
Shared-Operation Hypercomplex
Networks for Handwritten Text

Recognition

Giorgos Sfikas1(B), George Retsinas2, Panagiotis Dimitrakopoulos3,
Basilis Gatos4, and Christophoros Nikou3

1 Department of Surveying and Geoinformatics Engineering, School of Engineering,
University of West Attica, Athens, Greece

gsfikas@uniwa.gr
2 School of Electrical and Computer Engineering,

National Technical University of Athens, Athens, Greece
gretsinas@central.ntua.gr

3 Department of Computer Science and Engineering, University of Ioannina,
Ioannina, Greece

p.dimitrakopoulos@uoi.gr, cnikou@cse.uoi.gr
4 Computational Intelligence Laboratory, Institute of Informatics and

Telecommunications, National Center for Scientific Research “Demokritos”,
Athens, Greece

bgat@iit.demokritos.gr

Abstract. Parameterized hypercomplex layers have recently emerged
as very useful alternatives of standard neural network layers. They allow
for the construction of extremely lightweight architectures, with little
to no sacrifice of accuracy. We propose networks of Shared-Operation
Parameterized Hypercomplex layers, where the operation parameteriza-
tion is co-learned by all layers in tandem. In this manner, we mitigate
the computational burden of operation parameterization, which grows
cubically with respect to the hypercomplex dimension. We attain good
word and character error rate at only a small fraction of the memory
footprint of non-hypercomplex models as well as previous non-shared
operation hypercomplex ones (up to −96.8% size reduction).

Keywords: Parameterized Hypercomplex Layers · Hypercomplex
Algebra · Handwritten Text Recognition · Low memory footprint

1 Introduction and Related Work

Handwritten Text Recognition (HTR) is one of the major pattern recognition
tasks in the field of document image processing. The most typical use-case
involves segmented lines of text images as inputs, which are to be automati-
cally converted to a string of characters. While the task itself is similar to that
of Optical Character Recognition (OCR), which conventionally involves recog-
nition of printed text, handwritten text offers a significantly greater challenge.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 200–216, 2023.
https://doi.org/10.1007/978-3-031-41685-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_13


Shared-Operation Hypercomplex Networks for HTR 201

The variability of handwriting style, which may be important not only between
writers, but within the output of the same writer is one of the major difficulties.
Indeed, it is not an uncommon occurence to have a learning system that fails,
when trained on one writer or group of writers and tested on another [24,25].

Current state-of-the-art systems for HTR include different variants of Deep
Neural Networks. Due to the sequential nature of text, Recurrent Neural Net-
works (RNN) have been a popular choice of neural network for HTR. Combined
with Connectionist Temporal Classification (CTC)-based objectives, which allow
for a loss value to be computed during training and without requiring exact
alignment between prediction and target, RNNs have been the basis of various
excellent-performing systems [6,21]. Sequence-to-sequence models constistute an
alternative approach to HTR, which is based on decoupling encoding to a feature
vector and decoding to the target string as two separate network components.
Compared to Convolutional Neural Networks (CNNs), RNNs have the advan-
tage of capturing information dependencies in a sequential manner, and usually
have led to better HTR models w.r.t. to the former. Encoding prior knowledge
about the nature of our inputs is primarily enforced through the inherent induc-
tive bias that is represented by each model. Specifically, convolutional layers
model statistical dependence of some form for each time frame w.r.t. neighbour-
ing frames, or spatial dependence of line image cues w.r.t. spatially close pixels.
The dependence range is hard-coded in the form of the characteristics of each
convolution, and primarily as the size of each kernel, along with other hyperpa-
rameters (dilation, stride). On this note, there has been important recent work
on flexible, adaptive convolutional operations, e.g. [9,27]. With recurrent layers
on the other hand, we encode our belief that our data are inherently sequential.
Forward and backward dependencies are captured easily through bidirectional
recurrent variants. Compared to CNNs however, RNNs are known to be difficult
to train and converge to an acceptable solution. To this end, architectures that
combine convolutional and recurrent components have been proposed [23,26]. A
very much used recipe involves a convolutional backbone that is charged with
transforming the input segmented image into a useful feature map. This fea-
ture map is then pooled or reshaped into a sequence of features that is fed
into a recurrent component [13,23,26]. Regarding convolutional-recurrent model
architecture, a technique that has also worked well involves supplying the main
recurrent network with an auxiliary CTC-based component [26,36]. This can be
understood as a penalty on cross-entropy loss over a recurrent decoder. In prac-
tice, this CTC shortcut can be fully convolutional, including 2D and 1D (tem-
poral) convolutions, which translates to less recurrent components and faster
convergence.

