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Abstract—This paper reports on high-performance Optical
Character Recognition (OCR) experiments using Long Short-
Term Memory (LSTM) Networks for Greek polytonic script.
Even though there are many Greek polytonic manuscripts, the
digitization of such documents has not been widely applied, and
very limited work has been done on the recognition of such
scripts. We have collected a large number of diverse document
pages of Greek polytonic scripts in a novel database, called
Polyton-DB, containing 15, 689 textlines of synthetic and authen-
tic printed scripts and performed baseline experiments using
LSTM Networks. Evaluation results show that the character
error rate obtained with LSTM varies from 5.51% to 14.68%
(depending on the document) and is better than two well-known
OCR engines, namely, Tesseract and ABBYY FineReader.

I. INTRODUCTION

The main particularity of Greek polytonic scripts (usage
started in the Hellenistic period, i.e., 3rd century BC), is
the appearance of various diacritics in Greek orthography
notating Ancient Greek phonology: (i) the acute accent (oxeia
– sharp or high), (ii) the grave accent (bareia – heavy or low),
(iii) the circumflex (perispomene – twisted around), (iv) the
rough breathing dasi pneuma, (v) the smooth breathing psilon
pneuma, (vi) the diaeresis to indicate diphthong, and (vii) the
iota subscript (hypogegrammene written under).

These diacritics and their combinations can be associated
with the 14 vowel characters (7 upper-case and 7 lower-case
letters) according to several phonologic and orthographic rules
that have been differentiated from period to period, following
the language changes through time. This situation results in
many groups of different symbols for each vowel character that
look similar. These groups of very similar characters, resulting
in a very large character-set (more than 200), makes the OCR
of Greek polytonic scripts a very challenging task. In addition,
there is a lack of collections with ground-truthed data which
hinders the development of robust recognition systems for such
scripts.

In contrast, the simple monotonic orthography introduced in
1982 corresponds to modern Greek phonology, and requires
only two diacritics: tonos to indicate stress, diaeresis to

indicate a diphthong, i.e., the sound of two adjacent vowels,
and their combination. Therefore, digitizing documents in this
modern Greek language is relatively easier.

Our research is part of the OldDocPro project1 which
aims towards the recognition of Greek machine-printed and
handwritten polytonic documents. In OldDocPro, we strive
toward research that can assist the content holders in turning an
archive of old Greek documents into a digital collection with
full-text access capabilities using novel OCR methods. Our
aim is to advance the frontiers and facilitate current and future
efforts in old Greek document digitization and processing.

The contribution of this paper is two-fold. First, we present
the Polyton-DB2 – a novel database containing printed Poly-
tonic Greek script. Note that Polyton-DB is an extension of
GRPOLY-DB [1] consisting of scanned pages only. In this
paper we show that the generation of synthetic data signif-
icantly boosts the performance. Second, a high-performance
recognition system (which is based on the recently introduced
LSTM networks of the OCRopus framework [2]) has been
adapted to the specifics of the Greek polytonic script.

The organization of the rest of the paper is as follows. In
Section II we describe in detail the Polyton-DB collection. The
LSTM-based recognizer is discussed in Section III. Evaluation
experiments on recognizing Polytonic Greek scripts and com-
parison with the OCR engines of ABBYY FineReader and
Tesseract are described in Section IV. A conclusion and an
outlook future work are given in Section V.

II. POLYTON-DB — A GREEK POLYTONIC DATABASE

Polyton-DB includes printed polytonic Greek scripts from
different periods. In particular, it contains three datasets which
are described in the following subsections. Note that the first
two small datasets base on the GRPOLY-DB [1], while a
considerable effort for this paper and the high performance
recognition has been spend on a proper generation of synthetic

1http://www.iit.demokritos.gr/ nstam/GRPOLY-DB
2the collection is available from http://media.ilsp.gr/PolytonDB
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(a) Vlahou (1977) (b) Markezinis (1953)

Figure 1. Sample images of the Greek Parliament Proceedings.

