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Abstract—In this paper, we propose a novel probabilistic model
for lexicon-free handwriting recognition. Model inputs are word
images encoded as Pyramidal Histogram Of Character (PHOC)
vectors. PHOC vectors have been used as efficient attribute-
based, multi-resolution representations of either text strings or
word image contents. The proposed model formulates PHOC
decoding as the problem of finding the most probable sequence
of characters corresponding to the given PHOC. We model PHOC
layers as Beta-distributed observations, linked to hidden states
that correspond to character estimates. Characters are in turn
linked to one another along a Markov chain, encoding language
model information. The sequence of characters is estimated using
the max-sum algorithm in a process that is akin to Viterbi
decoding. Numerical experiments on the well-known George
Washington database show competitive recognition results.

I. INTRODUCTION

Two main families of methods dominate the field of uncon-

strained offline handwriting recognition: Hidden Markov [1],

[2] and, more recently, Neural Network-based models [3], [4].

After preprocessing of the scanned input document image, the

document is typically segmented into text areas up to the level

of text line or word [5]. As a rule, methods of either family

require large amounts of annotated training data, i.e. manually

transcripted text lines and/or word images, in order to obtain

an acceptable recognition rate.

Recently, Almazán et al. [6] have proposed a learning-based

model that is suitable for the task of word spotting [7], as

well as word recognition. An important merit of this model

is that it requires only a (comparatively) moderate amount of

training data [6]. The model encodes word images, as well

as transcription strings, as fixed-length vectors that represent

a set of attributes of the word. The encoding method has

been named Pyramidal Histogram Of Characters (PHOC). The

PHOC vector is a fixed-length, attribute-based representation

[8] of a word. Each variate of the PHOC vector is related to a

specific letter (unigram) or bigram and its relative position in

the word. For example, the related attributes can be answers to

questions like “does the word contain the letter ’d’ ”? or “does

the word contain the bigram ’in’ on its second half”? After

estimating the PHOC vector for the word to be recognized,

PHOC vectors are computed for all words in a pre-existing

lexicon. The correct transcription is assigned after comparing

functions of the PHOC vectors of the unknown word versus

the representations of the lexicon words. Hence, a lexicon of

possible words is necessary to perform recognition.

In this work, we propose a model that can decode PHOC

vectors and produce an estimate of the true transcription

without requiring a lexicon. The implication of this is that

the word to be recognized is neither required to be part of

the training set, nor part of a preset vocabulary of possible

words. Therefore, with the proposed decoding model we can

take advantage of the efficiency of recent methods that produce

PHOC representations of word images [6], [9], [10] and use

them to perform lexicon-free recognition.

PHOC generation is formulated as a hierarchical probabilis-

tic model [11]. The observed PHOC estimate is modelled

as the instance of a Beta-based probability density function

that depends on the unobserved word transcription. Hence,

decoding the input PHOC vector is formulated as finding the

most probable word transcription given the observed PHOC.

We propose and employ a suitable reparametrization and

decomposition of the Beta-based emission model, so that it

becomes tractable. The overall model is solved with a novel

procedure that is based on the max-sum algorithm and is

akin to Viterbi decoding [11]. Numerical results show that

the proposed model has competitive recognition performance.

The remainder of this paper is organized as follows. In

Section II we provide a brief overview of the structure of

PHOC vectors and their use in the related literature. In Section

III we present the proposed model and we show how to use it

for word recognition in Section IV. In Section V we evaluate

our model with numerical experiments and we conclude with

a brief discussion of the paper’s contribution and perspectives

of future work in Section VI.

II. PHOC VECTOR STRUCTURE

The PHOC vector representation was introduced by Al-

mazán et al. [6]. A PHOC vector is a fixed-length vector

representation of a word. PHOCs can be computed exactly

as binary histograms given a text string, or estimated as non-

binary histograms given a word image [6], [9]. 1 We shall first

1In [6], the representation given a word image is referred to as an attribute
vector and in [9] the same vector is referred to as a PHOC estimate. In the
current work, we shall refer to representations given either a word image or
a string as a PHOC vector or PHOC estimate.
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examine the former case, as it is somewhat simpler.

