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Abstract: A novel unsupervised strategy for content-based image retrieval is presented. It is based
on a meaningful segmentation procedure that can provide proper distributions for matching via the
earth mover’s distance as a similarity metric. The segmentation procedure is based on a hierarch-
ical watershed-driven algorithm that extracts meaningful regions automatically. In this framework,
the proposed robust feature extraction and the many-to-many region matching along with the novel
region weighting for enhancing feature discrimination play a major role. Experimental results
demonstrate the performance of the proposed strategy.

1 Introduction

Increasing amounts of imagery because of advances in
computer technologies and the advent of world wide web
have made apparent the need for effective and efficient
imagery indexing and retrieval based not only on the meta-
data associated with it (e.g. captions and annotations) but
also directly on the visual content. During the evolution
period of content-based image retrieval (CBIR) research,
the major bottleneck has been the gap between low-level
features and high-level semantic concepts. Therefore the
obvious effort toward improving a CBIR system is to
focus on methodologies that will enable a reduction or
even, in the best case, bridging of the aforementioned
gap. Image segmentation plays a key role toward the seman-
tic description of an image, as it provides the delineation of
the objects that are present in an image. Although contem-
porary algorithms cannot provide a perfect segmentation,
some can produce a rich set of meaningful regions upon
which robust discriminant regional features can be
computed.

This paper presents a strategy for CBIR. It is based on a
meaningful segmentation procedure that can provide proper
distributions for matching via the earth mover’s distance
(EMD) as a similarity metric. The segmentation procedure
relies on a hierarchical watershed-driven algorithm that
extracts meaningful regions automatically. In this frame-
work, the proposed robust feature extraction along with a
novel region weighting that enhances feature discrimination
play a major role. The complete process for querying and
retrieval does not require any supervision by the user. The
user’s only interaction is the selection of an example

image as query. Experimental results demonstrate the per-
formance of the proposed strategy.

2 Related work

The fundamental aspects that the existing region-based
image retrieval systems take into consideration are the fol-
lowing: (i) the segmentation scheme; (ii) the selected fea-
tures for region representation; (iii) the region matching
method and (iv) the user supervision.

The NeTra system [1] is presented where retrieval is
based on segmented image regions. The segmentation
scheme requires user supervision for parameter tuning and
segmentation corrections. Furthermore, a one-to-one
region matching is proposed after region selection by the
user. In the same spirit, the Blobworld system is proposed
by Carson et al. [2], in which a user is required to select
important regions and features. As an extension to
Blobworld, Greenspan et al. [3] compute blobs by using
Gaussian mixture modelling and use EMD [4] to compute
both the dissimilarity of the images and the flow-matrix
of the blobs between the images.

Fuh et al. [5] use the idea of combining colour segmenta-
tion with relationship trees and a corresponding matching
method. They use information concerning the hierarchical
relationship of the regions along with the region features
for a robust retrieval. An integrated matching algorithm is
proposed by Wang et al. [6] which is based on region simi-
larities with respect to a combination of colour, shape and
texture information. The proposed method enables one-
to-many region matching. Hsieh and Grimson [7] propose
a framework that supports a representation for a visual
concept using regions of multiple images. They support
one-to-many regions matching in two stages. First, a simi-
larity comparison occurs followed by a region voting that
leads to a final region matching. Mezaris et al. [8]
propose an approach that employs a fully unsupervised seg-
mentation algorithm and associate low-level descriptors
with appropriate qualitative intermediate-level descriptors,
which form a simple vocabulary termed object ontology.
Following that, a relevance feedback mechanism is
invoked to rank the remaining, potentially relevant image
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regions and produce the final query results. Finally, Jing
et al. [9] propose an image retrieval framework that inte-
grates efficient region-based representation and effective
on-line learning capability. This approach is based on
user’s relevance feedback that makes user supervision an
obligatory requirement.