Table I
DETAILS ABOUT VARIOUS DATASETS IN THE POLYTON-DB.

Set Pages Textlines
Greek Parliament Proceedings

Vlahou 4 373

Markezinis 18 1, 666

Saripolos 6 642

Venizelos 5 522

Greek Official
Government Gazette 5 687

Appian’s Roman History
Synthetic data 315 11, 799

Total 353 15, 689

data. With such a large dataset it is feasible to train LSTM
neural networks and reach a high performance. Quantitative
information about the collection is presented in Table I.

A. Greek Parliament Proceedings

The first dataset consists of 3, 203 textline images. that were
extracted from 33 scanned pages of the Greek Parliament Pro-
ceedings (see Figure 1). These pages correspond to speeches
of four Greek politicians (Vlahou in 1977, Markezinis in
1953, Saripolos in 1864 and Venizelos in 1931). For the
creation of the Polyton-DB, we used the original grayscale
images of all pages together with the corresponding texts.
We first binarized the grayscale images [3] and then applied
layout analysis and segmentation processes [4] to extract
textlines and words. In order to assign the text information to
the corresponding text lines an automatic transcript mapping
procedure was applied [5]. Finally, the segmentation results
and the transcripts’ alignment were verified and corrected
manually using the Aletheia framework [6].

B. Greek Official Government Gazette

The second part of POLYTON-DB includes 687 textline
images (and their transcriptions), which were extracted from
five scanned pages of the Greek Official Government Gazette
following the processing steps described above, in Section
II-A.

C. Synthetic data from Appian’s Roman History

The third dataset contains 11, 799 textline images of syn-
thetic data generated by using the transcription of 315 scanned
pages from Appian’s Roman History written in Greek lan-
guage before AD 165. This work more closely resembles a

series of monographs than a connected history. It gives an
account of various peoples and countries from the earliest
times down to their incorporation into the Roman Empire, and
survives in complete books and considerable fragments.

By comparing the document images of Appian’s Roman
History with the images of Greek Parliament Proceedings
and Greek Official Government Gazette in terms of the read-
ableness, we conclude that the former ones were in much
better condition, i.e., clean scans without broken characters.
Since this is not the case in processing historical documents,
we decided to generate synthetic data in such a way that
we could influence the characters’ degradation with the aim
of approximating the type of noise of historical scripts (see
Fig. 2).

In order to simulate the common typefaces of the Greek
Polytonic script we use GFS Didot Classic available from
Greek Font Society3. Note that we have initially tried other
fonts as well. However, the most realistic images have been
achieved with this font. For the actual text line generation, we
used OCRopus system’s utility (ocropus-linegen) to generate
synthetic text-line images. This utility is based on the degrada-
tion models proposed by Baird et al. [7] and uses a Python-PIL
module to convert text into image. There are many parameters
that can be altered to make the artificially generated text-line
images resemble closely to those obtained from a scanning
process. Some of the significant parameters are:

Blur: It is the pixel-wise spread in the output image, and is
modeled as circular Gaussian filter.

Threshold: It is used in the binarization process. If a pixel
value is greater than this threshold, then it is a black pixel.

Size: It is the height and width of individual characters in the
image. It is modeled by image scaling operations.

Skew: It is the rotation angle of the output symbol.

The aforesaid OCRopus utility requires utf-8-encoded text-
lines to generate the corresponding textline images along with
the ttf -type fontfiles. The user can specify the parameter values
or use the default values. An example of a single textline image
rendered with the ocropus-linegen utility is shown in Figure 2.
In the current work, we used the default values as they generate
textline images similar to our authentic data (first two textline
images in Figure 2).

The number of unique character classes contained in
Polyton-DB is 211, including Greek characters, numbers,
special characters, hyphenation marks, etc. (see Table II).

3http://www.greekfontsociety.gr
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Figure 2. Sample textline images of synthetic data. The first two textline
images correspond to low distortion values (degradation values were used
to generate synthetic data for our experiments), the third and fourth textline
images correspond to medium distortions and the last two correspond to high
values of distortion.