A PHOC vector is defined as the concatenation of a smaller

set of histograms of attributes, to which we shall refer to as

T . Each of the histograms of T relates to either encoding

information about unigrams or bigrams, respectively forming

sets Tu and Tb (hence T = Tu ∪ Tb). Also, each histogram in

T encodes information about a specific part of the word, at a

specific scale. In this respect, histograms in T can be grouped

in layers. All histograms in layer x refer to the same scale and

all together span the whole word in x same-length horizontal

zones. For example, there are 3 histograms in layer 3, with

each one encoding a different third of the word. In this work

we represent histograms as φXa.b
, where X ∈ {U,B} and

a, b ∈ N. X corresponds to whether the histogram encodes

information about unigrams or bigrams, located in space and

scale in layer a, zone b. For example, φU5.3 is a histogram

that encodes information about unigrams found in layer 5,
horizontal zone 3, or more simply the third fifth of the word.

All unigram or bigram histograms have the same length Du

or Db, respectively. These histograms encode the presence or

absence of all possible unigrams or bigrams.

As each variate of the PHOC vector is related to the

presence or absence of a token, given an input text string each

variate takes a binary value. An estimate can be computed

given a word image, instead of a text string, as input. This

vector differs to the PHOC representation given a text string,

only to the domain of the vector variates. The representation

vector variates are related to the same semantic information

(i.e. existence of a unigram or bigram at a specific zone in

the word). In that case, PHOC variates will in general be non-

binary, as they are each directly or indirectly outputs of soft

binary classifiers.

In this work, we shall assume the existence of a mechanism

that can produce fixed-length PHOC vectors of dimensionality

D, given either text strings or word images. The PHOC vector

given a text string is assumed to be φ ∈ {0, 1}D, while the

PHOC vector given a word image is assumed to be φ ∈ [0, 1]D.

In the two following Sections we examine the proposed model

and method to decode PHOCs, in order to produce the most

likely word that generated them.

III. PROPOSED MODEL

A. Overview

Given the PHOC vector estimate of an input word image,

our goal is to use it to infer the related word text string. We

formulate the process of PHOC generation as an hierarchical

probabilistic graphical model [11]. The model defines two

random processes, dependent one on the other. These are

the word transcription to be estimated, denoted as γ, and

the PHOC vector, denoted as φ. The PHOC vector φ is an

observed variable, while the transcription is a latent variable

(cf. fig. 1).

The word transcription γ is made up of an ordered set of

M letters, and we can write γ = {γ1, · · · , γM}. We use a

one-hot encoding to represent each letter γi. Specifically, for

all i ∈ [1,M ], all variates of vector γi are zero except variate

φ

γ

Fig. 1. A generic view of the proposed graphical model. γ stands for the
word transcription to be estimated and φ stands for the observed PHOC vector.
We aim to find the most probable transcription γ for the given encoding φ.

k, which is equal to one if γi represents the kth letter in the

alphabet of possible unigrams.

The PHOC vector φ consists of |T | = |Tu| + |Tb| layers,
where |Tu| encode information about unigrams in the word

and |Tb| encode information about bigrams. Formally, φ is

a concatenation of layer histograms {φτ |τ ∈ T}. Model

evidence can be written as

p(φ, γ) = p(φ|γ)p(γ) (1)

Under this formulation, we aim to compute

argmax
γ

p(γ|φ) = argmax
γ

p(φ|γ)p(γ) (2)

The function to be optimized is hence decomposable in two

terms, namely the emission likelihood p(φ|γ) and the prior

p(γ) on possible transcriptions.

B. Emission likelihood

We model the emission likelihood p(φ|γ) as independent,

identically distributed (i.i.d.) observations following the Beta

probability distribution function (pdf). The Beta distribution,

defined over [0, 1], is often used to model binary events [11].

Formally the emission likelihood is written as

p(φ|γ) =
∏
τ∈T

∏
d∈τ

β(φτd|{γd
i |i ∈ λ(τ)}), (3)

where φτd denotes the dth variate of the PHOC layer his-

togram φτ , and β(.) stands for the Beta distribution [11]. γd
i

denotes the dth binary variate of the one-hot representation

of letter i. The function λ maps a layer histogram to the

letter positions it relates to. For example, assuming a 6-letter
word, layer histogram φU3.2

would encode information about

the second third of the word, hence λ(φU3.2) = {3, 4} (see

also fig.2). In order to cover cases where layer zone limits

“fall between” letters, we have used the convention of [6],

assigning letters according to their letter-region area overlap.