In this paper, unlike the above approaches, we propose a
strategy that does not require any supervision from the user
apart from selecting an example image to be used as a
query and permit a many-to-many region matching improv-
ing the robustness of the system. It is a region-based approach
that takes advantage of the robustness of each subsequent
module. More specifically, it is based on a watershed-driven
hierarchical segmentation module that produces meaningful
regions, and a feature extraction module that expresses
meaningful distributions for matching along with a robust
similarity metric that is fed with a novel weighting factor.

3 Image representation

3.1 Automatic multiscale watershed
segmentation

The proposed watershed-driven hierarchical segmentation
scheme is based on a modified version of an image segmen-
tation approach for vector-valued images presented pre-
viously by Vanhamel et al. [10] and Vanhamel et al. [11].
It consists of three basic modules that are preceded by a
step that determines whether texture features should be
taken into account in the segmentation process (Fig. 1).
The first module (salient measure module) is dedicated to
a scale-space analysis based on multiscale watershed seg-
mentation and nonlinear diffusion filtering. This module
creates a weighted region adjacency graph (RAG), in
which the weights incorporate the notion of scale. Using
the obtained multiscale RAG, the second module (hierarch-
ical level selection module) extracts a set of partitionings
that have different levels of abstraction, denoted as hier-
archical levels. The last module (segmentation evaluation

module) identifies the most suitable hierarchical level for
further processing, which in this work corresponds to the
level containing all significant image features. The remain-
ing of the section is structured as follows. First, we discuss
the selection of the feature-space required for the segmenta-
tion process. Next, we explain the salient measure module,
in which we comment on the employed nonlinear diffusion
and the creation of the multiscale RAG. Finally, we discuss
the concept of hierarchical level selection, and the definition
and selection of the most suitable level.

3.1.1 Feature-space selection for image segmenta-
tion: To accommodate for texture, the segmentation
scheme can be applied on a colour–texture feature space
[10]. Spectral decomposition is a common way to describe
texture in image processing. The texture content is usually
represented as a vector-valued image, in which each
decomposition band describes the energy at a given fre-
quency and orientation. The spectral decomposition using
Gabor filtering has often been justified by the fact that it
provides a good approximation of the natural processes in
the primary visual cortex. A Gabor function is a harmonic
wave modulated by a Gaussian. The log-Gabor filters are
used, as natural textures often exhibit a linearly decreasing
log power spectrum. In the frequency domain, the log-
Gabor filter bank [12, 13] is defined as

Gijðvr;vwÞ ¼ Gðvr � vro
i
;vwo

j
Þ ð1Þ

where (r, w) are polar coordinates, vri
o is the logarithm of

the center frequency at scale i [ [1, MG], vwj
o is the jth

orientation ( j [ [1, NG]) and Gvrvw
is defined as

Gvrvw
¼ exp

�v2
r

2s2
ri

 !
exp
�v2

w

2s2
wj

 !
ð2Þ

where sri
and swj

are the parameters of the Gaussian. The
NG orientations are taken equidistant (3) and the scales
are obtained by dividing the frequency range vmax 2 vmin

Fig. 1 Schematic diagram for the automatic multi-scale segmentation scheme for vector-valued images
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into MG octaves (4).

swj
¼

p

2NG

v0
wj
¼ 2swj

ð j� 1Þ

ð3Þ

sri ¼ 2i�1s

v0
ri
¼ vmin þ ð1þ 3ð2i�1 � 1ÞÞs

ð4Þ

where s ¼ (vmax 2 vmin/2(2MG 2 1)) that yields MG

octaves 2s, 4s, . . . , 2MGs. Note that the maximum fre-
quency cannot be larger than the Nyquist frequency and
the dynamics of contours (DC)-component of the image is
removed before filtering. We apply the log-Gabor filter on
the luminance component (Fig. 2b) of the colour image
(Fig. 2a) to extract the raw texture features.

Wij ¼ gij � L ð5Þ

where gij is the Gij counterpart for the spatial domain, L is
the luminance component for which the DC component is
removed and � denotes the convolution.

The employed Gabor filter bank consists of one scale and
four orientations for which the magnitudes of the responses
encode the energy content of the texture feature (Fig. 3g– j).
These feature bands form a hypersphere, in which each
vector is further normalised to be a unit vector to emphasise
the texture structure information and to reduce any depen-
dencies from the lighting responses.