Table II
CHARACTERS CONTAINED IN POLYTON-DB

0 1 2 3 4 5 6 7 8 9

Β Γ Δ Ζ Θ Κ Λ Μ Ν Ξ Π Σ Τ Φ Χ Α Ἀ Ἁ ῎Α ῍Α ῞Α

β γ δ ζ θ κ λ μ ν ξ π ρ ῤ ῥ ς σv τ φ χ ψ Ε ᾿Ε ῾Ε ῎Ε ῍Ε ῞Ε ῝Ε

αάὰἁἅἃἀἄἂᾳᾴᾲᾁᾅᾃᾀᾄᾂᾶἇἆᾇᾆ ε έ ὲ ἑ ἕ ἐ ἔ ἒ

η ὴ ή ἠ ἡ ἣ ἤ ἥ ἢ ἦ ἧ ᾐ ᾑ ᾔ ᾕ ᾖ ᾗ ῂ ῃ ῄ ῆ ῇ Η ᾿Η ῾Η ῎Η ῞Η ῝Η ῏Η ῟Η

ι ῖ ὶ ϊ ί ΐ ἰ ἱ ἲ ἳ ἴ ἵ ἶ ἷ Ι `Ι ᾿Ι ῾Ι ῎Ι

υ ὺ ϋ ύ ΰ ὐ ὑ ὒ ὓ ὔ ὕ ὖ ὗ ῦ Υ ῾Υ Ρ ῾Ρ

ω ὼ ώ ὠ ὡ ὢ ὣ ὤ ὥ ὦ ὧ ᾠ ᾤ ᾧ ᾦ ῳ ῴ ῶ ῷ Ω ᾿Ω ῾Ω ῞Ω ῟Ω

Ο ᾿Ο ῾Ο ῝Ο ῎Ο ῞Ο ο ὸ ό ὀ ὁ ὂ ὃ ὄ ὅ

III. RECOGNITION SYSTEM

A. Bidirectional LSTM Neural Networks

LSTM Networks are a modern variant of Recurrent Neural
Networks (RNN). Traditional RNNs suffer from the problem
of vanishing and exploding gradients, which implies that
during the training process the gradient becomes either too
small (vanishing) or too large (exploding) resulting, thus, in
poor training. Hochreiter and Schmidhuber [8] replaced the
basic unit of computation (sigmoid or tanh) with a computer-
memory like cell and three multiplicative gates – input, output,
and forget. These gates behave similar to read, write, and
refresh functions in a computer memory. In whis way, the
network can retain the contextual information as long as forget
gate is ON. On the other hand, the output gate allows writing
out the contained information and the input gate allows the
network to read new information [9].

To process the contextual information in both forward and
backward directions, bidirectional LSTM (BLSTM) network
was proposed by Graves and Schmidhuber [10]. In this
network, there are two hidden layers that process the input
data in both forward (left-to-right) and backward (right-to-
left) directions. This configuration allows the LSTM network
to have complete contextual information about any time-step
(past and future) during the processing. Both these layers are
connected to the output layer.

Any standard neural network requires a segmented input
data, so that its cost functions can be defined for each point.
This requirement renders RNNs (or any of its variant) unusable
for sequence learning tasks. Hybrid networks, such as HMM-
RNNs, emerged as a possible solution to this challenge. In
such an HMM-RNN architecture, the HMM part is used to
segment the input data implicitly and the RNN is used for clas-
sification. However, this combination failed to utilize the full

capabilities of recurrent nets. Graves [11] added a layer in an
LSTM network that performs a forward-backward algorithm,
called Connectionist Temporal Classification (CTC), on the
output and enables LSTM networks to be used as sequence-
learning machines, that is, there is no need to segment the
input sequence.