If φτ is a histogram over unigrams, we have φτ ∈ [0, 1]Du .

If it is a histogram over bigrams, φτ ∈ [0, 1]Db . The domain of

the Beta distribution is over [0, 1], and its parameters control

the number of effective prior observations [11]. For more

details on the Beta distribution and the parametrization used

here, see the Appendix.
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φU1 φU2.1 φU2.2

γ1 γ2

φU1 φU2.1 φU2.2 φU3.1 φU3.2
φU3.3

γ1 γ2 γ1 γ2 γ3 γ4 γ5 γ6

Fig. 2. An analytical view of two example use-cases of the proposed graphical model. PHOC size and word length size fixed to values suitable for the
illustration of the model mechanism. (a) On the example on the left, the word length is fixed to a specific value (α = 2, i.e. a word of two letters) and the
observed PHOC vector only comprises 3 layers (T = {φU1

, φU2.1
, φU2.2

}). Note that PHOC layer φU1
encodes information about the whole word (both

letters), hence its value is conditioned on both letters γ1, γ2. Layers φU2.1
, φU2.2

encode information each on a different half of the word (one letter each),
hence they are conditioned respectively to letters γ1, γ2. (b) On the example on the right, we assume a larger word length (α = 6) and PHOC size (|T | = 6).

We further decompose the Beta distribution terms into

simpler terms (again, see the Appendix for details) that are

conditioned only over single binary observations as

β(φτd|{γd
i |i ∈ λ(τ)}) = Ẑ({γd

i |i ∈ λ(τ)})
∏

i∈λ(τ)
β(φτd|γd

i ),

(4)

where the Ẑ(·) function is defined in the Appendix. After

combining eqs. (3) and (4) and dropping the normalization

terms Ẑ, we get

p̂(φ|γ) =
∏
τ∈T

∏
d∈τ

∏
i∈λ(τ)

β(φτd|γd
i ). (5)

In eq. (4), the normalization term Ẑ depends only on the

number of non-zero elements of the set {γd
i |i ∈ λ(τ)} and

the set cardinal number, and not on the exact values of the

set members per se. We shall assume that we can ignore

the normalization term for the decoding step of the method,

and use eq. (5) to approximate the emission likelihood during

model solution. This choice comes with the benefit that the

emission likelihood decouples in terms that depend only to one

letter at a time. In terms of model optimization, this translates

to a tractable and comparatively simple and fast decoding

mechanism.

C. Prior on possible transcriptions

The prior on possible transcriptions p(γ) is defined as a

first-order Markov chain [11]. Formally this is written as a

product of unigram and bigram state transition probabilities:

p(γ) = p(γ1)
M∏
i=2

p(γi|γi−1) (6)

Chain states represent possible letters for each letter position

i. Hence, p(γ) is in effect a language model prior. Unigram

and bigram probabilities are computed offline on a suitable

corpus and remain fixed throughout decoding.

IV. DECODING USING THE PROPOSED MODEL

A. Decoding given a specific word length

By combining equations 2, 5, 6 and taking logarithms, we

can see that the objective we aim to optimize can be written

as:

γ� = argmax
γ

∑
τ∈T

∑
d∈τ

∑
i∈λ(τ)

lnβ(φτd|γd
i )+

+

M∑
i=2

ln p(γi|γi−1) + ln p(γ1), (7)

where we assume that word length M is known a priori (we

shall examine how to estimate the true length M in Subsection

IV-B). We note that all terms in the objective eq. (7) depend

at most on two consecutive letters (this conveniently happens

because we dropped the normalization terms in eq. 5). Hence,

we can use a dynamic programming scheme to estimate γ�. In

the context of graphical models, this can be performed using

the max-sum algorithm [11].

In the max-sum algorithm, messages are passed between

nodes of an extension of the basic graphical model. This

extended graphical model is undirected, and includes all nodes

of the original model as variable nodes plus one node for

each term of the likelihood function, called factor nodes.