Transformers have emerged as an antagonist to both convolutional and recur-
rent architectures, in the sense of the aspiration to replace either one for most
important vision tasks. Initially proposed in a Natural Language Processing
setting [34], they have been tailored for tasks that can be cast as sequential
processing, and can in principle capture complex, far-reaching input interdepen-
dencies [20]. The main ingredient in transformers is the self-attention opera-
tion. Input sequence vectors are transformed into a set of “keys”, “queries” and



202 G. Sfikas et al.

“values” through learnable, shared transformations which create a dictionary of
features that are subsequently recombined as a softmax-weighted average and
transformed through a fully-connected layer into an output sequence. Multiple
transformations for the same inputs have shown to work well in practice, which
corresponds to the so-called multi-head variant of self-attention, or simply multi-
head self-attention. In turn, cascades of multi-head self-attention can be grouped
together to form so-called transformer layers [20]. Use of transformers has been
explored in the field of HTR by recent work, where excellent results are reported
[8]; interestingly, transformers are however related to inherent shortcomings such
as poorly handling text repetitions [35], which in turn are rooted to the indirect
manner that they handle sequence positional dependence. Another important
disadvantage is that models that fully depend on a transformer structure tend
to be orders of magnitude larger than their non-transformer counterparts [36].

A direction of research that is orthogonal to optimizing HTR accuracy w.r.t.
to NN architectural components and structure, involves creating a network that
is as resource-demanding as possible. Network size in terms of numbers of param-
eters is one such metric. The general trend in learning is to have ever-larger
models, with NN sizes reaching billions of parameters in some tasks [20]. The
largest models in HTR are Transformer-based and comprise hundreds of millions
of parameters [36]. In a real application setting, where budget constraints may
be very tight (e.g. on embedded devices), large models are unfortunately inap-
plicable. To this end, a host of works have explored sparsity in neural networks
[4,12,22,39], where, in broad terms, the goal is to train NNs with as many zero-
ed connections as possible, at as less of an accuracy loss as possible. A family
of techniques involves augmenting the training objective with terms that will
encourage model sparsity. In [12], a L0 term is added to the total objective. In
[39], a variational inference model is proposed, where model weights follow a
zero-mean prior, pushing the posterior towards small magnitudes; values that
are under a threshold are pruned. Feature pyramid components are connected
with group-wise factors in [4], and in this context variational inference amounts
to a neural architecture search scheme. Hypercomplex networks are another
group of techniques that follow a very different philosophy in achieving net-
work sparsity. They lead to models which have alternate layers of standard NN
layers (fully-connected, convolutional, etc.) but which enforce extensive param-
eter sharing. Quaternion neural networks were the first type of hypercomplex
networks [7,16]. By treating model neurons and weights as quaternionic, which
are inherently 4-dimensional, an impressive 75% economy in model size is easily
attained. After quaternionic versions of convolutional networks [17,40], propos-
als for other types of quaternionic layer have followed suit, like recurrent layers,
transformers, or extensions to graph neural networks [15,19,32]. Generalizing
this paradigm, parameterized hypercomplex networks have recently been pro-
posed as an alternative to quaternionic networks, where the level of parameter
sharing is defined as a model hyperparameter. Crucially, in parameterized hyper-
complex networks the manner in which weight tuples are multiplied is learnable.
This type of multiplication has been named Parameterized Hypercomplex Multi-
plication (PHM) [38], and has lead to models that were (in practice) downscaled
up to 16×.