Depending on how the input is presented at the input layer,
LSTM networks can be categorized as 1D-LSTM networks
or 2D-LSTM Networks. For 1D variant (see Figure 3), the
input is in the form of a single dimensional sequence and in
case of 2D, the input is given as a 2D patch. In both variants,
bidirectional is present. For 2D case, the bidirectional mode
means scanning the input in four directions, namely, right-to-
left, left-to-right, top-to-bottom and bottom-to-top. For printed
OCR tasks, we found that 1D-LSTM networks performs better
than their 2D siblings [2]. To use 1D-LSTM for OCR tasks, the
input textline image is scanned by a fixed-height window of
1-pixel width to convert the 2D-image into an one dimensional
sequence. This 1-pixel width slice is termed as a ‘frame’.

Figure 3. Simplified 1D-LSTM architecture. The Hidden layer is shown with
1 LSTM memory block. Each memory cell is connected to its surroundings
with input and output gates. The input gate allows the input to be read,
the output gate allows outputs to be written and the forget gate allows
retention of the information within the memory cell. The CTC layer aligns the
output activation with the ground-truth sequence using a forward-backward
algorithm [11]. The input image is traversed by a X×1 (X being the height
of the image) window to convert the 2D image into an 1D sequence. The ‘GT
File’ here refers to the ground-truth labels associated with the input textline.

The training starts by choosing a random textline along with
its transcription from training data. The textline is converted
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into an one dimensional sequence (as described above) and
each frame is fed to the LSTM network, where a forward
pass is performed through the hidden and output layer. Then
the forward-backward algorithm (CTC) aligns the output ac-
tivation with ground-truth labels and subsequently the error
is back-propagated (backward pass). During this process, the
LSTM network learns to classify each frame into a target class
(including space and ‘reject’ classes).

From the above discussion, it is clear that we require textline
images of equal heights, so that they can be converted to
an equal depth sequence4. The process of making heights of
text-line images is termed as “normalization”. This is also
important from OCR point of view [12] as for Latin and Greek
scripts, the absolute position and scale along the vertical axes
are essential for distinguishing many common characters.

For our experiments, we used the open-source OCR system
OCRopus [13]. The OCRopus comprises of many document
image analysis modules including modules for binarization,
page segmentation, textline normalization, line recognition,
etc. We used the LSTM line recognizer module for the Greek
polytonic script training.

B. Network structure

The number of iterations that the LSTM network would run
is defined by N/f , where N is the total number of iterations
(default=1M ) and f is the mini-batch size (default=1000). In
the current work, we normalized the size of the textline images
to a height of l = 48 pixels (default values) and trained the
LSTM based recognizer up to N = 150000 using the mini-
batch size of f = 1000.

IV. EXPERIMENTAL EVALUATION AND RESULTS

In order to evaluate the LSTM-based recognizer we run
three series of experiments, using different combinations of
the datasets described in Section II for training and testing. For
comparison reasons, we use two well-known OCR engines: (i)
Tesseract, an open source publicly available OCR system and
(ii) ABBYY FineReader, a commercial OCR product.

In the first experiment, we used the synthetic data of
Appian’s Roman History and the 687 images of the Greek
Official Government Gazette to train the LSTM-engine, while
the textlines of the Greek Parliament Proceedings were used
as the test set. In this way we ended up with a training set of
12, 486 textlines and a test set of 3, 203 textlines. It is worth
mentioning that in this setting the fonts which are met in the
training set are different from the four fonts of the test set.
However, the OCRopus recognizer yielded a character error
rate of 14.68%, after 125, 000 iterations in the training phase,
as detailed in Figure 4. Note that the use of synthetic training
data was important, i.e., without synthetic training data the
performance was dramatically worse.

In the second configuration, the training set includes the
synthetic data of Appian’s Roman History, the textline images
of the Greek Official Government Gazette, and the textline

4the depth of sequence is equal to the height of the image.

Figure 4. Error rates of LSTM in the first experiment for various iterations.

images of the three subsets (Saripolos, Markezinis and Vlahou)
of the Greek Parliament Proceedings, while the textlines of
Venizelos were the test images. In this way, we end up with a
training set of 15, 167 textlines and a test set of 522 textlines.
Note that, in this experiment, the training data contain text
written in five different fonts, while the test set includes one
font, unseen during training. We observe a character error rate
that was significantly decreased to 5.67% (see Figure 5).