The algorithm comprises a phase where messages are passed

between variable and factor nodes. Factor nodes send messages

to variable nodes, and vice versa. An example factor graph can

be examined in fig. 3.

φU1 φU2.1 φU2.2

γ1 γ2

f̂1
U1

f̂2
U1

f̂1
U2.1

f̂2
U2.2

f1 f2

Fig. 3. Factor graph corresponding to graphical model presented in fig.2a.

For the proposed model, the messages to be passed can be

computed as follows:

μf1→γ1
(γ1) = ln p(γ1) (8)

μf̂i
d→γi

(γi) = lnβ(φd|γi) = lnβ(φd|γd
i ) (9)

μγi→fi,i+1
(γi) = μfi−1,i→γi

(γi) +
∑
d

μf̂i
d→γi

(γi) (10)

μfi−1,i→γi
(γi) = max

γi−1

[ln p(γi|γi−1) + μγi−1→fi−1,i(γi−1)]

(11)
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where μa→b stands for message sent from node a to node

b. Factor nodes are denoted by letters f and f̂ . The nodes

denoted by fi,i−1 are the factor nodes that correspond to terms

p(γi|γi−1), and f1 corresponds to term p(γ1) of eq. (7). Nodes

denoted by f̂ i
d correspond to the β factors of eq.( 2). Note that

in the above message-passing formulae we have intentionally

omitted μφd→f̂d
(φd). Messages of that type could be modelled

as δ Dirac pdfs centered on the observed values. We have

instead chosen to combine these with μf̂i
d→γi

and present the

combined message only, in order to simplify notation.

Messages are propagated from graph leaves towards the

graph root, in our case the final letter γM . The first letter

node γ1 is the first to receive all incoming messages. After

having done so, messages incoming to the next letter node γ2
can be computed, and so on, until the final letter node γM
is reached. The intuition behind this procedure is that, during

each message passing, nodes propagate their “belief” about

what letter is found at a particular word position. Emission

nodes propagate their belief according to the PHOC obser-

vation; Markov chain nodes propagate their belief according

to the language model. The end-result is a trade-off between

these two factors.

While passing messages from node to node, we keep track

of the maximizing per-node (i.e. per-letter position) value:

φ(γi) = argmax
γi−1

[ln p(γi|γi−1) + μγi−1→fi,i−1
(γi−1)] (12)

After the last letter is reached, the optimal decoding can be

computed. Optimal per-node letter values, starting from the

end (i =M ) and moving progressively back to the beginning

(i = 1) can be computed using a back-tracking procedure [11].

First we compute the best value for the last letter as:

γ�
M = argmax

γM

[μfM−1,M→γM
(γM )+

∑
d

μf̂i
d→γM

(γM )] (13)

In order to compute best values for the rest of the letters (∀i ∈
[1,M−1]) we use the φ(·) function we defined earlier (eq. 12):

γ�
i = φ(γ�

i+1) (14)

Therefore, under these considerations the best estimate for the

word transcription is computed as the word γ�
1γ

�
2 · · · γ�

M .

B. Choosing the word length

In Subsection IV-A we have seen how to produce a word

transcription estimate when the word length M is known. We

propose a two-part score function swl(·) to estimate M for

each word to be recognized. The first function component

gives a coarse estimate sCwl(·) of M , which is refined when

combined with the second function component sFwl(·) .

For the coarse estimate, we use the word image length

in pixels to estimate M . We perform linear regression over

pairs of { word length in pixels, word length in letters } of

the training set. The parameters of the straight line that is

estimated, are used to project pixel word length to a mean

estimate MC . This regression is meant to give a first estimate

that is assumed to be sufficiently close (i.e. up to a margin of

1-2 letters) to the actual word length. We proceed to define:

sCwl(M) =

{
1, if |M − round(MC)| ≤ 2

0, otherwise
(15)

In order to compute the refined word length estimate, we

first decode the word using all non-zero sCwl score candi-

date word lengths. We re-encode these decoded character

sequences, and perform L2-normalization on the resulting

PHOCs. Subsequently we compute Euclidean distances of

the normalized PHOC decodings to the normalized initial

input PHOC estimate. We map these distances to similarity

scores sFwl(·) using a standard Gaussian distribution kernel.