As mentioned earlier, the segmentation is applied on a
colour–texture feature space. However, the inclusion of
texture features increases the dimension of the feature-
space and hence the computational cost of the segmentation
process is increased. Therefore we attempt to determine
whether the image contains a sufficient amount of texture

to justify the added computational cost. For this, we
compute the corresponding low-pass component to identify
the non-textured areas. The low-pass component is a
Gaussian for which the kernel size is a function of
vmin(sLowpass ¼ (vmin/2). It is performed on the image
without its DC component. In this work, we used
sLowpass ¼ 2. To determine whether or not the image con-
tains a sufficient amount of textured areas, we compare
the average response in the low-pass and the texture com-
ponents. In the case that the average response of the
texture component is lower, we consider only the colour-
image in the (CIE)La�b� colourspace, which has the advan-
tage of being perceptual uniform. Otherwise, we create a
colour–texture feature space by creating a hypersphere
that contains the colour channels and the estimated
texture features.

3.1.2 Salient measure module: The main goal of this
module is to create a hierarchy among the gradient water-
sheds detected at the finest scale: the localisation scale.
For this purpose, we create at the localisation scale, a
RAG, where the nodes represent the detected gradient
watersheds and the arcs represent the contours between
two watershed segments, that is the adjacencies. To each
contour, we attribute a saliency measure comprising the
scale-space lifetime (SSL) and the DC in scale-space
(DCS) (8) [14, 15]. The entire process to retrieve the sal-
iency measure for the gradient watersheds requires three
steps: (i) nonlinear diffusion filtering for creating a scale-
space stack; (ii) deep image structure analysis, relating the
contours and regions detected at the different scales: at
each scale the gradient magnitude of the image is estimated.
For successive scales, the duality between the regional
minima of the gradient and the catchment basins of the
watershed is exploited to make a robust region-based
parent–child linking scheme; (iii) contour valuation by

a b c d

Fig. 2 Vector normalised texture features

a Original image
b Luminance component
c Low-pass component
d Textured component

a b c d e

f g h i j

Fig. 3 Gabor filter bank

a Low-pass component
b–e Gabor filters at the different orientations
f Filter response of low-pass component
g– j Corresponding responses of Gabor filters at different orientations
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downward projection: the DCS [14, 15] is used to valuate
the contours detected at the localisation scale. The latter
requires two types of information: (a) the DC [16] at each
scale and (b) the deep image structure or scale-space. An
overview of the three steps is given subsequently.
Nonlinear diffusion filtering: Scale-space filtering con-

cerns the mechanism that embeds the image into a one-
parameter family of derived images for which the image
content is causally simplified [17, 18]. The parameter
describes the scale or resolution at which the image is
represented. The key idea is that important image features
persist in scale. In order to avoid blurring and delocalisation
of the image features, an image adaptive scale-space filter is
used. In this work, we opted for a method that guides the
filtering process in such a way that intra-region smoothing,
where edges are gradually enhanced, is preferred over inter-
region smoothing [11, 19–21]. The employed filter belongs
to the class of nonlinear anisotropic diffusion filters. It is a
backward diffusion filter that can be interpreted as a ‘con-
straint total variation (TV) minimising flow’. Let I ¼ fI(1),
I(2), . . . , I(R)

g be a vector-valued image defined on a finite
domain V. The scale-space image (u) is governed by the
following system of coupled parabolic partial differential
equations [22]

@tu
ðrÞ ¼ div gðjrusjÞ

ruðrÞ

jruðrÞj

� �
8 r ¼ 1; 2; . . . ;R

uðt¼0Þ ¼ I

@nu ¼ 0 on @V ð6Þ

where u(r) represents the rth image band, t is the continuous
scale parameter and s is the Catté et al. [23] regularisation
parameter, which ensures the well-posedness of the above
system. The edge stopping function g is formulated as:

gðjrusjÞ ¼
1

1þ ðjrusj=KÞ
2

ð7Þ

In the case of backward–forward diffusion filtering, the par-
ameter K (contrast parameter) separates the type of diffu-
sion across the edge. For jrusj , K, the edge is
smoothed and for jrusj . K the edge is enhanced. In this
diffusion scheme, the edge is always enhanced. The
maximum amount of enhancement is obtained at (K/

p
3).

