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Abstract

This paper describes two novel techniques applied to
the feature extraction and pattern classification stages
it an OCR system for typeset characters. A technique
for estimating the class discrimination ability of con-
tinuous valued features is presented leading to the for-
mation of complex features which fucilitate the classifi-
cation stage. Nezxt, a neuwral network classifier trained
using a recently proposed powerful training dalgorith-
m, based on rigorous nonlinear programming methods,
i3 applied to large-scale OCR problems involving type-
set Greek characters and found to exhibit good gen-
eralization capabilities compared to other conventional
and artificial neural network (ANN) classifiers. Com-
bining these feature extraction and classification tech~
niques i a unified software platform, we have designed
an OCR system which achieved high recognition rates
i some real world OCR ezperiments.

1 Imtroduction

Optical character recognition aims at the t{rans-
formation of any written document which is created
for human comprehension into an equivalent symbol-
ic representation accessible for machine elaboration.
In order to achieve optical character recognition start-
g with a digitized document, many individual steps
must be put to use. Thus, preprocessing (rotation of
the document to remove some skewing variation, im-
age filtering to minimize the noise etc.), segmentation
(separation of individual characters using horizontal
and vertical vacant lines, contour following etc.), nor-
malization (fitting the character to a certain grid), fea-
ture extraction (transformation of characters to keep
only essential information) and classification (assign-
ing each character to a certain class) are important
stages in the recognition process, each individually af-
fecting recognition accuracy. In order to design a suc-
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cessful OCR system, it is essential to combine powerful
algorithms for each of these stages [1,2].

Our research team have designed and implement-
ed a flexible OCR software platform in order to test
and improve methods for all OCR stages, investigating
novel techniques at each stage. In this work we con-
centrate on feature extraction and classification. We
incorporate new powerful techniques into our platfor-
m, which improve both the separability of the extract-
ed features and the accuracy of the dassifying process.
The resulting OCR. system is used for the recognition
of typeset Greek characters.

As regards feature extraction, preliminary features
are extracted from the characters using a mask which
is applied successively on the character surface. A ma-
jor contribution of this paper lies in the use of an algo-
rithm which evaluates the class discrimination ability
of each preliminary feature. The obtained estimate
is then uwsed to form complex and more efficient fea-
tures. The proposed technique is a continuous valued
generalization of a method based on coding theory,
which has been successfully applied to binary pattern
dassification [34].

As regards the classification stage, a multilayered
feedforward ANN is implemented, which is trained by
a recently proposed constrained learning algorithm [5]
utilizing rigorous non-linear programming methods in
order to make optimal use of momentum acceleration.
The efficiency of ANNs as cassifiers in typeset char-
acter recognition tasks is well documented [6]. Since
OCR tasks involve large datasets, it is essential to
devise and implement ANN classification algorithms
with good scalability properties. In this context, our
constrained learning algorithm - which was tested in
previous related work on large-scale benchmark tasks
and was found superior to other popular ANN training
algorithms in terms of learning speed and convergence
ability [7] - is a good candidate for training ANN clas-
sifiers applied to OCR tasks.



The proposed combination of feature extraction
technique and ANN classifier is applied with success
to a large database of Greek typeset characters cor-
responding to many different fonts. Finally, options
of other classical and ANN dassifiers are also provid-
ed for reasons of comparison with the proposed tech-
niques.

This paper is organized as follows: In section 2 we
describe our feature extraction techniques. In section
3 we present our ANN training algorithm and discuss
its relevance to OCR problems. Section 4 deals with
the organization of our OCR experiments, whose re-
sults are presented in section 5. Finally, section 6 puts
this work in perspective by setting goals for future re-
search.

2 The Feature Extraction Stage
2.1 Convolutional Feature Extraction

The goal of pattern recognition is to assign in-
put patterns XP = (af, b, .., of) with zf € R,
to one of a finite nmumber of classes R, where p is
the pattern indicator. Ome of the most importan-
t issues for pattern recognition is feature extraction
[8]: Problem-dependent efficient pattern representa-
tion schemes should be chosen so as to facilitate the
subsequent classification stage of the process.