Figure 5. Error rates of LSTM in the second experiment for various iterations.

In the last experiment we tried to setup a configuration for
comparing the proposed recognizer with the two aforemen-
tioned OCR systems. In the case of Tesseract the decision
was straightforward, since we would like to examine the
performance of a state-of-the-art tool, as it is available (i.e.
no training or adaptation was applied); we used the train-
ing model for Greek polytonic script built by Nick White
(http://eutypon.gr). Regarding the ABBYY FineReader engine,
we adapted it to the recognition of Greek polytonic scripts
by adopting the following procedure: First, we found the
symbols which occur more than five times in each dataset
of the Greek Parliament Proceedings. Then we randomly
selected textline images with the purpose of creating a subset
in which the targeted symbols occur at least five times.
We ended up with a set including 367 textlines (54 from
Vlahou, 136 from Markezinis, 108 from Saripolos and 69
from Venizelos). Finally, we semi-automatically segmented
the images into characters and used the training utility of
the ABBYY FineReader engine SDK to create the respective
characters’ models. Moreover, we make use of the Thesaurus
Linguae Graecae corpus5 to build a dictionary (in ABBYY
FineReader’s format) of Kathareuousa6 and make it available

5http://www.tlg.uci.edu/
6a version between Ancient and Modern Greek, which was widely used

both for literary and official purposes and was written in polytonic script
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Figure 6. Training error rate using the third experiment.

Table III
CHARACTER (CER) AND WORD ERROR RATES (WER) OF THE THIRD

EXPERIMENT

OCR Engine CER (%) WER (%)

Tesseract 30.37 71.43

ABBYY 19.20 48.60

OCRopus 5.51 24.13

to the engine with the aim of supporting recognition. These
367 textlines and the datasets of Appian’s Roman History and
Greek Official Government Gazette compose the train data
for the LSTM-based recognizer, while the remaining 2, 836
textlines of Greek Parliament Proceedings were included in
the test data. The results are presented in Table III. It is worth
mentioning that the poor performance of Tesseract is mainly
explained by the fact that the characters’ degradation in the
test set is too high, that the character segmentation introduces
too many mistakes that are propagated in the recognition stage.
Consequently, the use of synthetic data for training the engine
could help in overcoming this shortcoming.

Regarding the LSTM-based recognizer, the training model
with the lowest error rate (0.16%) was the one produced after
138, 000th iterations. By carefully examining Figure 6 we
conclude that the training curve is still very unstable at the
regions of 0.16% and it becomes more stable at 0.35%. As
a result by using the training model produced after 148, 000
iterations, with corresponding error rate of 0.35%, results in
reducing the character recognition error rate on the test set
from 6.05% to 5.51%. The most frequent errors for the LSTM-
recognizer are illustrated in Table IV. In particular, there are
318 deletion errors and 273 insertion errors out of 9, 351 errors
in total. Furthermore, there is a great number of errors where a
letter is misclassified with the same letter but different accent.
For example 94 occurrences of the letter ᾿Ε are erroneously
classified as the letter ῾Ε .

V. CONCLUSIONS & FUTURE WORK

In this work we have presented Polyton-DB, a novel
database containing 15, 689 textlines of synthetic and authentic
printed Greek Polytonic script. We used this collection to
train and test an LSTM-based recognizer using the OCRopus

Table IV
MOST FREQUENT ERRORS OF THE LSTM-RECOGNIZER

No. of Errors OCR result GT character
109 − ′

104 . ,

100 ι τ

100 ο σv

94 ᾿Ε ῾Ε

framework and achieved promising results. The LSTM-based
recognizer for the Greek Polytonic script can be further
improved by adding a post-processing procedure. In particular,
by observing carefully the misclassified letters, we conclude
that most of them could be fixed by reducing the number
of different classes contained in the Polyton-DB. This can be
achieved in a post processing procedure, by merging the letters
that are the same but they have different accents (e.g. ἔ, ἕ).
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