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Abstract Textual information in images and video frames

constitutes a valuable source of high-level semantics for

multimedia indexing and retrieval systems. Text detection is

the most crucial step in a multimedia text extraction system

and although it has been extensively studied the past decade

still, it does not exist a generic architecture that would work

for artificial and scene text in multimedia content. In this

paper we propose a system for text detection of both artificial

and scene text in images and video frames. The system is

based on a machine learning stage which uses an Random

Forest classifier and a highly discriminative feature set pro-

duced by using a new texture operator called Multilevel

Adaptive Color edge Local Binary Pattern (MACeLBP).

MACeLBP describes the spatial distribution of color edges

in multiple adaptive levels of contrast. Then, a gradient-

based algorithm is applied to achieve distinction among text

lines as well as refinement in the localization of the text lines.

The whole algorithm is situated in a multiresolution frame-

work to achieve invariance to scale for the detection of text

lines. Finally, an optional connected-component step seg-

ments text lines into words based on the distances between

the resulting components. The experimental results are

produced by applying a concise evaluation methodology and

prove the superior performance achieved by the proposed

text detection system for artificial and scene text in images

and video frames.

Keywords Text detection � Artificial text � Scene text �
Natural scene images � Video OCR � Multimedia

information retrieval

1 Introduction

The proliferation of high-performance low-priced digital

cameras embedded in mobile devices, combined with

today’s internet sharing capabilities has caused an outbreak

of available multimedia content. Television broadcasting

through internet has also contributed towards this direction.

Huge digital libraries have been created raising the need for

information extraction and indexing. This trend requires

from the information retrieval systems to overcome the

challenges and adapt to the new kind of data. Textual

information in multimedia constitutes a very rich source of

high-level semantics for retrieval and indexing. Document

image processing, after many decades of research, has

reached a high level of text recognition accuracy, for tra-

ditional scanner-based images. However, these techniques

fail to deal with text appearing in videos or camera-based

images.

Mainly, there exist two kinds of text occurrences in

videos and images, namely artificial and scene text. Arti-

ficial text, as the name implies, is artificially added to

describe the multimedia content or give additional infor-

mation related to it. Scene text is textual content that was

captured by a camera as part of a scene, e.g. text on T-shirts

or road signs. Moreover, artificial text usually refers to text
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embedded in videos while scene text refers mainly to

natural scene images. Figure 1a presents a video frame

with artificial text and Fig. 1b a natural scene image con-

taining scene text. Text can also be classified into normal

or inverse. Normal is denoted any text whose characters

have lower intensity values than the background while

inverse text is the opposite. In Fig. 1b, ‘‘FIRE’’ is consid-

ered as normal while the rest of the text is considered

inverse.

Several multimedia text extraction methods have been

proposed the last decade. Some of them focus on arti-

ficial text in videos while others deal with natural scene

text in camera-based images. Each of these kinds of text

has distinct characteristics and brings new challenges to

the research area compared to classic flatbed scanned

documents. Methods designed for artificial video text

assume horizontal text lines with multi-frame occurrence.

However, this kind of text often suffers from low reso-

lution and compression noise. Video frames may have

even lower resolution than VGA (640 9 480) when

scanners often produce images larger than 2480 9 3508.

Moreover, video compression affects high frequencies,

inserting noise and creating colour leaking phenomena.

This fact may smooth character edges or even distort

text colour homogeneity which constitutes fundamental

features of text. On the other hand, scene text of natural

images usually suffers from uneven lighting, perspective

distortion and image blurring. Arbitrary natural lighting

combined with artificial light from camera’s flash can

produce reflections or shadows while 3D distortion of

text can cause severe problems in both text detection and

recognition. Image blurring caused by abrupt motion or

wrong camera focus may have effects similar to video

compression eliminating typical text features like edges.

One common problem of both artificial and scene text in

images and videos is the complex background. Contrary

to traditional scanned documents, the background of

colour images and videos is not clean but may contain

objects like building windows or tree leaves that con-

stitute a text-like texture.

The remainder of this paper is organized as follows:

Sect. 2 outlines the related work; Sect. 3 presents the

proposed text detection system; Sect. 4 provides the related

experimental results and finally Sect. 5 concludes the

paper.

2 Related work

Although artificial text and scene text extraction are often

considered as different topics because of their distinct

peculiarities, they actually refer to the same research area

since they meet the same main challenge of discriminating

text areas from non-text complex backgrounds. In this

section we will outline the techniques found in literature

for spatial text detection of both artificial and scene text in

images and video frames.

In general, the existing text detection methods can be

roughly divided in two categories: region-based and tex-

ture-based. Region-based methods group pixels that belong

to the same character based on the colour homogeneity, the

strong edges between character and background or by using

a stroke filter. Then, the detected characters are grouped to

form text lines according to colour, size and geometrical

rules. Texture-based algorithms scan the image at different

scales using a sliding window and classify image areas as

text or non-text based on texture-like features. Another

possible categorization of text detection methods could be

dividing them into heuristic and machine learning tech-

niques. Usually region-based algorithms apply heuristic

rules to group pixels into characters and then to text lines,

while texture-based approaches rely on machine learning

classifiers trained on real data for the discrimination

between text and non-text areas. However, despite all

possible categorization of reported methods, there are

many works in literature that use both region-based and

Fig. 1 a Video frame with artificial text. b Image with scene text
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texture-based approaches to exploit all existing information

or even combine machine learning techniques with heu-

ristic rules trading off between accuracy and efficiency.