Shared-Operation Hypercomplex Networks for HTR 203

In this work, we argue that the marginal benefit with respect to increasing
network size, structure and training complexity is a critical factor when it comes
to choosing an architecture for our HTR model. Is using a model that is 10x
or 100x larger than the previous baseline worth it, only to obtain a decrease
in Character Error Rate (CER) by 1–2% as an end result? Also, it is hard to
tell whether small accuracy differences generalize well and whether they lead to
any improvement on out-of-distribution test data. We believe that a trade-off of
benchmark accuracy and resource requirements should be considered. In light of
the aforementioned considerations, we propose a HTR model that uses a new,
even more compact model of Parameterized Hypercomplex Layers that builds on
a Convolutional-Recurrent architecture with a CTC shortcut [23,26]. Our model
achieves good HTR results at a model size as small as ∼ 500, 000 parameters,
which amounts to up to 32-fold compression or 3.1% the size of our baseline
model.

The paper is structured as follows. We begin with a brief outline of the pre-
requisites for hypercomplex algebra and define hypercomplex layers in Sect. 2.
In Sect. 3 we present the proposed Shared Hypercomplex architecture for Hand-
written Text Recognition. We evaluate the discussed models in Sect. 4, where
we show that the proposed model using shared-operation hypercomplex layers
performs very adequately on an HTR task while being significantly smaller than
competing models; also, we test the model against non-hypercomplex architec-
tures given a tight resource budget. We close with concluding remarks on our
contribution and future work in Sect. 5.

2 Hypercomplex Numbers and Hypercomplex Layers

2.1 Quaternions

Hypercomplex algebras are mathematical structures of numbers of “intrinsically
high” dimensionality. Historically, quaternions (the set of which is denoted as
H in this text) were the first type of hypercomplex numbers, discovered by
Hamilton in the 19th century [10]. Motivated by extending complex numbers C,
which are made up of a real and an imaginary part, to an algebra of a multitude
of parts, quaternions were defined as numbers q:

q = a + bi + cj + dk, (1)

where a, b, c, d ∈ R and i, j,k are imaginary units. The three imaginary units,
along with the real unit, are deemed independent and perpendicular to one
another. They can also be rewritten as a sum of a scalar part S(q) = a and
a vector part V (q) = bi + cj + dk, isomorphic to R and R

3 respectively. All
imaginary units admit to being square roots of negative unity:

i2 = j2 = k2 = −1, (2)

a property which actually extends to infinite elements in H. Additive and mul-
tiplication rules are necessary to define an algebra, of which the first is quite



204 G. Sfikas et al.

straightforward; corresponding real or imaginary parts are added together, with
no operations acting between different number real or imaginary parts. Formally,

p + q = (ap + aq) + (bp + bq)i + (cp + cq)j + (dp + dq)k, (3)

where p = ap + bpi + cpj + dpk and q = aq + bqi + cqj + dqk. Multiplication
of quaternions requires first defining a way to multiply imaginary units. Except
Eq. 2, we have

ij = k, jk = i,ki = j, ji = −k, jk = −i,ki = −j, (4)

and the real unity acts as a multiplicative identity as in R. Note that from Eq. 4
we have the corollary that in general pq �= qp, so multiplication is not commuta-
tive in H (but it still is associative). Combined with a transitive property over
our definition of addition, we have the rule of multiplication (also referred to as
a “Hamilton” product):

pq = S(p)S(q) − V (p) · V (q) + S(p)V (q) + S(q)V (p) + V (p) × V (q), (5)

where · is the inner product and × is the cross product. Note from the above,
that for “pure” quaternions (S(p) = S(q) = 0) that are also perpendicular, the
multiplication rule becomes simply a cross product V (p) × V (q). The multipli-
cation rule can be written in an expanded form as:

pq =(apaq − bpbq − cpcq − dpdq)+ (6)
(apbq + bpaq + cpdq − dpcq)i+ (7)
(apcq − bpdq + cpaq + dpbq)j+ (8)
(apdq + bpcq − cpbq + dpaq)k, (9)

where we replaced S(·) and V (·) with their definitions. Especially interestingly
regarding the proposed model in this work, we can rewrite the above in a matrix-
vector form, as:

⎡
⎢⎢⎣
apq
bpq
cpq
dpq

⎤
⎥⎥⎦ = Pq =

⎡
⎢⎢⎣
ap −bp −cp −dp
bp ap −dp cp
cp dp ap −bp
dp −cp bp ap

⎤
⎥⎥⎦

⎡
⎢⎢⎣
aq
bq
cq
dq

⎤
⎥⎥⎦ , (10)

where for the resulting quaternion pq we write pq = apq+bpqi+cpqj+dpqk. With
a slight abuse of notation we write q also to denote the vector ∈ R

4 that includes
the coefficients of quaternion q, and we write P for the matrix that corresponds
to quaternion p. Matrices structured as P form a 4-dimensional subspace of R4×4

that is isomorphic to H, to which we shall refer to as S4. It is straightforward to
see that a basis for S4 is formed by the following matrices:

A4
1 = I4, A

4
2 =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ , A4

3 =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ , A4

4 =

⎡
⎢⎢⎣

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

(11)



Shared-Operation Hypercomplex Networks for HTR 205

i.e. any matrix in S4 can be written as a linear combination of {Ai}4i=1, and
{Ai}4i=1 are linearly independent. Hence, we can rewrite Eq. 10 as:

⎡
⎢⎢⎣
apq
bpq
cpq
dpq

⎤
⎥⎥⎦ = (apA4

1 + bpA
4
2 + cpA

4
3 + dpA

4
4)

⎡
⎢⎢⎣
aq
bq
cq
dq

⎤
⎥⎥⎦ . (12)

Now, supposing that we need to multiply N quaternions p1, p2, · · · , pN with
N quaternions q1, q2, · · · , qN , we can rewrite this process again as a matrix-
vector product qN = PNqN , where our input and resulting vectors are now of
dimensions equal to 4N , and the transformation matrix is ∈ R

4N×4N . Depending
on whether we want to multiply only N pairs of quaternions piqi for ∀i ∈ [1, N ] or
all possible pairs of pi ∀i ∈ [1, N ] and qj ∀j ∈ [1, N ], we’ll have a dimensionality
equal to 4N or 4N2 respectively. This is still much less than the containing
space of 4N × 4N , for which dim{R4N×4N} = 16N2. Furthermore, the matrix
PN can be written as a sum of Kronecker products of matrices A1, A2, A3, A4

with matrices that contain the elements of p1, p2, · · · , pN [38]. Recall that the
Kronecker product of A ∈ R

k×l and B ∈ R
m×n is defined as:

A ⊗ B =

⎡
⎢⎣
a11B . . . a1lB

...
. . .

...
ak1B . . . aklB

⎤
⎥⎦ , (13)

where A ⊗ B ∈ R
km×ln. Note that in general A ⊗ B �= B ⊗ A, but the two

results are related through a “perfect shuffle” permutation [33]. This means
that, depending on whether we stack quaternion elements in input and result-
ing vectors as a1p, a

2
p, a

3
p, · · · , d2p, d3p, d4p or a1p, b

1
p, c

1
p, · · · , bNp , cNp , dNp , we can either

use a sum of factors with Ai matrices multiplying from the left or from the
right. Writing a set of quaternion products as a single Kronecker-factored prod-
uct is important with respect to the generalization of the Hamilton product to
Parameterized Hypercomplex Multiplication, which we discuss in Subsect. 2.2.