We estimate K using the cumulative histogram of the regu-
larised gradient magnitude. A discrete version of the scale-
image u, denoted as U ¼ fut0, ut1, . . . , utNg, is obtained by
applying the natural scale-space sampling method [17].
The finest scale ut0, (localisation scale), is the scale that
obtains a maximum noise reduction while retaining all
important image features. Currently, the localisation scale
is determined empirically.
Deep image structure analysis: The deep image structure
uses a robust region based parent–child linking scheme
that is based upon the duality between the regional
minima of the gradient and the catchment’s basins of the
watershed. The linking process is applied using the
approach proposed by Pratikakis et al. [15], in which the
linking of the minima in successive scales is applied by
using the proximity criterion [17]. The linking process pro-
duces a linkage list for all the detected regions at the local-
isation scale. Inherently, the latter also yields a linkage list
for each adjacency (contour) in the localisation scale. An
illustration of both linkage lists is given in Fig. 4.
Contour valuation: In the sequel, we will introduce the
reader to the concept of ‘DCS’ [14, 15], which has been
used to valuate the contours detected at the localisation
scale. Let L(ai) ¼ fai

(t0), ai
(t1), . . . , ai

(ta)g be the linkage list
for the contour ai, where to is the localisation scale and
the scale ta is the annihilation scale, that is, the last scale
in which the contour was detected (annihilation scale).
The SSL(ai) of a contour is given by ta 2 to and the DCS
is defined as

DCSðaiÞ ¼
X

b[LðaiÞ

DCðbÞ ð8Þ

Finally, the saliency measure S attributed to each contour
(detected at the localisation scale) is given by

SðaiÞ ¼ SSLðaiÞ þ
DCSðaiÞ

max
8b[A:SSLðbÞ¼SSLðaiÞ

DCSðbÞ þ 1
ð9Þ

with A being be the set of contours detected at the localis-
ation scale.

In this way, we obtain a hierarchy among the contours,
which is consistent with the scale-space filter, that is, the
longer a contour persist, in scale the more salient it is.
Moreover, the DCS is used to refine the hierarchy among
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contours with the same SSL. To find the more salient contour
within the set of contours having the same scale-space persist-
ence, we look at the evolution of their contrast in scale-space.

3.1.3 Hierarchical level selection module: This
module extracts from the multiscale RAG the different hier-
archical levels. It can be seen as some type of global scale-
selection method. First, we create a merging sequence by
ranking the contours (detected at the localisation scale)
according to the saliency measure S. Next, we start
merging two successive regions, sharing a common
contour, following a hypothesis test that is constructed
around a colour similarity measure. For our problem, the
hypothesis test is defined as:

† H0
L: two adjacent regions at level L belong to the same

region.
† H1

L: two adjacent regions at level L belong to different
regions.

where H0
L represents the null-hypothesis and H1

L denotes the
alternative hypothesis. A failure to meet H0

L indicates that
merging the segments under consideration alters signifi-
cantly the image content significantly according to the
current level or scale. Hence, when this occurs, a hierarch-
ical level is extracted and the hypothesis test is updated.

3.1.4 Segmentation evaluation module: For further
processing, the extraction of the most suitable hierarchical
level is required. We employ a criterion based on a
measure that yields a global evaluation of the contrast
between the regions and the region uniformity, namely
the contrast-homogeneity criterion (CH) [24]. It rewards
uniform segments that differ from neighbouring segments.
It is formulated by

CHðI;PLÞ ¼
1

n

X
sL
i
[PL

nLi CHL
i ð10Þ

where n is the total number of image pixels, PL represents
the partitioning (set of regions) of the hierarchical level L,
si
L is the ith region of the partitioning PL, ni