Many heuristic, region-based methods, derived from

document analysis research area, are based on color or

intensity homogeneity of characters. They detect character

regions in the image and then group them into words and

text lines based on geometrical constraints. These methods,

also known as connected component (CC) methods, can

perform satisfactorily only on high quality images with

simple background and known text color. However, these

assumptions rarely apply in real cases since text in video

images often suffers from color bleeding due to video

compression while in natural images uneven lighting con-

ditions may spoil the constant text color. Moreover, when

background is really complex, connected component

analysis becomes computationally expensive. Typical CC

approaches for text in videos and book covers can be

found, respectively, in [1] and [2]. Wang et al. [3] propose

a CC method with recognition feedback for the detection of

Asian characters in scene images.

Some other heuristic region-based methods detect text-

based on edge or stroke information, i.e. strength, density

or distribution. Sato et al. [4] apply 3 9 3 horizontal dif-

ferential filter to the entire video frame with appropriate

binary thresholding followed by size, fill factor and hori-

zontal–vertical aspect ratio constraints. Anthimopoulos

et al. [5] use Canny edge map followed by morphological

operations and projection analysis. Kim et al. [6] instead of

using an explicit edge map as an indicator of overlay text,

they suggest the use of a transition map generated by the

change of intensity and a modified saturation. A heuristic

rule based on the different Local Binary Patterns (LBPs) is

used for verification. Chen et al. [7] embed multiresolution

and multiscale edge detection, adaptive searching, colour

analysis, and affine rectification in a hierarchical frame-

work for sign detection. Epshtein et al. [8] detect strokes in

natural scene images and group them based on stroke width

and geometrical constraints. These heuristic techniques

proved to be very efficient and satisfactory robust for

specific applications with high contrast characters and

relatively smooth background. However, the fact that many

parameters have to be estimated experimentally condemns

them to data dependency and lack of generality.

DCT coefficients globally map the periodicity of

intensity images and they have been widely used as texture

features for heuristic texture-based methods [9–12]. Goto

[13] employs Fisher’s discriminant analysis to improve a

DCT-based feature set and suggests the use of an unsu-

pervised thresholding method for discriminating text and

non-text regions. Moreover, DCT coefficients can be a

quite efficient solution for jpeg and mpeg encoded images

and videos. In this case, the pre-computed coefficients of

8 9 8 pixel block units are used. However, this block size

is not a large enough area to sufficiently depict the peri-

odical features of a text line and the computation of DCT

for larger windows even by the fast DCT transform proves

quite costly. In addition, these methods still use empirical

thresholds on specific DCT-based features and therefore

they lack adaptability.

Some hybrid methods have also been proposed. These

methods usually consist of two stages. The first localizes

the text with a fast heuristic technique while the second

verifies the previous results eliminating some detected area

as false alarms using machine learning. Machine learning

classifiers have proved to be an appealing solution for

many problems that cannot be defined in a strict mathe-

matical manner. In [14], Chen et al. use a localization/

verification scheme with the verification stage based on an

SVM classifier trained on Constant Gradient Variance

(CGV) features. Ye et al. [15] propose a coarse to fine

algorithm that uses wavelets. The first stage applies

thresholding on the wavelet energy to coarsely detect text,

while the second identifies the coarse results using an SVM

and a more sophisticated feature set that captures various

wavelet characteristics. Jung et al. [16] apply as a first

stage, a stroke filtering and they also verify the result using

an SVM with normalized gray intensity and CGV features.

Then, a text line refinement module follows, consisting of

text boundary shrinking, combination and extension func-

tions. Anthimopoulos et al. [17] propose a two-stage

scheme that detects coarsely videotext based on edge

density and then refines the result using an SVM and a new

feature set based on the edge Local Binary Pattern (eLBP)

operator which describes the spatial distribution of edges.

Ye et al. [18] combine colour connected component anal-

ysis, texture classification by an SVM trained on wavelet

histogram and OCR statistic features in a coarse-to-fine

framework to discriminate texts from non-text patterns in

natural scene images. Ji et al. [19] proposed a coarse to fine

architecture which applies the LBP operator on the Haar

wavelets. The first stage of the algorithm uses heuristic

rules while the second one is based on an SVM classifier.

Ekin [20] proposes a hardware-oriented artificial text

detection algorithm that integrates a CC-based algorithm

with a texture-based machine learning approach. Hybrid

techniques combine the efficiency of heuristic methods

with machine-learning accuracy and generalization. How-

ever, the inability of heuristic methods to handle cases with

complex background and the need for a high recall rate

from the first stage, often leads to a huge number of false

alarms and forces the computationally expensive machine

learning stage to scan nearly the whole image.

Several machine learning, texture-based approaches

have been proposed for the detection of text areas with

great success. These methods use directly machine learning
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classifiers to detect text. Jung [21] and Kim et al. [22] use

the color and gray values of the pixels as input for a Neural

Network (NN) and an SVM, respectively. Wolf et al. [23]

use an SVM trained on differential and geometrical fea-

tures. Lienhart et al. [24] used as features the complex

values of the two-directional RGB gradient of the input

image fed to a complex-valued NN. Li et al. [25] suggest

the use of the mean, second-order (variance) and third-

order central moments of the LH, HL, and HH component

of the first three levels of each window to train a three-layer

NN. The main shortcoming of the methods attributed to

this category is the high computational complexity since a

sliding window is required to scan the entire image with a

typical step of three or four pixels, requiring thousands of

calls to the SVM or NN classifier per image. To overcome

the problem of complexity caused by SVM and NN, Chen

et al. [26], based on Viola-Jones [27] method for face

detection, use a cascade of AdaBoost strong classifiers for

fast detection of scene text. Each of these AdaBoost clas-

sifiers are based on a number of weak classifiers trained on

edges, histogram of intensities, gradient direction and

intensity features. The AdaBoost cascade combines the

generalization of a machine-learning method with a very

fast prediction, giving satisfactory results in a very efficient

way. However, the feature set needs to be reconsidered and

adapted to the specific problem while a post-processing

stage is required to refine the text localization. Motivated

by the success of the AdaBoost algorithm for face and text

detection we explored different classification algorithms,

keeping in mind the need for very fast prediction and good

generalization. Random Forests (RFs) proved to have all

the desirable properties and combined with the proposed

feature set and the adaptive post-processing step gave as

superior results compared against the state-of-the-art.