The main problem of the feature extraction stage
in an OCR system for typeset characters is the noise
present in the rastered pattern images because of d-
ifferences in the scanner and printer models used to
acquire the data, as well as in the ambient illumina-
tion. Problems due to deformation or rotation are not
normally encountered. In effect, our pattern represen-

tation scheme was designed so as to simmltaneously
achieve: )

o Filtering out of the noise in the pattern images by
the successive application of a low pass filtering
procedure.

o Efficient image encoding, that takes mto accoun-
t that neighboring pixels are highly correlated
[9], and forms a compressed pattern image repre-
sentation of reduced dimensionality by removing
redundant information. This is very important
for the ANN classifiers in the next stage of the
proposed system, since it is well known that im-
proved generalization performance is dependent
on the number of free parameters of the model
[10,11].
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These criteria led directly to the employment of the
Laplacian pyramid theory [9]. In the proposed OCR
gystem a one level Gaussian pyramid was used with
the following features:

o Two generating kernels (gaussian masks), were
used (a 5-by-5 mask and a 4-by-4 mask). The
pattern of weights h(m,n) of the gemerating k-
ernels was chosen subject to the constraints of
normalization and equal contribution for the d-
ifferent levels [12], as well as equality for all the
weights at a given level. This last constraint was
selected for its simplicity instead of the separa-
bility one [9] and our experiments validated its
efficiency.

e In order to achieve higher dimensionality reduc-
tion rates, we did not apply the convolution
scheme required in [9]. Instead of performing the
normal convolution operation as in [9,13], a dif-
ferent, more complex, convolution scheme of the
original rastered image go was employed. The re-
sulting pattern image is derived as follows: We de-
fine g1 = hs @ go and g12 = hs @ go as the con-
volved images obtained by convolving go (the o
riginal pattern) with the generating kernels hs (5-
by-5) and h4 (4-by-4) respectively. This scheme
takes into account different correlations of the
neighboring image pixels. The final pattern image
g1, which is the input of the classifier, is obtained
by keeping the most important terms of g;; and
grz as shown in Fig. 1.

Using the above described procedure we obtain a
training set of continuous valued convolutional fea-
tures Xf’p = (:cﬁ’lp,a:f’,’z”, ,:cf,,f) with wi;.p € R, where
k= 1,2,...R s an mdicator of a known dass, p is
a pattern indicator and [ i the training set mdica-
tor. We also obtain a test set of continuous valued
patterns X;* = (:nf”{’ , :cf,’g oo mf’fi where, k labels the
unknown class to which we want to assign pattern X'?
and ¢ is the test set indicator.

2.2 Class Discrimination Ability Estima-
tors

In the literature, all features :c{“’ ? corresponding to
a pattern p are placed on the same footing, despite
the fact that some of these can be more important
for discriminating pattern p from patterns m other
classes.



Camvclutional Featurss

l \ { l [2] ve|ynzfiz]iyig o . s
112} 1728 {1728 {1728 {17112 {0.%0}0.2s}0.98{0.07]0.00 9.99{2.3619.92}0.08]0.00¢10.00{1.00}0.58:3.08}0.00
yiiz| 128 | 47 (1728 |1/102 0.110.52}0.51]0.00 0.13}0.47]0.550.00 0.25)0.16{0.25]0.33
- 4 [i112] 1728 |1728 L1/2s |02 0.20{0.25{0.01{0.2]0. 00} }o. ao]c..32]0.00{0.s2]a 0} 10 20]0.a0]0 0013 360 00
itz| il 0.50ja.00fo.13f0.16 s.z3jo.c0fo. oz | o.33]0.00fpi3fo.77

$x5 weighted mask

1/38
1736
1738
1/36

1/38
1/6
/6

1/38

1736 11736
1/36
1/36

1/36

1/8
/s
1/38

4x4 convolutional
weighted mask

L]

41 masks applied to the
character matrix

Fig. 1 - Convolutional feature extraction.
A major novelty of this paper lies in the estimation
of the “class discrimination ability” of each feature. To
this end, a simple algorithm is used, which is a contin-
uous valued generalization of the one based on coding
techniques and presented in [3,4] The main idea of
this new algorithm is to define a class dlscmmnatlon
ability estimator (CDAE) zf; for each feature mf; of
the average prototype (denved from the iraining set)
of each class k and assign to it a value according to
the ability of mf; to discriminate class k from every

other class v, as follows:
= 21;#1: | mf,.‘ —-my; l

i R—1

(1)
where

k.p

E
k Epf'l
,1 kp

is the average of feature :L'f’p over the k, patterns
of the training set belonging to class k.
From the above formulas, it is stralghtforward to

see that the larger the value of a CDAE z,z, the bet-

ter the ability of the corresponding feature z;’; FP 4o dis-
aiminate class k from an “average representative” of
all other R — 1 classes in the training set (Fig. 2).
Despite its simplicity and early stage of develop-
ment, this technique can be very useful in the forma-
tion of more complex features as explained next. We