L is the size of
si
L and

CHL
i ¼

HL
i

BL
i

if HL
i � BL

i

1 else

8<
: ð11Þ

with

HL
i ¼

1

nLi

X
x[sk

i

kx�mL
i k

BL
i ¼

P
j[Ak

i

nLijkm
L
i �mL

j kP
j[Ak

i

nLij

ð12Þ

where mi
L represents the average feature vector of si

L, Ai
L

denotes the set of its adjacent regions and, nij
L the length of

the common boundary between si
L and sj

L. The optimal segmen-
tation is given by the partitioning that minimises the function
given in (10). To avoid the selection of extremely over-seg-
mented partitionings, we use an upper limit to the amount of
required segments. The latter can be deduced from the image
size and the task at hand. In this work, we imposed segmenta-
tions with a maximum number of 200 regions. Additionally,
we added a minimum number of 20 regions.

3.2 Region features

Having obtained a portioning of the image in significant
regions, a set of feature, based mainly on colour, texture and
spatial characteristics, will be estimated for each region. We
did not use geometric properties, as image segmentation
does not always provide a single region for each object in
the image, and therefore it is meaningless to compute repre-
sentative shape features from such regions. The colour space
that we use is the RGB colour space. Although, it does not
provide the colour compaction of YCrCb and YIQ colour
space, neither the perceptual significance of Lab and YUV,
our experimental results showed very good performance for
retrieval. Other researchers in the area have confirmed our
conclusions [7, 25]. Let Ri be a region in the segmented set
fRg with a set of adjacent regions fN(Ri)g. In our feature set,
we do not only characterise each single region Ri, but we
also characterise its neighbourhood by computing relational
features. More specifically, the features we compute are
described in the following

† Mean colour component

mCkðRiÞ ¼

PAðRiÞ

j¼1 Ckðxj; yjÞ

AðRiÞ
ð13Þ

† Mean texture component

mTkðRiÞ ¼

ð ð
jWk jdx dy ð14Þ

† Variance texture component

s2TkðRiÞ ¼

ð ð
ðjWk j � mTkðRiÞÞ

2dx dy ð15Þ

† Area-weighted adjacent region contrast

mConðRiÞ ¼

PCardðN ðRiÞÞ

j¼1 AðRjÞ � ðkmCkðRiÞ � mCkðRjÞkÞPCardðN ðRiÞÞ

j¼1 AðRjÞ

ð16Þ

5
3 1

2
6478

4

3 1

a b

Fig. 5 Common contour partitioning in the final segmentation

a Localisation scale
b Final segmentation
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a b c d

Fig. 6 Representative segmentation results

a Using the proposed segmentation scheme
b Using JSEG [27]
c Using E-M algorithm (Blobworld) [2]
d Using graph-based segmentation [28]
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† Region geometric centroid

GðRi; �x; �yÞ ¼

PAðRiÞ

i¼1 xi

AðRiÞ
;

PAðRiÞ

i¼1 yi

AðRiÞ

 !
ð17Þ

where Ck denotes the kth colour component value with
k [ fR, G, Bg, Tk denotes the kth texture component
value with k [ [1 . 4], jWkj denotes the magnitude of the
transform coefficients of the kth texture component as it is
given in (5), A(Ri) denotes the area of region Ri,
Card(N(Ri)) denotes cardinality of region’s Ri neighbour-
hood and (xj, yj) denotes the coordinates of a pixel that
belongs to region Rj.

4 Image retrieval

4.1 Image similarity measure

The EMD [4] is originally introduced as a flexible similarity
measure between multidimensional distributions.