3 Proposed method

In this work, we propose the use of an RF within a sliding

window model for the discrimination of text areas in the

first stage, and then apply a gradient-based algorithm to

achieve separation and refined localization of the text lines

(Fig. 2). This is actually a hybrid scheme combining an

initial machine learning, texture-based technique with a

heuristic, region-based refinement. The algorithm descri-

bed above constitutes a fixed-scale detector so it is applied

in multiple resolutions to detect text of any size. After

processing all the resolutions needed, the final text line

bounding boxes have been computed. Then, text lines are

binarized and optionally segmented into words based on

the distances between the resulting connected components.

This segmentation is applied in cases where the text

detection targets words instead of text lines.

The main contributions of this work is the choice of the

classifier which provides efficiency and generalization

capabilities, together with an improved, highly discrimina-

tive feature set that was designed particularly for reflecting

the textual characteristics. Moreover, the use of a machine

learning architecture for the first and most crucial stage,

produces a generic and robust system for the detection of

artificial and scene text in camera-based images and video

frames. In our previous work [17], we proposed a hybrid

system with a first heuristic edge-based stage followed by a

second machine-learning stage for refining the initial results.

This refinement stage was based on an SVM classifier and a

feature set that describes the spatial distribution of luminance

edges for different contrast levels. In the proposed work, the

description of the edge spatial distribution is done in the RGB

color space considering the valuable color information while

the contrast levels adapt locally to each area of the image

producing an actual parameter-free feature set. The use of the

SVM in [17] forced us to invent a reduced version of the

feature set in order to have an efficient system. This fact

resulted in loss of information for the description of the

textual texture. Contrary, in this work the use of an RF and its

capability to deal efficiently with high dimensional feature

spaces allowed us to use the whole proposed feature set

instead of a reduced version so all available information is

exploited for a better description of texture. Finally, the

impressive efficiency of the RF gave us the capability to use

it as the first and basic stage for scanning the whole image

and detecting text instead of just refining the coarse results of

a heuristic and unreliable stage.

3.1 Text area detection

In this stage we assume that text areas constitute a distinct

texture and we treat text detection as a texture segmenta-

tion problem. To do that, we need a fast and accurate

classifier and a set of discriminative features which can

also be computed rapidly.

3.1.1 Feature maps generation

The chosen feature set is based on the eLBP operator

originally proposed in [17]. The eLBP is a modified LBP

operator which actually describes the local edge patterns

appeared in an image, for different levels of detail. LBP

was originally introduced by Ojala et al. [28] as a non-

parametric operator measuring the local contrast for effi-

cient texture classification. The LBP operator consists of a

3 9 3 kernel where the centre pixel is used as a threshold.

Then the eight binarized neighbours are multiplied by the

corresponding binomial weight producing an integer in the

range [0…0255] (Fig. 3). Each of the 256 different 8-bit

words is considered to represent a unique texture pattern.
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Fig. 2 Flowchart of the

proposed text detection

algorithm
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Formally, the decimal form of the resulting 8-bit word

(LBP code) can be expressed as follows:

LBPðxc; ycÞ ¼
X7

n¼0

Sðin � icÞ2n ð1Þ

where ic corresponds to the grey value of the centre pixel

(xc, yc), in (n 2 ½0; 7�) to the grey values of the eight

neighbouring pixels, and function S(x) is defined as:

SðxÞ ¼
1; x� 0

0; x\0

(
ð2Þ

When LBP is applied in a greyscale image, another 8-bit

greyscale image is created in which each pixel value

represents the texture pattern of the corresponding pixel in

the original image. Thus, the 256 histogram values of an

image region depict its texture structure. Although the

original LBP operator has shown satisfactory performance

for many kinds of texture classification, in the case of

textual texture it cannot support a representation which

results in adequate performance. To this end, we proposed

the eLBP [17] which actually describes the spatial

distribution of edges appeared in an image which

constitutes the fundamental text characteristic. In eLBP, a

neighbouring pixel is represented by 0 if it is close to the

centre pixel or 1 if not (Fig. 4). In other words, a

neighbouring pixel is assigned the value of 1 only if it

constitutes an edge with respect to the centre pixel.

Formally, the eLBP operator is defined as:

eLBPðxc; ycÞ ¼
X7

n¼0

Seðin � icÞ2n ð3Þ

where function Se(x) is defined by:

SeðxÞ ¼
1; xj j � e

0; xj j\e

(
ð4Þ

The value of e determines how sharp an intensity change

should be in order to be considered as an edge. It has to be

large enough for avoiding the arbitrary intensity variations

caused by noise and small enough to detect all the

deterministic intensity changes of texture. To solve this

problem we propose the generation of multilevel eLBP

edge histograms with several values for the threshold e,

which will describe the edge distribution in different

contrast levels. In the sequel, a detailed description of the

computation of multiple thresholds is given.