We choose the final estimate M� as

M� = argmax
M

swl(M) � argmax
M

sCwl(M)sFwl(M) (16)

V. NUMERICAL EXPERIMENTS

We have used the GW20 manuscript collection for numer-

ical experiments [12]. The GW20 collection is comprised of

20 pages of text, handwritten by George Washington and his

associates in the 18th century. The manuscripts have been

manually segmented into 4860 word images, fully transcribed.

We have used two-fold and four-fold cross-validation to par-

tition the set in training/validation and testing folds. At each

case, all folds are of equal size, 10 and 5 pages respectively.

Again in both cases, one fold is used as the testing fold

and the rest for training and validation. We have trained the

language model prior on the word transcription over unigrams

and bigrams found in the respective training and validation

folds only.

We have used the original attribute SVM-based model of

Almazán et al. [6] to produce PHOC estimates of the test

word images. As suggested in that work, we use a PHOC

representation with unigram layers of levels 2, 3, 4, 5 and

bigram layers of level 2. After having performed Platts scaling

[6] on the attribute vector, the output vector variates are

∈ [0, 1]. The resulting PHOC vector is of dimensionality

D = 604. Regarding the proposed decoding model, we have

used a likelihood function that is defined over unigram emis-

sions only, as preliminary results have shown that including

messages from bigram emissions results in somewhat worse

performance. We attribute this result to the structure of our

model, which represents the latent process as a series of

unigrams, each linked to emission nodes separately.

In fig. 4, we show decoding results for a number of words

found in the GW20 dataset. We used results from the 2-fold

GW20 setting. All of the selected words were found only in the

test fold. In other words, no example of a same-transcription

word image had been observed during the training phase. Yet,

the proposed decoder succeeds at succesfully coping with such

cases. This model characteristic is due to two factors: the

zero-shot learning trait, related to the attribute-based character

of the PHOC representation, and the fact that the proposed

decoder does not depend on a lexicon of possible words, that

might or might not include the target word.
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Fig. 4. Example decodings using the proposed model. On each row, from left to right, we see: The input word image, the observed PHOC vector shown
as a signal of fixed length D = 604, the word-length estimator function swl, the most likely letters per sum of incoming messages per letter position, the
decoded word. All depicted values on columns 2,3,4 are shown normalized to a scale [0, 1]. Per-letter position messages are combined with prior language
model information to give the decoded end-result. Note that no same-transcription examples were observed during the training phase, for any of the words
shown in this example.

We have compared our method with an HMM-based model

[2] and a NN-based model [4]. The HMM-based model of

Lavrenko et al. [2] uses a holistic representation to describe

word images. Word transcriptions are modelled as the hidden

states of a Markov chain, and the holistic representations

correspond to the observed process. In the work of Frinken

et al. [4], a neural network based model for handwriting

recognition is employed, and show that the same model can

be adapted for the task of keyword spotting. In both works,

recognition results on GW20 are reported. We can examine the

recognition accuracy of these works versus the accuracy of the

current model in table I. Let us note that the compared HMM-

based model of Lavrenko et al. [2] uses a language model

that had been trained on a corpus of over 4 million words.

The language model of the proposed decoder is trained on

the available training folds only, i.e. in our case in less than

3, 000 words in all cases. Moreover, Lavrenko et al. use a

fixed lexicon of words. The proposed decoder outperforms the

compared methods, albeit being at a disadvantage by having

no information about the search space in the form of a lexicon.

We also show results assuming a perfect word length

estimate. This “cheat” scenario is presented for the purpose

of decoupling the performance of the word decoding and the

word length estimation components of the proposed model.

Correct word length estimation is crucial for our model, as a

wrong length estimate will lead to wrong recognition. Results

show that there is room for improvement for word length

estimation, as about 9% of recognition accuracy is “lost” due

to word length estimation errors.