(2)
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Ihg. 2 - vonvolutional features and corresponding
CDAE jfor characters a, o and v. Note the small val-
ues of the CDAE when features cannot be discrimi-
nated and the large values when features differ signif-
icantly (bold figures).
should mention that this method has a great poten-
tial to improve, especially if the CDAE are properly
defined so as to discriminate efficiently classes having
similar continuous valued features.

In order to demonstrate the efficiency of our tech-
nique, we first design a weighted minimum distance
dassifier (WMDC) having as discriminant function
weights the above derived CDAE and we compare it
to the classical minimum distance classifier (MDC) [8].
The results are shown in the experimental section of
this paper and prove the efficiency of our approach.

After demonstrating the classification capabilities
of our method, we try to incorporate it n the for-
mation of more complex features in the feature ex-
traction stage of an OCR system having as classifier
the- ANN pattern classifier analyzed in the next sec-
tion. To this end, given any pattern of the training set
Xf‘p (x,‘l ,zl ke k‘p) we form another pattern
Y7 = (yu ’yzzn ’yln)’ Where yz’p = 2]} (Zn)l/‘4
and we incorporate it into the training set aiong with
its parental pattern X}”. This novel technique aims
at training the network so as to interpolate between
any original detailed pattern and its transformed class
“principal” feature pattern. It bears some similarity to
the “signal+noise” training methods [14] and to sta-

H



tistical resampling techniques [15]. The results of the
application of the combination of this feature extrac-
tion technique and of the ANN pattern classifier (see
section 3) demonstrate the potential of our approach.

3 ANN Learning Algorithm

3.1 Relevance to OCR Tasks

ANNs have been hailed in recent years for their
potential and ability to provide efficient solutions to
classification, function approximation, control and op-
timization problems. Although it is often claimed that
these networks can offer viable solutions to interesting
technical problems, there is a general feeling that their
full potential in real world applications remains largely
unexplored [16]. It is also widely claimed that ANNs
have the attributes of massive parallelism and fault
tolerance, while at the same time many related paper-
s deal only with small applications and models where
these properties are absent [17].

To fill in the gap between theory and real world ap-
plications, it is imperative to study the performance
of ANN learning algorithms in large scale problems
and networks. In our opinion, OCR tasks are good
examples of such large-scale problems: Usually, it is
not only possible, but also essential to include a large
dataset of different examples of each character in the
training set, if acceptable recognition rates are to be
achieved. Moreover, the relatively large number of
categories and input features calls for networks with a
large mumber of weights. Under these circumstances,
stringent requirements are placed on learning algo-
rithms in terms of speed, scalability properties and
generalization capabilities.

In a series of papers [18,5,19,20,7,21] two of the au-
thors have proposed that a successful way of improv-
ing these properties of ANN learning algorithms is to
incorporate different forms of knowledge about learn-
mg m ANN in the form of well defined constrained
optimization tasks. We have introduced a framework
of basic requirements for imcorporating kmowledge in
ANN learning algorithms [18]. This framework was
used as an engine for developing different Algorithms
for Learning Efficiently using Constrained Optimiza-
tion techniques (ALECO). The second in the series
of these algorithms (ALECO-2) was based on the m-
corporation of knowledge about optimal use of mo-
mentum acceleration techniques. This algorithm was
tested using several different benchmark training tasks
(encoder, multiplexer, counter and XOR problems)
and its performance was compared to that of several
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different ANN training algorithms [5,20]. As regards
large-scale problems (multiplexers and encoders with
up to 2048 input patterns and 4360 weights), which
are of interest in this work, ALECO-2 outperformed
all other algorithms in terms of convergence ability,
learning speed and reliability of performance.

These results illustrate the excellent capabilities
of ALECO-2 as regards learning speed and scalabil-
ity properties and make it an excellent candidate for
training ANNs to solve large-scale problems such as
the OCR tasks studied here. This paper presents
our first opportunity to assess the generalization a-
bility of ALECO-2 using extensive multifont charac-
ter datasets and compare it to the ability of on-line
BP, whose good performance in large-scale problems
is well known [22].