From the Eqs. 3 and 4 we can see that the values of e

will be the thresholds of the absolute differences between

adjacent pixels which actually constitute the gradient of the

image. We can safely assume that the probability density

function (PDF) of an image’s gradient, has a Laplacian

distribution, hence the PDF of the absolute gradient values

will be exponential. Figure 5 shows a typical PDF of an

image gradient. As it can be seen, the probability falls for

high distance values. The threshold e at Eq. 4 would

actually binarize this distribution to distinguish edge from

non-edge pixels and then operator (3) will combine the

neighbouring edge values to generate edge patterns. The

optimal set of thresholds for the multilevel edge description

will have to cluster the gradient’s PDF in clusters with

equal probability. To this end, we fit the distribution of the

image gradient values to the exponential distribution:

PDFexpðxÞ ¼ k� e�k�x ð5Þ

where k is the rate parameter of the distribution and x is the

random variable. To achieve that, we can calculate the

mean value of image gradient and set it equal to k-1. An

example of PDF fitting can be seen in Fig. 5.

The quantile function (inverse cumulative distribution

function) of PDFexp is denoted as:

FexpðlÞ ¼ �k�1 � lnð1� lÞ ð6Þ

where 0 B l \ 1. The quantile function returns a boundary

below which random values from the given distribution

would fall, with a probability equal to l. Therefore, to

cluster the distribution in equal probability clusters we use

as thresholds the values of Fexp for equally spaced values of

l in [0,1) as shown in Eq. 7

l ¼ i=Lþ 1 ð7Þ

25 78 20 

75 77 24 

77 31 22 

0 1 0 

0 0 

1 0 0 

LBP= 

1+64=65 

2 1 4 

128 8 

64 32 16 

S(x) 

Multiply 

Sum 

Fig. 3 Example of LBP computation

71 78 20 

75 77 24 

77 80 22 

0 0 1 

0 1 

0 0 1 

eLBP= 

4+8+16=28 

2 1 4 

128 8 

64 32 16 

Se(x) 

Sum 

Multiply 

Fig. 4 Example of eLBP computation
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where i = 1…L and L denotes the number of different

levels. In that way, the selected threshold values will be

concentrated close to zero where the PDF shows higher

values.

Contrary to our previous work [17], instead of calculating

the mean of the whole gradient image to find the thresholds of

different levels, we use the mean value of a 9 9 9 area around

each corresponding pixel so the multilevel binarization of the

gradients also becomes locally adaptive. In other words, this

PDF fitting will be done for every single pixel of the image

considering the gradient’s local mean value, re-establishing

the threshold set and giving to the feature set the ability to

adapt to the image areas with different contrast profile.

Besides, instead of computing the gradient from the intensity

image we use the RGB color image, thus the difference

between any two adjacent pixels is defined as the maximum

difference appeared in the three RGB color channels. In that

way, we expose edges between different colors even if they

correspond to the same intensity value.

The number of required levels of contrast to capture the

whole edge information is estimated experimentally; the

selection of eight levels does work satisfactorily for most

applications. Increasing the number of contrast levels

would increase the extracted information for the spatial

distribution of edges as well as the number of features.

However, after relative experimentation it was shown that

eight levels give adequate information even for the most

detailed and distorted edge distributions. For easy cases

that guarantee high contrast between text and background

and minimum image distortion, fewer levels can be used in

order to accelerate the whole method. Considering the need

for a fast machine learning stage and the large number of

features for every sliding window (i.e. 256 9 8 = 2,048)

we have to be very efficient on the way that feature values

are computed. First, four absolute directional gradient

maps are generated, namely vertical, horizontal, diagonal

and anti-diagonal (Fig. 6). Then, four maps with the Gra-

dient Local Mean are computed by smoothing the initial

maps with a Gaussian mask (Fig. 7). Let us call GMi, and

GLMMi the gradient maps and the corresponding local

mean maps, where i = 1, 2, 3, 4, denote the four different

directions (horizontal, diagonal, vertical, anti-diagonal).

Each of the gradient maps is going to be adaptively bina-

rized and create four edge maps for each of the L levels:

EMl
iðx; yÞ ¼

1;GMiðx; yÞ[ el
iðx; yÞ

0;GMiðx; yÞ� el
iðx; yÞ

(
ð8Þ

where i = 1, 2, 3, 4, l = 1…L and

el
iðx; yÞ ¼ �GLMMiðx; yÞ � lnð1� lÞ ð9Þ

Then, the four edge maps of each level will supply the

binarized values of S(x) in Eq. 3 and L different Multilevel

Adaptive Color eLBP (MACeLBP) maps will be created.

The new MACeLBP is defined as:

MACeLBPlðx; yÞ ¼ EMl
1ðx; yÞ � 20 þ EMl

2ðx; yÞ � 21

þ EMl
3ðx; yÞ � 22 þ EMl

4ðx; yÞ � 23

þ EMl
1ðx; y� 1Þ � 24 þ EMl

2ðx� 1; y� 1Þ � 25

þ EMl
3ðx� 1; yÞ � 26 þ EMl

4ðx� 1; yþ 1Þ � 27 ð10Þ

with l = 1…L.

Figure 8 presents the adaptive thresholded maps (EMl
i)

for the fifth level (l = 5) while Fig. 9 displays the corre-

sponding MACeLBP5 map. From Fig. 8 we can notice the

high edge density in almost every area of the image, caused

by the adaptive binarization. This means that the generated

features will not rely on the edge density or gradient

magnitude but in edge spatial distribution to distinguish

text from background, capturing the characteristics of even

minimum contrast characters. The only information

regarding the strength of edges comes actually from the

differences between the several contrast levels. The reader

may also notice from Fig. 9 that raw MACeLBP values do

not have any obvious meaning as they are just integers

assigned to specific edge patterns. However, the histogram

values of an image area give a very informative description

of the different edge patterns frequency.