TABLE I
COMPARISON OF RECOGNITION ACCURACY OF THE PROPOSED DECODER

VERSUS STATE-OF-THE-ART WORKS TESTED ON THE GEORGE

WASHINGTON DATABASE. IN ORDER TO EVALUATE THE PROPOSED WORD

LENGTH ESTIMATION SCHEME, RESULTS ARE ALSO REPORTED FOR THE

HYPOTHETICAL (“CHEAT”) SCENARIO WHERE WORD LENGTH IS KNOWN.

Accuracy

GW - 2 folds
Lavrenko et al. [2] 47.0%
Proposed decoder 49.81%

Proposed decoder + known word length 58.04%

GW - 4 folds
Lavrenko et al. [2] 53.0%
Frinken et al. [4] 52.92%

Proposed decoder 53.44%
Proposed decoder + known word length 61.62%

VI. CONCLUSION AND FUTURE WORK

We have proposed and solved a novel probabilistic model

that can be used for lexicon-free HTR. With the proposed

model, PHOC vectors, that are the direct or indirect product

of a number of recent important models [6], [9], [10], can be

efficiently decoded. The output of the PHOC decoder is an
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estimate of the transcription of the input word image. While

PHOCs have been used for word recognition before, this is

the first work where this is done without using a lexicon of

possible words. After modelling observations as following a

Beta-based distribution, we have shown how to reformulate it

properly so that it can be tractable. The proposed decoder is

finally solved with the max-sum algorithm.
In perspective, a straightforward extension to the current

model would be to use PHOCs with a higher number of

layers, instead of the numbers and types used in the work

that introduced the PHOC representation [6]. More PHOC

layers would entail an encoding that is more detailed and

richer in information, hence we can conjecture that this

could lead to better decoding accuracy. Related to this point,

another perspective would be to use more advanced models

for producing PHOCs. The recent models proposed in [9],

[10] for example, compute PHOCs by utilizing deep learning

techniques while retaining the efficiency, in terms of training

set size, of the original attribute-based model [6]. Combining

the PHOC output of either model with the proposed PHOC

decoder would be entirely straightforward. Testing the model

on more challenging datasets, comprising larger collections,

or written using different scripts [9], [13] can be envisaged.
With respect to the model itself, future work may concern

the more suitable integration of bigram information in the

model, as PHOC bigram information is only partially exploited

in the current model. Integration of the model with a word-

level Markov chain can also be envisaged, as well as integrat-

ing a possible knowledge of lexicon words as a model prior.

APPENDIX: DEFINITION, PARAMETRIZATION AND

DECOMPOSITION OF THE BETA DISTRIBUTION

The Beta distribution is defined over a continuous variable

x ∈ [0, 1]. A standard parametrization often used in the

literature [11] is over two parameters a, b > 0, with:

β(x|a, b) = Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1. (17)

where Γ(·) stands from the Gamma function. Parameters a, b
can be interpreted as the effective prior number of observations

at x = 0 and x = 1 respectively [11]. We can reparametrize

eq. (17) as:

β(x|δ) � β(x|δ + 1, 2− δ) = 2xδ−1(1− x)2−δ. (18)

where the new parameter δ is ∈ {0, 1}. We can further

generalize the above reparametrization, again with respect to

the parametrization of eq. (17), as follows:

β(x|Δ) � β(x|1 +
M∑
i=1

δi, 1 +M −
M∑
i=1

δi), (19)

where Δ is a set of M binary variables {δ1, · · · , δM}.
The Beta pdf form of eq. (19) can be decomposed as a

product of Beta pdfs of the form of eq. (18). This can be

proved as follows:

M∏
i=1

β(x|1 + δi, 2− δi) ∝
M∏
i=1

xδi(1− x)1−δi =

= x
∑M

i=1 δi(1− x)M−
∑M

i=1 δi ∝

∝ β(x|1 +
M∑
i=1

δi, 1 +M −
M∑
i=1

δi) = β(x|Δ), (20)

or simply β(x|Δ) ∝ ∏M
i=1 β(x|1 + δi, 2 − δi), which can

be written as β(x|Δ) = Ẑ(Δ)
∏M

i=1 β(x|δi), where Ẑ(·) is a

factor with a value independent of x. We can compute it by

taking into account the normalizing factors that are implied in

eq. (20). Thus, finally we have

Ẑ(Δ) =
M + 1

2M

(
M∑ M
i=1 δi

)
.
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