Higher-order Hypercomplex Numbers. Quaternions aside, there exist other types
of hypercomplex numbers of dimensionality higher than 4. As a rule of the
thumb, the more we progress to higher dimensions, the less “easy-to-use”
each hypercomplex algebra becomes; for example, quaternions have a non-
commutative but associative multiplication rule but octonions and sedenions,
of dimensionalities equal to 8 and 16 respectively, are neither commutative nor
associative.

2.2 Quaternion and Parameterized Hypercomplex Layers

The restatement of the Hamilton product as a matrix-vector product (Eq. 10)
has in fact provided the basis for the definition of quaternion layers as part of
quaternionic extensions of standard layers in neural networks. As a multiplica-
tion by a matrix corresponds to a linear transformation, this construction has



206 G. Sfikas et al.

been used as a replacement of standard linear transformation components. Fur-
thermore, a linear transformation matrix sized M × N , which would normally
have a dimension equal to MN , when replaced with its quaternionic counterpart
only has a dimension equal to four times less, MN/4, as we saw in the previous
subsection. In practical terms, this means that the layer uses four times less
parameters for each quaternionic component. As linear components are ubiqui-
tous in neural networks, whole networks can be revamped to their quaternionic
versions [18].

Fig. 1. An illustration of the proposed idea. Standard Parameterized Hypercomplex
Networks use multiple layers that are parameterized using two sets of matrices: {Ai}ni=1

and {Fi}ni=1, of which the former can be thought of a learnable generalization of the
Hamilton product rules. In this work, with “Shared-Operation” Hypercomplex Net-
works, we argue that learning only one set of {Ai}ni=1 for the whole network, is enough
to construct a useful and very light-weight model.

The major constraint related to quaternionic neural networks is that dimen-
sionality is reduced according to a fixed factor of four. Zhang et al. [38] have
proposed a generalization of the aforementioned construction from quaternions
and four-fold economy to arbitrary-dimension hypercomplex constructions. The
matrix W in all cases is defined as a decomposition into matrices {Ai}Nn=1 and
{Fi}Nn=1. This is based on writing the transformation matrix W for a given linear
component as a sum of Kronecker factors:

W =
n∑

i=1

Ai ⊗ Fi, (14)

where Ai ∈ R
n×n and Fi ∈ R

f/n×g/n. The resulting matrix W is of size f × g,
but the total number of independent parameters is significantly less. Indeed, we
have a total of n3 + fg/n parameters, where supposing that n is much less than
either input and output dimensionalities f or g, the second parameter should be



Shared-Operation Hypercomplex Networks for HTR 207

dominant. For a total of L independent linear components in the network, we
have Ln3 + Lfg/n free parameters.

3 Proposed Model for Handwritten Text Recognition

3.1 Shared-Operation Parameterized Hypercomplex Layer

In this work, we propose the use of a new variant of Parameterized Hypercom-
plex Multiplication Networks (PHM), to which we refer to as Shared-Operation
Hypercomplex Network (SOHN). “Operation sharing” in SOHN refers to hav-
ing a shared component that is learned by all hypercomplex layers jointly. Our
motivation is related to the three following points:

a) In standard PHM, layer linear components are decomposed as sums of Kro-
necker products of the form

∑
i Ai ⊗ Fi. The two sets of matrices Ai, Fi

are related to a different intuitive use. Matrices Ai are related to how the
shared parameter groups interact with one another. Note for example, that
we can understand the quaternionic case as a special case of parameterized
hypercomplex multiplication where n = 4 and Ai are as in Eq. 11. These
matrices control the structure of the resulting Kronecker product, and they
are a direct consequence of the definition of the Hamilton product, which in
turn stems from the multiplication rules that were set so that H can form
an algebra. In the parameterized hypercomplex case, we no longer have these
constraints, and in a sense the equivalent of the Hamilton product is re-learnt
for arbitrary n.