3.1.2 Random forest

RF are ensemble classifiers proposed by Breiman [29]. An

RF is a combination of decision trees such that each tree

depends on the values of a random vector sampled inde-

pendently and with the same distribution for all trees in the

forest. To classify a new input vector, each tree gives a

classification, and we say the tree ‘‘votes’’ for that class.

Fig. 5 Typical distribution of image gradient values (dotted), fitted

exponential distribution (solid)
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The forest chooses the classification having the most votes

over all the trees in the forest or returns the average of tree

responses as a non-binary response. RFs have been used in

numerous machine learning applications with a great

success and present several appealing characteristics. The

classification performance of RFs is reported to be com-

parable to SVM, NNs and Boosting [30, 31] while at the

same time RFs are faster in training and predicting, fully

(a)

(c)

(b)

(d)

Fig. 6 The absolute directional

gradient maps (inverted).

a Horizontally, b diagonally,

c vertically, d anti-diagonally

(a) (b)

(c) (d)

Fig. 7 The gradient local mean

maps (inverted). a Horizontally,

b diagonally, c vertically,

d anti-diagonally
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parallelizable and easily implemented. Two very important

advantages of RFs against Boosting are their abilities not to

overfit the data and deal robustly with noise. Another

useful ability is that they can handle very large numbers of

input variables and select the best features by estimating

the importance of each variable. The multilevel nature of

the MACeLBP features increase the dimension of the

feature set to 2569L, where L is the number of levels,

making the choice of RF ideal for the specific application.

In our previous work [17] the use of an SVM classifier

forced as to invent a reduced version of the proposed

feature set to have an efficient system. However, this

reduction resulted in loss of information for the description

of textual texture.

3.1.3 Saliency map generation: region growing algorithm

After the creation of the MACeLBP maps, calculation of

the histograms for each contrast level will be applied over

sliding windows. The window’s height is equal to the

height of the shortest text that is expected to be detected

but width equals twice the height assuming that a word

(a) (b)

(c) (d)

Fig. 8 The adaptively threshold

gradient maps for level l = 5

(inverted). a Horizontally,

b diagonally, c vertically

d anti-diagonally

Fig. 9 a The original image, b the MACeLBPl map for level l = 5
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contains at least two characters. The histogram values for

each window position will not be computed from scratch.

While the window slides within the MACeLBP maps, the

majority of histogram values remains the same, so the

algorithm needs just to add the values of the newly inserted

pixels and remove the values of the pixels that where

excluded from the window after its last slide. In that way,

feature generation becomes much more efficient and its

complexity achieves independence from the sliding step.

The histogram values of all levels in each window

position will constitute the features that will be fed to

the RF classifier for classifying the window as text or

non-text. In order to obtain all possible information, the

classifier returns a confidence value instead of a binary

decision. This confidence value is actually the average

response of random trees and expresses the probability of

having text. These text probabilities are added to the

saliency map and then a Gaussian smoothing follows.

After the saliency map generation a region growing

algorithm is applied. Two thresholds th1 and th2 (with

th1 [ th2) are used to define whether an area of the map

belongs to text. All the pixels of the map with value

over th1 are considered to belong to the text and

therefore they are used as seeds. Also, if the value of a

pixel is below th1 but over th2 and has a neighboring

pixel already classified as text it is also considered as a

text pixel. The values of th1 and th2 are experimentally

estimated to 2/3 and 1/2, respectively, which means that

a text region must contain at least one pixel classified as

text with a confidence over 66.7% (usually in the center

of text) but all pixels have to be classified as text with at

least 50% confidence. A connected component analysis

follows, producing one output bounding box for every

text area. Figure 10a presents the smoothed saliency map

while Fig. 10b shows the corresponding bounding boxes.

It can be seen that the upper box contains two different

text lines which actually have different font size. The

next step of the algorithm will have to separate these

text lines and provide a more accurate localization.

3.2 Text line localization

Although the sliding window model has shown great dis-

crimination capabilities between text and non-text areas, it

appears to meet difficulties in accurate localization and

segmentation of text lines as shown in Fig. 10. More

accurate ways for text line and word localization should

rely on a region-based algorithm, i.e. it should utilize the

image gradient, edges or connected components. At this

step, bounding boxes may contain several text lines with

different fonts, colors and size, so a gradient-based method

seems more appropriate than relying on color homogeneity.

Based on these observations, we firstly compute the Sobel

gradient magnitude for every detected box from the

machine learning stage. Since this gradient map may also

contain some non-text objects we multiply it by the sal-

iency map to suppress their gradient values. Afterwards, we

smooth the gradient map with a Gaussian mask, binarize it

using Otsu thresholding [32] and generate one bounding

box for every created connected component that satisfies

the size restrictions, namely its height should lie within the

specific range of the fixed scale detector. Figure 11 shows

this procedure for the upper box of Fig. 10b. The gradient

magnitude used here is a sum of the vertical and horizontal

absolute Sobel gradients with weights 0.8 and 0.2,

respectively, that emphasize the vertical one. The Gaussian

mask we use for the smoothing has a small height equal to

three (as used in our experiments) and width equal to the

box height.