3.2 Derivation of ALECO-2

Augmenting the BP algorithm with momentum is
mherently heuristic m nature. The use of momentum
is based on the expectation that bigger weight steps
can be achieved by filtering out high frequency varia-
tions of the error surface m the weight space. ALECO-
2 is based on the idea of obtaining optimal weight steps
by optimizing, at each epoch of the learning algorithm,
the euclidean distance between the current and previ-
ous epoch weights [5]. In this way, improved learning
speed is achieved.

Consider a mmltilayered feedforward ANN with one
layer of input, M layers of hidden and one layer of
output units. The units in each layer receive input
from all units in the previous layer. We denote the unit

outputs and synaptic weights respectively by O;’:) and

wfm) The superscript (m) labels a layer within the
structure of the ANN (m = 0 for the mput layer, m =
1,2,..., M for the hidden layers, m = M + 1 for the
output layer), ¢ and j denote wnits i layers (m —1)
and (m) respectively and p labels the input patterns.

The training procedure in ALECO-2 solves, jfor
each epoch, the following problem: First, change the
cost function

1 M)\ 2
E:§qu, Ejp = (ij'0§p+)> (3)
Jp

by a specified negative amount §E. After a sufficient
number of epochs, the accumulated changes to the cost
fanction should suffice to achieve the desired mput-
output relation. Second, simultaneously maximize the
squared euclidean distance

o — Z (wg") _ I/Vi(;rl))2

ijm

(4)



between the weight vectors w at the present epoch and
W at the immediately preceding epoch, in order to
achieve optimal weight steps.” This problem is solved
in an elegant way by a straightforward generalization
of the optimal control method mtroduced by Bryson
and Denham [23].

ALECO-2 is an iterative procedure, whereby the

synaptic weights w( ) are changed by small amounts

dwg-n) at each iteration so that the quadratic form

Yijm AW (m) dw(m’) takes on a prespecified value (6P)2.
Thus, at each epoch the search for an optimum new
point m the weight space is restricted to a small hy-
persphere centered at the point defined by the current
weight vector. If 6P is small enough, the changes in £
and @ induced by changes in the weights can be ap-
proximated by the first differentials dE and d®. The
problem then amounts to determining, for given val-

ues of 6P and éF, the values of dwg-n), so that the
maximum value of d® is attained.

Maximization of d® is attempted with respect to
wg”) and 0](.';,‘). In the language of non-linear pro-
gramming, the synaptic weights correspond to deci-
sion variables and the unit outputs correspond to state
(solution) variables. These quantities must satisfy the
state equations, ie. the constraints describing the net-
work architecture

£70.w) =g (Z w0 “) -0 =0 )

where g is the logistic function g(z) = 1/(1+exp(—z)).
Biases are treated as weights emanating from unit-
s with constant, pattern-independent activation equal
to one. Apart from the state equations, the follow-
ing conditions should be satisfied at each epoch of the
algorithm

dE—§E =0, Y dw{) - —@P)? =0 (6)

ijm

To maximize d®, suitable Lagrange multipliers
Xpem) AP of the f};’) are introduced to take ac-
count of the architectural constraints. Two further
multipliers A; and Az are also needed to take account
of the respective terminal conditions 6. Demanding
that d® be maximum (d2® = 0, d3® < 0), we are led
to the following equations for the Lagrange multipliers

Ajp(M+1) = 0(M+1)

X2 = . \ipnt)

(1-0}’;‘“)), 1<m<M (7)

]P?

(m 1) om+1)

Wij
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i Inp(P)? -(6E)? ] ~/?
/\{I)P(m) — 0’ /\2 % [ ER ] ,

Iss Inp—1Z,4

A= (gs — 2/\25E)/IEE (8)

where

Ise = Zijm (E'jm)z’ Igg = Zijm (Jihn)z,
Ipg = Zz’jm Jiijijm (9)
with
Fijm =2 (wg-n) — I/I/'i(;")) ,
ip(m m m-—1
Jiim = 5, X0 (1- 057) 05V (10

Moreover, the following updating rule is obtained for
the weights:

211/2
d,w(m) 2,\ (Fz]m ’\1Jijm) — [M]

Tsalop—134

(Fism = 22 0ijm ) + J222 68 (11)
The detailed calculations are given in [5]. Note the

bound [6F| < 6P/IgEg set on the value of 8% by equa-~
tion 11. We always use a value 6F =—E£6P+/Igg where
¢ is a constant between 0 and 1. Thus 6P and ¢ are
the only free parameters of the algorithm which can be
tuned to obtain optimal performance. It is shown in
[6] that this guarantees convergence to global or local
minima of the cost function for small enough 6P.