b) The number of what we called “independent” linear layers in our network
can in effect be significantly larger than the number of layers themselves. For
example, for a Hypercomplex LSTM layer, we have 4 or 8 linear transforma-
tions assuming unidirectional or bidirectional recurrence; these correspond to
each of the related gates (input, output, forget, cell input). For the convolu-
tional case, we can also write a convolution in a matrix-vector form Wx + b
with W as a circulant matrix, but it will suffice to deal with a form where
parameters are packed in an order-4 tensor as in [5,31]). Nevertheless, the
complexity factor related to the size of the Ai matrices can quickly (w.r.t.
increasing n) become significant. (In our HTR experiments, we show that
choosing n = 32 accounts for almost half the network parameter complexity).

c) Also importantly, in practice we have observed that results for PHM/n = 4
and quaternionic variants are similar in terms of network accuracy/efficiency
(e.g. [31]). This may hint that learning a separate set of multiplication rules
for each linear component is unnecessary.

For reasons of clarity of presentation, we consider a case where we have
only feed-forward connections and all linear operations are hypercomplex; this
case can easily be extended to recurrent connections and NNs that include non-
hypercomplex layers. Formally, we write our network as a cascade of L layers, i.e.:

SOHN(x; {Ai}ni=1, {F (1)
i }ni=1, {F (2)

i }ni=1, · · · , {F (L)
i }ni=1) =



208 G. Sfikas et al.

l(L)({Ai}ni=1, {F (L)
i }ni=1) ◦ · · · ◦ l(1)({Ai}ni=1, {F (1)

i }ni=1)(x), (15)
each layer uses parameterized hypercomplex operations:

y(j) = PHM(y(j−1); {Ai}ni=1, {F (j)
i }ni=1), (16)

where yj is the output of layer j. In practical terms, a SOHN can be implemented
by adding skip connections starting from a single learnable tensor of size n×n×n
which would represent the Ai matrices, towards all hypercomplex layers. An
illustration of this idea can be seen in Fig. 1.

3.2 Model Architecture

As a baseline architecture, in the sense of choosing the layout, number of blocks,
channels, dimensionality and other component features, we have followed the
convolutional-recurrent architecture proposed in [23]. Written as a Python-style
data structure –this will come in handy for comparing architectures in Sect. 4–
we denote architecture as [(2, 64),mpool, (4, 128),mpool, (4, 256)], (256, 3). A list
of tuples corresponds to convolutional backbone of ResNet blocks, and the final
tuple corresponds to the setup of the recurrent component before the softmax
output. Tuples for the convolutional backbone signify (number of ResNet blocks,
number of channels). “mpool” signifies a 2×2 max-pooling operation. Regarding
the tuple corresponding to the recurrent component, it signifies (hidden feature
dimensionality, number of LSTM layers). After the final convolutional block, a
column-wise max-pooling follows, which branches out to two routes. The first,
“main” route is fed to the LSTM recurrent component, followed by a fully-
connected layer which maps the output number of channels to the number of
output classes, so we get a sequence of softmax-activated probability vectors as a
result. This result is fed to a CTC loss. The second route that branches after the
column-wise max-pooling operation, is transformed to softmax-activated prob-
ability vectors directly, i.e. bypassing the recurrent component. This again is
fed to a CTC loss that is weighed down (0.1×) with respect to the loss that
corresponds to the first, recurrent route; this architectural choice has shown to
aid convergence in recurrent architectures [23,26]. In all cases, we have opted
for using channel size of convolutional and recurrent layers that are multiples
of the highest hypercomplex parameter that we have used, n = 32. This choice
was made so as to ease comparisons between different hyperparameter choices.
Setting channel sizes according to this rule was not possible in a number of cases,
namely regarding input and output size. In these cases, we use 1 × 1 convolu-
tion to transform a tensor from or to the desired channel size. Dropout with
probability 20% is used between recurrent layers (Fig. 2).