Formally, let Q ¼ f(q1, wq1
), (q2, wq2

), . . . , (qm, wqm
)g be

the query image with m regions and T ¼ f(t1, wt1
),

(t2, wt2
), . . . , (tn, wtn

)g be another image of the database
with n regions, where qi, ti denote the region feature set
and wqi

, wti
denote the corresponding weight of the

region. Also, let d(qi, tj) be the ground distance between
qi and tj. The EMD between Q and T is then

EMDðQ; T Þ ¼

Pm
i¼1

Pn
j¼1 fij dðqi; tjÞPm

i¼1

Pn
j¼1 fij

ð18Þ

where fij is the optimal admissible flow from qi to tj that
minimises the numerator of (18) subject to the following
constraints

Xn
j¼1

fij � wqi
;

Xm
i¼1

fij � wtj ð19Þ

Xm
i¼1

Xn
j¼1

fij ¼ min
Xm
i¼1

wqi
;
Xn
j¼1

wtj

 !
ð20Þ

In the proposed approach, we define the ground distance as
follows

dðqi; tjÞ ¼
X3

k¼1

ðDmCkÞ
2
þ bðDmConÞ2

 

þ
X4

k¼1

ðDmTkÞ
2
þ
X4

k¼1

ðDs2TkÞ
2

þ bðDGði; �xÞÞ2 þ bðDGði; �yÞÞ2

!1=2

ð21Þ

where b is a weighting parameter that enhances the import-
ance of the corresponding features.

4.2 Region weighting

An additional goal during the image retrieval process is to
identify and, consequently, to attribute an importance in
the regions produced by the segmentation process.

Formally, we have to valuate the weighting factors wqi

and wtj
in (20). Most region-based approaches [3, 6] relate

importance with the area size of a region. The larger the
area is the more important the region becomes. In our

approach, we define an enhanced weighting factor that com-
bines area with scale and global contrast, which can all be
expressed by the valuation of DCS (8). More precisely,
the weighting factor is computed as follows

wqi
¼

wDCSi
� AðRiÞPCardðRÞ

j¼1 wDCSi
� AðRiÞ

ð22Þ

wDCSi
¼

PCardðNðRiÞÞ

j¼1 ðmax DCSðacÞÞ

CardðN ðRiÞÞ
ð23Þ

where ac denotes the common border of two adjacent
regions at the localisation scale. In (23), we compute the
maximum value among the DCS for each adjacency. This
occurs because our final partitioning corresponds to a hier-
archical segmentation level, wherein a merging process has
been applied (Section 3.1.3). Because of merging, any
common contour at the final partitioning may contain
either a single or a set of contours that correspond to the
localisation scale. For the sake of clarity, we refer the
readers to Fig. 5, wherein the common contour partitioning
in the final segmentation is depicted. More specifically,
the common contours in final segmentation (3, 4), (1, 3)
and (1, 4) (Fig. 5b) consist of the sub-contours set at the
localisation scale f(5, 8), (5, 7), (4, 5), (3, 4)g, f(1, 3)g and
f(1, 4), (1, 6), (1, 2)g, respectively (Fig. 5a).

5 Experimental results

The proposed strategy for CBIR has been evaluated with a
general-purpose image database of 1000 images that
contain ten categories (100 images per category), taken
from the Corel photo galleries [26]. The categories are:
‘beaches’, ‘buses’, ‘elephants’, ‘flowers’, ‘horses’, ‘moun-
tains’, ‘butterflies’, ‘jets’, ‘eagles’ and ‘tigers’. Evaluation
is performed using precision against recall (P/R) curves.
Precision is the ratio of the number of relevant images to
the number of retrieved images. Recall is the ratio of the
number of relevant images to the total number of relevant
images that exist in the database. They are defined as
follows

PrecisionðAÞ ¼
Ra

A
ð24Þ

RecallðAÞ ¼
Ra

S
ð25Þ

where A denotes the number of images shown to the user
(the answer set), S denotes the number of images that
belong to the class of the query and Ra denotes the
number of relevant matches among A. In our experiments,
we have used ten different queries for each category and

All categories

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,1 0,2 0,3 0,4 0,5

mean recall

m
e

a
n

p
re

c
is

io
n

EMD hWSH

EMD JSEG

EMD E-M

EMD Graph-based
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we have averaged the P/R values for each answer set.
Furthermore, we have used a variety of answer sets that
range from 10 to 90 images using a step of ten. For compari-
son, we have tested our approach, denoted as ‘EMD
hWSH’, with three other region-based image retrieval
approaches. Basically, all four approaches differ from
each other in the partitioning scheme that they incorporate.
The first approach that we compare with ‘EMD hWSH’ uses
the JSEG algorithm [27] for image segmentation. In the
presented mean (P/R) curves (Fig. 7), this approach is
denoted as ‘EMD JSEG’. The second approach that
participates in the comparison uses the segmentation
approach of the Blobworld CBIR system [2]. This is
denoted as ‘EMD E-M’. Finally, the third approach uses
the graph-based segmentation scheme [28], denoted as
‘EMD graph-based’.

