 0.16 sec 0.42 sec 0.70 sec 0.42 sec 

Points 2.86 sec 0.32 sec 3.32 sec 3.30 sec 

Contours 2.03 sec 1.89 sec 5.04 sec 4.75 sec 

 
Blocks 0.10 sec 0.36 sec 0.62 sec 0.34 sec 

Points 2.66 sec 0.34 sec 3.38 sec 3.30 sec 

Contours 2.30 sec 1.98 sec 5.89 sec 6.03 sec 

 
Blocks 0.24 sec 0.42 sec 0.82 sec 0.54 sec 

Points 1.82 sec 1.34 sec 3.24 sec 3.24 sec 

Contours 2.56 sec 1.55 sec 5.03 sec 4.98 sec 

 Blocks 0.42 sec 0.86 sec 1.12 sec 0.54 sec 

Points 2.65 sec 0.47 sec 3.32 sec 3.29 sec 

Contours 2.19 sec 1.89 sec 5.24 sec 5.06 sec 

 

Average 

Blocks 0.19 sec 0.46 sec 0.76 sec 0.43 sec 
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10 times faster than using the contour approach. Although the erosion operation

is not accelerated when using block representation, the significant reduction in the

execution time for dilation boosts the operation of opening and closing as well

(opening is four times faster than using points and five times faster than using

blocks, while closing is seven times faster than using points and eight times faster

than using blocks) (Figs. 5, 6).

The basic contour processing based approach for fast morphological operations

described in Ref. 12 is reported to obtain a significant reduction in the CPU time

for many iterations. Therefore we recorded times for applying dilation with a 3× 3

structuring element for many iterations. Table 5 shows the processing times re-

quired for many iterations when applying dilation with a 3 × 3 square structuring

element with all three approaches (Points, Contours and Blocks). The recorded re-

sults show that for the block representation approach there is always a significant

decrease in processing time compared to the other two approaches irrespectively of

the number of iterations. For example, a 10-fold application of dilation using the

block representation is over 20 times faster than using the points representation

and over four times faster than using the contour based approach.

A further indication of the usefulness of our approach for accelerating morpho-

logical transformations on binary images comes from a comparison with the state

of the art SDC morphology Matlab toolbox.22 In the general case of gray scale

Table 5. Processing times (sec) for many iterations when applying dilation with a 3 × 3 square
structuring element.

0
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4

6

8
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12

14

1 2 3 4 5 6 7 8 9 10

Series1

Series2

Series3

Points   

Contour   

Blocks   

Iterations   

 
 
Iterations 1 2 3 4 5 6 7 8 9 10 

Points 1.37  2.74  4.20  5.48  6.94  8.04  9.41  10.78  12.15  13.24  

Contour 0.75 0.82 1.09 1.28 1.55 2.01 2.28   2.56 2.74 2.83 

Blocks 0.11 0.18 0.21 0.24 0.27 0.36 0.46   0.55 0.60 0.64 
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images, the algorithms implemented in this Matlab toolbox give very significant

acceleration with respect to the standard Matlab routines for morphological oper-

ations included in the image processing toolbox. However, our experiments showed

that in the case of binary images the morphology toolbox does not give significant

acceleration over the standard Matlab image processing toolbox and in some cases

it is even slower. We have computed average times regarding the execution of one

iteration for each of the four basic morphological operations to the 8 CCITT bench-

mark b/w images. For the Matlab morphological toolbox routines, average times

are 4.01 sec for dilation, 4.16 sec for erosion, 7.00 sec for opening and 6.97 sec for

closing. For the standard Matlab routines, the corresponding figures are 5.49 sec

for dilation, 12.14 sec for erosion, 3.23 sec for opening and 3.29 sec for closing.

Hence for these binary images, dilation and erosion are faster, while opening and

closing are somewhat slower. Moreover, as is evident from Figs. 7–10, average times

obtained using the mathematical morphology Matlab toolbox are much larger than

the corresponding times obtained using our block representation implementation.

It is evident from these tables that the block representation routines give at least a

ten-fold acceleration over the corresponding Matlab morphological toolbox routines.

These results show that there is a clear need for fast implementation of morpholog-

ical algorithms specifically for binary images and that our approach addresses this

need with considerable success.

5. Conclusions

This paper proposes new techniques for fast implementation of basic morphological

operations. The binary images are first decomposed in non-overlapping rectangu-

lar blocks of foreground pixels. Then, using look up tables and superposition the

morphological operations are directly obtained. The resultant images are exactly

the same with the images produced by the classical morphological procedures. The

presented experimental results confirm the advantages of the proposed approach.
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