Figure 12 displays an example of the text line locali-

zation algorithm applied in an image with skewed text

lines. Moreover, this example explains the reason for the

multiplication with the saliency map which was produced

by the sliding window model. If someone looks carefully

the initial Sobel Gradient map, he would see some vertical

strokes that do not belong to any characters. These non-text

gradient values are suppressed after the multiplication with

the saliency map, making the gradient based text line

segmentation more accurate.

Fig. 10 a Saliency map of the second multiresolution level, b the corresponding bounding boxes
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3.3 Multiresolution analysis

The machine learning, sliding window model described

above constitutes a fixed-scale text line detector, namely it

is capable of detecting text in a narrow range of font

heights since the properties of textual texture depends on

the text size. In order to make the system scale independent

we adopt a multiresolution approach. The whole text line

detector is applied to the image in different resolutions and

finally the results are combined in a map with the original

resolution. Narrowing the range of the fixed scale detector

results in smaller text inter-class variance hence provide

better classification accuracy. On the other hand, a narrow

range would also lead to many levels for the multiresolu-

tion approach and thus will increase the complexity of the

algorithm. Eventually, the choice of the range has to satisfy

the tradeoff between the performance of the fixed-scale

detector and the system’s efficiency. Figure 13 presents an

example of detecting characters with different sizes in the

appropriate resolutions.

3.4 Word segmentation

Many publications related to text detection consider the

text line as text unit while others aim at detecting words.

The algorithm described until this section outputs one

bounding box for every text line so the stage we are going

to present here is optional and intents to segment text lines

producing word bounding boxes. The decision about

including or not the word segmentation module in the text

detection system depends on the needs of the specific

application or the annotation strategy of the dataset used

for experimentation. This stage is based on connected

components instead of edges since we can safely assume

that each text line contain characters of the same color.

Before identifying words in text lines we have to binarize

the image and make sure that the black pixels correspond to

text. This is an essential step for word segmentation but it

is also needed for text recognition which is the actual goal

of a text extraction system.

3.4.1 Image binarization: invert text detection

For the binarization of the images, Otsu [32] thresholding

was chosen after relative experimentation. Otsu method

applies the optimum separation of the two dominant colors

in an image based on the minimization of their intra-class

variance. Moreover, this separation is symmetrical contrary

to other binarization methods meaning that it will have

equivalent performance for both normal and inverse text.

To classify between normal or inverse text we first apply a

connected component analysis. The numbers of white

(WCC) and black (BCC) connected components are

Fig. 11 Text line localization. a Sobel gradient, b gradient after

multiplying with saliency map, c gradient after Gaussian smoothing,

d gradient after Otsu thresholding

Fig. 12 Text line localization, a skew example. a Original image, b Sobel gradient, c gradient after multiplying with saliency map, d gradient

after Gaussian smoothing, e gradient after Otsu thresholding
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counted, discarding components with height less than eight

pixels or less than one-third of the box height. If |WCC–

BCC| [1 then the color that corresponds to the largest

number of connected components is regarded as text color.

Else if the distance between WCC and BCC equals 0 or 1, the

condition for the inversion is based on the pixel values of the

borders of the bounding boxes. If the majority of border

pixels are black then text is considered inverse. Finally, a

color inversion is applied to every inverse text image so the

output of this step consists of binarized normal text.

3.4.2 Run length smoothing algorithm

The input of this step is a binarized image with black for

text and white for background pixels. For the separation of

the different words in a text line we have to vertically cut

the bounding box wherever the distance between two

adjacent characters is relatively large. In order to define

‘‘relatively large’’, we calculate the mean value (M) and the

standard deviation (SD) of all horizontal distances between

black pixels of different connected components. After that,

we apply a Run Length Smoothing Algorithm (RLSA) that

connects any pair of black pixels having horizontal dis-

tance less than M - 0.2 9 SD. For any black connected

component produced, a new bounding box is created which

is actually the final word bounding box. Figure 14 presents

the steps of word segmentation for the upper text line of

Fig. 11.

4 Experimental results and discussion

The proposed methodology has been extensively tested

using a concise evaluation methodology which comprises

multiple datasets, a variety of alternate features, different

evaluation measures and a comparison with various state-

of-the-art methodologies. All the experiments were con-

ducted using one 2.4 GHz core of an Intel Q6600 CPU. To

evaluate the system’s performance in different stages and

scopes we used five datasets:

• Dataset 1: It comprises 3,944 text and 5,701 non-text

image samples with size 24 9 12 and was created to

test the classification accuracy and efficiency of

Fig. 13 Multiresolution detection. a Saliency map of 1st scale, b result of 1st scale, c saliency map of 4th scale, d result of 4th scale

Fig. 14 Word segmentation. a Grayscale image, b binarized image,

c RLSA result
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different combinations of features and classifiers for the

text area detection as described in Sect. 3.1.

• Dataset 2: It consists of 3,048 normal and 1,827 inverse

text images taken from the ground truth or the results of

several text detection methods and it was used for the

experiments regarding the normal/inverse text classifi-

cation, described in Sect. 3.4.1.

The rest three datasets were used for evaluating the final

results of the proposed text detection system in different

kinds of data.

• Dataset 3: The third dataset is the public dataset of

ICDAR 2003 Robust Reading competition. This is a

very difficult dataset presenting all the challenges of the

natural scene text such as variant illumination and

complex background. The whole set contains 509

images from which 258 belong to the training set and

the rest 251 to the test set.

• Dataset 4: This is the first set of our previous work [17]

which contains 214 video frames from athletic events

with 2,963 text occurrences. The text appearing in this

set is mainly artificial text from video captions.

• Dataset 5: The final dataset we used for our experi-

ments is the second set of [17] which includes 172

frames from news and advertisements with a total of

672 artificial text occurrences.