4 Experimental Study

Extensive experiments were conducted to test the
efficiency of our novel feature extraction and ANN
classification techniques on specific OCR tasks mvolv-
ing typeset Greek characters. These experiments in-
volve different combinations of features — convolution-
al features and CDAE — and classifiers - MDC, WMD-
C, on-line BP and ALECO-2.

For the purposes of this paper, we use in all experi-
ments the same preprocessing, segmentation and nor-
malization regulations. At the preprocessing option
we use a filter to remove pixel regions under a certain
threshold (noise regions). At the segmentation option
we select horizontal and vertical vacant lines segmen-
tation. Finally, at the normalization option we use a
25x25 normalization with the character width as the
width boundary and the boundary of the text line as
the height boundary.



4.1 Training and Test Character Sets

For reasons of fair comparison, all experiments were
conducted using the same character sets for training
and recognition. Both natural and artificial sets were
used. The natural sets were produced using images of
plain text of more than 1500 Greek characters. The
artificial sets were made from images containing 10
versions of 32 different characters (lower-case Greek
letters) for a total of 320 characters. We used 6 differ-
ent character fonts both in the artificial and the nat-
ural sets which are: arial, arc, times, bold arial, bold
arc and bold times. We also used 2 different contrast
regulations in the scanning software for the character
sets which provides 2 different character thicknesses.
The scanning resolution was stable for all the exper-
iments at 300 dpi though the size of the characters
varied from set to set. We chose

e the junction of arial, arc and times artificial char-
acter bases (total of 960 characters) as our train-

ing set. More specifically, the training set consist-
ed of the following:

arc set: We used an HP scanner at 300 dpi res-
olution with the default contrast regulation
in the scanning software in order to bina-
rize a text printed from an HP printer with
320 characters (32 classes with 10 prototypes
each) from MS Windows arc font. We pro-
duced a 731K TIF image from which we de-
rived the arc set.

arial set: The same procedure as above was fol-
lowed using the MS Windows arial font.

times set: The same procedure as above was fol-
lowed using the MS Windows times font.

o Various artificial and natural character sets were
used for recognition (testing) purposes. In partic-
ular, 3 natural sets of arial and times fonts (total
of 4647 characters) and 3 artificial sets of bold
arial, bold arc and bold times fonts (total of 960
characters) were used as test sets. These recogni-
tion sets have the following specifications:

textl set: The scanner, printer and scanning
software contrast regulation were different
from those used in the training phase. We
had 1554 characters in a plain text fom MS
Windows arial font at 300 dpi resolution in
a 629K TIF file.

text2 set: We had different scanner, printer and
contrast regulation from those used in the
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training phase. The character set comsisted
of 1508 characters in a plain text from MS
Windows times font at 300 dpi resolation in
a 612K TIF file.

text3 set: The scanner and printer were different
from those used at the training phase, but
the contrast regulation was the same as in
the training phase. We had 1585 characters
in a plain text from MS Windows arial font
at 300 dpi resolution in a 616K file.

barc set: The scanner, printer and scanning soft-
ware contrast regulation were those used in
the training phase. We had 320 character-
s (32 classes with 10 prototypes each) from
MS Windows bold arc font at 300 dpi reso-
lution in a 731K file.

barial set: The same as with barc set with char-
acters from MS Windows bold arial font.

btimes set: The same as with barc set with char-
acters from MS Windows bold times font.

4.2 Types of Experiments Conducted

The following architectures combining different fea-
tures and classifiers were implemented:

1. A minimum distance classifier was trained using
the 41 convolutional weighted mask features wf’p
as inputs. Various distance metrics were used and
the best recognition accuracy results, presented in
Table 1, were achieved using a fourth power met-

ric D(k) = [E (ml P m“)‘l] t (see section 2).

2. A weighted minimum distance dassifier with
weights depending on the CDAE z,":i was trained

k . ...
using the 7} ? as imputs. The discriminan-

t fanctions which gave the best recognition
accuracy results were of the form D(k) =

Sk v

-y 3)4 .

