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Abstract. Normalizing flows are powerful models that elegantly com-
bine invertible neural networks with probabilistic modeling. We explore
uses of the normalizing flow framework for two document image process-
ing tasks: Text Super-Resolution and Binarization.
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1 Introduction to Normalizing flows

In the normalizing flow (NF) framework [6], a probability density function pX(·)
is sought to be estimated given a finite set of samples X = {x1, x2, · · · , xN}
known to come from that distribution. The core adea is to express the avail-
able observed data in terms of a distribution pU (·), that is termed the “base”
distribution and is typically a standard isotropic Gaussian. A di↵eomorphism
(a smooth, bijective function) f : RD ! RD is assumed to transform data X

into images {f✓(x1), f✓(x2), · · · , f✓(xN )}, that are required to follow the (typ-
ically) Normal distribution pU (·), and images and pre-images share the same
dimensionality, denoted as D. ✓ is a set of parameters that define the transfor-
mation. The term “normalizing flow” stems from exactly this requirement; f✓
is responsible for creating data that are normally distributed, and in this sense
it is “normalizing”. Transformation function f✓ is defined as a neural network,
and learning the data is performed by finding the optimal network parameters
that transform X as required. Concerning notation, in what follows we will write
f✓(x) or f(x; ✓) or simply f to refer to the same transformation.

Formally, we can write [1]:

pX(x) = pU (f✓(x))|det
@f✓

@x
(x)|, (1)

where we use the change-of-variables formula between pdfs, ✓ are the parameters
that define the transformation f , and @f✓(x)/@x is the Jacobian matrix for f✓.
A very important constraint over f✓ is that it needs to be bijective. In practice,
network f✓ needs to be structured so as to have both a Jacobian and an inverse
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f
�1
✓ that are easily computable. If network f✓ is defined as a composition f✓(x) =
f
K � fK�1 � · · ·� f1(x; ✓), training the normalizing flow is tantamount to solving

the following maximum likelihood problem:

argmax
✓

logN (f(x; ✓)) +
KX

k=1

log |detf
k

zk
(zk; ✓)| (2)

where we used z
0 = u, zK = x, zk = f

k(zk�1) 8k 2 [1,K].
The standard formulation of Normalizing flows described above, fits the unsu-

pervised setting of density estimation perfectly. For a supervised learning setting,
where we have pairs of source X = {x1, x2, · · · , xN} and target objects or labels
Y = {y1, y2, · · · , yN}, this standard paradigm can be extended to a formulation
of conditional Normalizing flows [6, 4]. Under this setting, transformation f is
required to map from y|x to z|x, i.e. now targets are mapped to a latent space
by means of the normalizing flow, while all are conditioned on the source data x.
It is then straightforward to rewrite the density of eq. 1 as a conditional density:

pY |X(y|x) = pU (f✓(y|x))|det
@f✓

@x
(y|x)|, (3)

and the maximum likelihood objective of eq. 2 in its conditional iteration as:

argmax
✓

logN (f(y|x; ✓)) +
KX

k=1

log |detf
k

zk
(zk|x; ✓)|, (4)

where we now set z
0 = u, zK = y, zk = f

k(zk�1|x) 8k 2 [1,K]. Learning
a model on data X,Y can hence be performed by optimizing eq. 4 given the
available data and w.r.t. the transformation parameters ✓. Transformation f is
di↵eomorphic thus di↵erentiable by assumption, hence in practice we can choose
to use any standard gradient-based optimizer (e.g. SGD, Adam).

Interestingly, flows have been shown to lead to state-of-the-art performance
in a number of tasks, using only a Maximum Likelihood criterion to train [3, 4].
Other models often require multiple priors that entail requiring hyperparameters
that weight the importance of each prior w.r.t. the likelihood term. These play
often a critical role in the success of the architecture in practical applications.
Further useful traits of NFs include: e�cient and exact density evaluation; po-
tential memory savings; an inherently probabilistic formulation, without many
of the di�culties typically associated to probabilistic modeling and other gener-
ative models [3].

2 Formulation of Text Super-resolution and Binarization
as Normalizing Flows

At a high-level, we follow the way the conditional architecture of SRFlow [4] is
built, and we use the same way flow layers are grouped into a cascade of L levels.
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Flow level are each related to a spatial resolution, in particular H/2l ⇥ W/2l,
where H ⇥ W stands for the initial resolution. A level can broken down into
K groups of flow layers (“flow-steps” [4]). In turn, each flow-step is made up
of the following four flow layers: actnorm, 1⇥ 1 convolution, a�ne injector and
conditional a�ne coupling. For our super-resolution application we use a number
of levels L = 3, and for the binarization application we use a single level L = 1,
hypothesizing that the binarization problem is less complex / demanding than
super-resolution. We use patches sized 160⇥ 160 pixels for our experiments. In
super-resolution, we sub-sample the training patches to 40⇥40 to create low-res
/ high-res pairs. We use a pre-trained RRDB backbone in both cases. Inference is
performed as a process of sampling from the learned density, conditioned on the
input, i.e. the low-res image or the non-binarized image respectively. In figures 1
we show 2 we show visual results. Regarding the employed datasets for training
and testing, we have used the DIBCO binarization competition datasets [7] and
the new “PIOP-DAS” dataset [8].

Original ⌧=0.6 ⌧=0.7 ⌧=0.8

Fig. 1. Binarization results: Original images and binarization results for di↵erent “tem-
perature” hyperparameter values ⌧ .

3 Future work

After obtaining the reported first very preliminary though somewhat promising
results, we plan to continue our research on NFs along the following axes: First,
setup sets of experiments on both considered problems, evaluate numerically the
results, and compare to state-of-the-art methods. Concerning super-resolution,
consider integrating with a shape-based approach for the prior, leading to an
extra loss term (e.g. [2], or the recent [5]). Also, test more challenging SR up-
sampling scales. We also envisage using SR combined with binarization, in a
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Fig. 2. Super-resolution results: Original images and super-resolved images (⌧=0.7).

scenario where a binarization components may aid in avoiding to super-resolve
areas that are unimportant (background) or noisy (jpeg artifacts), or aid in
properly evaluating the result (by disregarding background from SR result eval-
uation).
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