The experiments on Dataset 1 compare the discrimina-

tion abilities of five different feature sets combined with

SVM and RF classifiers. The feature sets we used except

from the proposed MACeLBP include the Reduced eLBP

of [17] and three of the most popular feature sets in liter-

ature: DCT coefficients, Haar wavelets and gradient values

for our tests, we used the raw values of LH, HL and HH

components of the first three levels of Haar decomposition

since they have shown better performance than any other

wavelet-based feature set. Also, the first coefficient of DCT

transform is omitted since it is proportional to the intensity

mean and does not contain any frequency information. The

gradient feature set corresponds to the gradient Sobel

magnitude values. For the experiments we used an SVM

with an RBF kernel and an RF consisting of 20 trees each

of them chooses randomly 200 out of 256 9 8 = 2,048

features. Table 1 presents the related classification results

using cross-validation with 10-folds while Table 2 com-

pares SVM and RF regarding the speed of prediction. The

related recall and precision measures are defined as:

recalltext ¼
correctly classified text samples

overall text samples
ð11Þ

Precisiontext ¼
correctly classified text samples

overall samples classified as text
ð12Þ

It is obvious that RF is by far faster than SVM which is

practically non-applicable since scanning a 1,280 9 960

image with a sliding step of two pixels requires over

300,000 predictions that is, it requires at least 30 min only

for the classification part. On the other hand, the results of

RF are at least comparable with the corresponding results

of SVM while in some cases are even better. An interesting

observation about the results is that the best performance is

achieved by the reduced eLBP feature set fed to SVM

classifier as proposed in our previous work [17]. The

MACeLBP set presented slightly worst performance

combined with SVM, despite carrying more information,

and this is probably because of the dimension expanding that

made feature space sparser. However, the difference in terms

of performance between SVM and RF best results is negli-

gible compared to the corresponding computational cost. It is

noted that in [17] the use of SVM was possible since the

sliding window model was used only for refining small

image parts produced by the first coarse detection stage.

The experiments upon the Dataset 2 proved the suc-

cessful performance of the normal/inverse text classifica-

tion since the proposed method scored 97% in terms of

accuracy. The rest 3% for which the particular technique

Table 1 Classification results of Dataset 1 for different features and

classifiers

Features Feature

dimension

Recalltext Precisiontext Ftext

RF

MACeLBP 2,048 96.6 97.4 97

Reduced eLBP 256 93.5 94.6 94.1

DCT 287 94.2 91.1 92.7

Haar 279 91.4 90 90.1

Gradient 288 90.5 88.2 89.3

SVM

Reduced eLBP 256 98 98 98

MACeLBP 2,048 96 98.2 97.1

DCT 287 94.2 96.2 95.2

Haar 279 93.1 95.7 94.4

Gradient 288 80.1 92.3 86.3

Table 2 Comparing SVM and RF in terms of prediction speed

Predictions/sec SVM RF

MACeLBP 40 *150,000

Reduced eLBP 160 *500,000

DCT 180 *500,000

Haar 385 *500,000

Gradient 200 *500,000
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failed corresponds mainly to cases where text detection

also failed, producing bounding boxes that cut text lines

horizontally or contain too much non-text content.

For testing the performance of the proposed system on

scene text detection we used Dataset 3 (ICDAR 2003). The

size of the sliding window was set to 24912 pixels while

the sliding step is 2. The fixed-scale detector was trained to

detect text in height range 12–18 and the multiresolution

uses ten levels with a scale factor of 2/3. For the results we

used the recall and precision measures as defined in [33] to

compare with the competition results:

p ¼
P

re2E mðre; TÞ
Ej j ð13Þ

r ¼
P

rt2T mðrt;EÞ
Tj j ð14Þ

in which

mðr;RÞ ¼ max maðr; r0Þjr0 2 R ð15Þ

maðr1; r2Þ ¼ 2� a� ðr1 \ r2Þ
aðr1Þ þ aðr2Þ ð16Þ

a(r) is the area of rectangle r while |E| is the number of

detected boxes and |T| the number of ground truth bounding

boxes.

As overall measure, the harmonic mean is used:

f ¼ 2� p� r

pþ r
ð17Þ

Table 3 presents the performance evaluation results of

the proposed algorithm as well as the average time,

compared to the Robust Reading competitions of 2003 and

2005 and some more recent works. The results prove the

robustness of the algorithm in a very challenging dataset.

However, the annotation strategy and the used evaluation

protocol need to be reconsidered. In some cases there is no

typical and objective way that word bounding boxes are

defined by the annotator. For example, the symbol ‘‘@’’, in

Fig. 10b, is not considered as a character while other

symbols like ‘‘&’’ are considered as characters. In some

images word bounding boxes may contain dashes but in

other images dashes are considered to separate words so

they are excluded from bounding boxes. There are also

several wrong or missing text boxes from the ground truth

which produce misleading results. Another issue that

affects the systems result is the existence of isolated

characters. Our system just like many text detection

systems aims at detecting words with at least two

characters since one character has no periodicity and thus

does not constitute a texture. Besides, the majority of

arbitrary connected components in an image resemble the

shape of at least one character. The omission of isolated

characters is mainly the reason for the relative low recall

rate of the proposed system.

Furthermore, the evaluation rates of the whole Robust

Reading test set as described in [33] come from computing

the recall, precision and f rates for every image and then

averaging over all images. This means that every image

will contribute the same to the final result despite the

number of containing boxes which is not intended in a box-

based evaluation protocol. Moreover, if the detector returns

no boxes for an image, the precision is wrongly considered

to be zero while actually it cannot be defined.