3. A fully connected feedforward network with two
layers of weights and a 41-40-32 architecture was
trained using on-line BP as the training algorith-
m with a learning rate of 0.4 and a momentum
acceleration factor of 0.5. For each character be-
longing to a category k, the convolutional features
a:;c’p were used as the network input. The desired
output of all output nodes was 0, except for the
k-th node, whose desired output was 1. A set of
characters distinct from the training and test sets

was used as a validation set: The final weights



used for testing were those for which recognition
accuracy in the validation set during training had
reached its maximum value.

4. A feedforward network with the same architec-
ture, mputs and desired outputs as in case 3 was
trained using ALECO-2 as learning algorithm.
The parameter values 6P = 0.5 and £ = 0.5 were

used.

5. A feedforward network with the same architec-
ture and outputs as in cases 3 and 4 was trained
using ALECO-2 (with the same learning param-
eters as in case 4). However, the CDAE were
incorporated in the training procedure following
the methodology explained in section 2. Thus,
for each character in the training set, two training
patterns were presented to the network as input,
one consisting of the :cf’;” and one consisting of

the quantities yf;-p = :L'ﬁ;;p (2F;)/*. This led to an

effective training set of 1920 patterns.

5 Results

Our results regarding the recognition accuracy of
different feature extraction-classification combinations
are sammarized in Table 1.

Ex#1 | Ex#2 | Ex#3 | Ex#4 | Bx#5
texti | 97.04 | 98.13 | 99.16 | 99.09 | 99.74
text2 | 93.77 | 95.89 | 98.67 | 99.07 | 99.07
text3 | 99.37 | 99.56 | 99.56 | 99.75 | 99.87

barc | 85.31 | 85.94 | 92.18 | 95.31 | 94.69
barial | 91.25 | 92.50 | 97.18 | 96.88 | 95.62
btimes| 86.88 | 86.31 | 93.75 | 95.31 | 97.81

Table 1 - Classification accuracy results for the
characters @ our 6 different test sets using various
feature-classifier combinations. Fach column corre-
sponds to an experiment described in section 4.2.

From these results the following conclusions can be
drawn:

e The use of CDAE helps improve recognition ac-
curacy results. This is evident n the results ob-
tained using the WMDC with weights depending
on the CDAE. Note that m five out of six test set-
s, the recognition accuracy was improved. This
supports the conclusion that CDAE can be suc-
cessfully applied not only to binary patterns (as
in [3,4], but also in the case of continuously valued
features.

e ALECO-2 emerges as a powerful neural network
training algorithm for large-scale OCR tasks. In
our experiments, the excellent speed and scalabil-
ity properties of ALECO-2 were confirmed: Con-
vergence of the training procedure for experimen-
t no. 5 in a network with 2992 weights and a
task with 1920 training patterns was achieved in
just 150 epochs (using Fahlman’s 0.4-0.6 criteri-
on [24]). Moreover, our results show attractive
generalization ability properties: Compared with
on-line BP, ALECO-2 achieved better recognition
rates in 4 out of 6 test sets, including substantial
improvements in the barc and btimes test sets;
in the remaining two test sets, its recognition ac-
curacy was marginally inferior to that of on-line
BP. The good generalization ability of ALECO-
2 can probably be attributed to the fact that
the cost function is changed monotonically and
gradually [5], without the abrupt jumps some-
times involved in learning algorithms which in-
corporate heuristics in their formulation (includ-
ing on-line BP). Note that in the same spirit of
constrained learning, it is possible to augmen-
t ALECO-2 with weight elimination techniques
[10] which will hopefully further improve its gen-
eralization ability without adverse effect on its
learning speed.

e Finally, the combination of using CDAE in con-
junction with the neural cassifier trained by
ALECO-2 gave the best results from all other
feature-classifier combinations in 4 out of 6 test
sets, including the three continuous texts, where
excellent recognition accuracies (consistently over
99%) were recorded.

6 Prospects

The promising results obtained by incorporating
novel techniques in the feature extraction and clas-
sification stages of an OCR system, encourage us to
continue this research with the following aims: First,
to improve the generalization capability of ALECO-2
by employing judiciously chosen functional conditions,
so as to control searching in the weight space in an at-
tempt to focus on the best generalization performance
areas. Second, to improve the CDAE estimation algo-
rithm so as to discriminate between classes with simi-
lar features, by focusing on their principal differences.
Finally, to efficiently combine these novel techniques
as well as other ones — pertaining not only to feature
extraction and classification, but also to all other OCR



stages — in order to design a very high recognition rate
OCR system for real world problems.
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