First, we compare the segmentation results of the pro-
posed segmentation scheme (hWSH) with the other three
schemes. In Fig. 6, we present representative segmentation
results of the four segmentation methods, which participate
in the comparative study. The multiscale watershed seg-
mentation can capture small but meaningful objects and
has often a better localisation of the segment boundaries.
Furthermore, it favours slight over-segmentation against
under-segmentation because of the selection criterion of
the optimal segmentation from the hierarchical levels,
which was constructed to penalise under-segmentation. In
all cases in which the proposed segmentation scheme pro-
duced over-segmented outputs, the other three segmentation
algorithms also produced over-segmentations. Apart from
the over-segmented exemplars, it is worth-noting that we
have achieved excellent segmentations as in the case of cat-
egories ‘butterflies’, ‘jets’, ‘eagles’ and ‘tigers’ where the
other schemes produced a mixture of over-segmented and
under-segmented results (Fig. 6).

As far as the computational load is concerned, our
method is slower compared with JSEG and the graph-
based segmentation scheme mainly because of the compu-
tational demands for the generation of the multiscale
stack. As the involved anisotropic diffusion process of (6)
is steered by the image content, its convergence depends
on the noise level complexity. It is implemented using the
fast numerical scheme proposed by Weickert et al. [29].
For vector-valued images, the effort per iteration is pro-
portional to the amount of pixels in the image n and the
amount of image channels R. It requires 22nR multipli-
cations and divisions, 19nR additions and subtraction and
nR look-up operations. On average, the creation of the
scale-space image needs 150–200 iterations. However,
comparing execution times of algorithms, for which the
implementations have not been optimised for speed,
which is the case for the hWSH, can only give a rough esti-
mate of the execution time.

For each produced region, we compute the feature set that
is described in Section 3.2. We would like to note that for
‘EMD JSEG’, ‘EMD E-M’ and ‘EMD graph-based’, we
compute region weights by taking into account the area of
the region only. We have calculated mean P/R curves
over all ten categories (Fig. 7), in which we can observe
that ‘EMD hWSH’ outperforms all other schemes. For the
sake of clarity, we provide detailed P/R curves for each
individual category in Fig. 8. The individual category analy-
sis shows that in most cases ‘EMD hWSH’ was the best in
performance, whereas there a few cases in which the other
schemes were better. Examples are shown in Fig. 8, in
which we can observe that the ‘EMD graph-based’
scheme was clearly the best in category ‘buses’ as well as
that the ‘EMD E-M’ scheme had a very good behaviour

in category ‘butterflies’. It is clearly shown that none of
the schemes that we compared with had a good behaviour
in a consistent way.

6 Conclusions

In this work, we have presented a strategy for unsupervised
robust CBIR. The basic components of the proposed
scheme are (i) a meaningful watershed-driven hierarchical
segmentation that partitions the image into visually consist-
ent homogeneous regions and (ii) a feature set that com-
bines colour, texture and spatial characteristics that are
further weighted by a novel weighting scheme that is
inherent to the proposed segmentation method. Our exper-
iments have shown that the proposed strategy that does
not require any user supervision exhibits a superior beha-
viour in terms of retrieval accuracy. Considering the com-
putational time of the proposed segmentation scheme, we
are working toward faster implementations by considering
recursive methods as proposed by Alvarez [30, 31].
Finally, this work can be also used as the initial module
in a supervised scheme, in which the user will take into
account the resulting initial retrieval. In our future research
plans, we plan to exploit such an approach that can further
improve retrieval accuracy.
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