Another shortcoming is that although the ICDAR2003

measures intent to estimate the proportion of correctly

detected word bounding boxes, they cannot deal with the

problem of splits or merges between boxes. This means

that if a resulting box covers an entire text line, the protocol

will map it against only one of the containing words giving

unfairly low results. Wolf et al. [34] proposed the creation

of match score matrices with the overlap between every

possible pair of blocks to consider the possible splits and

merges besides one-to-one matching. However, to match

two ground truth boxes with one resulting box, the total

overlap threshold (as described in Wolf et al. paper) has to

be very low (*40%). This will have as a result accepting

as correct, a box with size even higher than the double size

of the ground truth box. Table 4 presents the results of the

proposed method using Wolf’s evaluation protocol, com-

pared to the corresponding results of Robust Reading 2003

competition as reported in [34].

Finally Dataset 4 and Dataset 5 were used to test the

system’s performance on video frames. Dataset 5 contains

only artificial text while Dataset 4 comprises some occur-

rences of scene text, too. For these sets, the proposed

system was applied without the final word segmentation

Table 3 Comparative results for Dataset 3 using the ICDAR2003

evaluation protocol and average processing time

Method p r f T (sec)

Proposed 0.82 0.61 0.70 4.2

Ji [19] 0.59 0.79 0.68 –

Epshtein [8] 0.73 0.60 0.66 0.94

Robust reading competition 2005

Hinnerk Becker 0.62 0.67 0.62 14.4

Alex Chen 0.60 0.60 0.58 0.35

Qiang Zhu 0.33 0.40 0.33 1.6

Jisoo Kim 0.22 0.28 0.22 2.2

Nobuo Ezaki 0.18 0.36 0.22 2.8

Robust reading competition 2003

Ashida 0.55 0.46 0.50 8.7

HWDavid 0.44 0.46 0.45 0.3

Wolf 0.30 0.44 0.35 17

Todoran 0.19 0.18 0.18 0.3
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stage since the annotation for the specific dataset was done

in a text line level. Table 5 shows the corresponding results

while Table 6 presents the average processing time per

frame. For the comparison with the results of this dataset,

we used the recall and precision rates as defined in [17].

The evaluation protocol in [17] was based on the recall

and precision of the area coverage, normalised by the

estimated number of characters for every box (see Eqs. 18,

19). The number of characters in a bounding box was

approximated by the ratio width/height of the box,

assuming that this ratio is invariable for every character,

the spaces between different words in a text line are pro-

portional to its height and each textline contains characters

of the same size.

Recallecn¼
PN

i¼1
GDIij j
hg2

iPN
i¼1

GBij j
hg

2

i

ð18Þ

Precisionecn¼
PM

i¼1
DGIij j
hd2

iPM
i¼1

DBij j
hd

2

i

ð19Þ

where GBi is the ground truth bounding box number i and

hgi is its height, while DBi is the detected bounding box

number i and hdi is its height. N is the number of ground

truth bounding boxes and M is the number of detected

bounding boxes and GDI, DGI are the corresponding

intersections:

GDIi ¼ GBi \
[M

i¼1

DBi

 !
ð20Þ

DGIi ¼ DBi \
[N

i¼1

GBi

 !
ð21Þ

Table 5 together with the previous results proves the

capability of the proposed system to detect artificial and scene

text in video frames or camera-based images. The datasets

used for the evaluation contain a great variety of fonts in

different sizes and colors and present all kinds of challenges

from both artificial and scene text. The experiments we

conducted confirmed our initial assumption that the

discrimination between text and complex background

constitutes a common prominent challenge for every kind of

text detection application.

5 Conclusion

In this paper we presented a method for text detection in

images. The system consists of a machine learning stage

which is based on an RF classifier and a very discrimi-

nating proposed feature set, followed by a gradient-based

text line localization step. Finally a connected component

based algorithm segments the detected text line in words.

The whole system works in a multiresolution manner

providing detection of characters in a wide range of sizes.

The main contributions of this work is the highly dis-

criminating feature set based on a new texture operator,

combined with the accuracy and efficiency of the RF

classifier. Experimental results have been produced using a

concise evaluation methodology and show the superior

performance achieved on the detection of both artificial and

scene text embedded in very complex backgrounds. As

future work we could adjust the MACeLBP–RF model for

different detection purposes since many kinds of objects or

textures are described by their spatial edge distribution.

Table 4 Comparative results for Dataset 3 using Wolf evaluation

protocol [34]

Method PrecisionWolf RecallWolf fWolf

Proposed 79.3 61.4 69.2

Robust Reading Competition 2003

Ashida 41.7 55.3 47.5

HWDavid 46.6 39.6 42.8

Wolf 44.9 19.4 27.1

Todoran 17.9 14.3 15.9

Table 5 Comparative results for Dataset 4 and Dataset 5

% Method Recallecn Precisionecn Fecn

Dataset 4 [22] 66.9 66.7 66.8

[14] 65.4 75.6 70.1

[25] 81.1 70.5 75.4

[17] 83.9 79 81.4

Proposed 84.1 79.8 81.9

Dataset 5 [22] 63.3 69.2 66.1

[14] 68.2 71.1 69.6

[25] 80.6 71.5 75.8

[17] 82.7 83.5 83

Proposed 83.4 84.7 84

Table 6 Average processing

time for Dataset 4 and Dataset 5

(sec/per frame)

Method Average processing

time per frame

[22] 8

[14] 3.35

[25] 1.5

[17] 2

Proposed 1.6
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