4 Experiments

4.1 Datasets

We have tested our models on three document image datasets: IAM [14], Rimes
[1], and Memoirs [28]. Excerpts from the three datasets can be compared in
Fig. 3.



Shared-Operation Hypercomplex Networks for HTR 209

Fig. 2. The proposed shared-operation architecture for HTR.

IAM. The IAM dataset encompasses text produced by 657 different writers,
split into writer-independent partitions (we use the same training/validation/set
partition as in [21]). There is a total of 6482 lines for the training set, 976 lines
for the validation set, and 2915 lines for the test set. IAM is written in a Latin
script and in the English language.

RIMES. RIMES encompasses 11333 lines in the training set and 778 lines in the
test set. It is written in a Latin script and in the French language.

Memoirs. The Memoirs dataset [28] comprises 46 manuscripts, written in the
19th as a personal diary of Sophia Trikoupi, sister of a contemporary Greek prime
minister. We have a total of 4, 941 words, which correspond to 385 lines for the
training set, 129 lines for the validation set and 179 lines of text for the test set.
We use the training and test partitions defined in [28].1 All experiments follow
the setting of line-level recognition, with a lexicon-free unconstrained greedy
CTC decoding scheme.

4.2 Varying the Hypercomplex Dimension and PHM vs SOHN

In Table 1 we report results of HTR on the three aforementioned datasets. We
have run different variants of the proposed hypercomplex model, using either
standard Parameterized Hypercomplex Multiplication [38] (PHM), or the pro-
posed Shared-Operation Hypercomplex variant (SOHN). In both cases we report
1 The dataset is publicly available at https://github.com/sfikas/sophia-trikoupi-

handwritten-dataset/.

https://github.com/sfikas/sophia-trikoupi-handwritten-dataset/
https://github.com/sfikas/sophia-trikoupi-handwritten-dataset/


210 G. Sfikas et al.

Fig. 3. Excerpts from the datasets used for our experiments.

the employed hypercomplex parameter (n). Different values for n correspond to
different structure of the Ai and Fi Kronecker factors, and in general a higher
value for n leads to more compression. The exception to this rule comes when
the cubic factor of complexity O(n3) for the Ai matrices surpasses that of the
Fi matrices, i.e. O(fg/n). In the SOHN variant the former is significantly mit-
igated, as we only require a single n3-sized tensor for the whole network, hence
the savings in parameter size. (Note that the difference in accuracy between [23]
stems from the custom implementation of LSTM that was written to extend
to the hypercomplex variants – the architecture of the “Retsinas et al.” and



Shared-Operation Hypercomplex Networks for HTR 211

Fig. 4. Comparison of HTR models in terms of model size and test set error rate.
The area of each circle is proportional to the number of trainable parameters of a
variant in a model family. Different circle sizes for SOHN and PHM correpond to
different hyperparameter values (n = 16 and n = 32 for the larger and smaller radii
respectively).

“Real-valued” models as referenced in Table 1 is otherwise identical). A graph-
ical illustration can also be examined in Fig. 4, where we present a comparison
of both error rate and model size.

4.3 PHM Model vs Real-Valued Model on a Resource Budget

We have compared against a variants of CNN-RNN with a constrained, fixed
budget of trainable parameters. We have tested models on two different budgets,
namely 500 thousand and 750 thousand parameters, which we can examine in
Tables 2 and 3 respectively. In these cases, we used the proposed SOHN models
for hypercomplex dimensions n = 16 and n = 32, and compared against non-
hypercomplex models that use approximately the same number of parameters.
As there is naturally more than one way to build a model given a set budget, we
built different non-hypercomplex models in order to have as much an unbiased
and fair comparison as possible. The setups for these model variants are:

1. [(4, 64)], (64, 2) (500k parameters)
2. [(1, 64)], (100, 2) (513k parameters)
3. [(1, 64)],mpool, (1, 128)], (64, 2) (576k parameters)
4. [(2, 32),mpool, (2, 64),mpool, (2, 64)], (96, 1) (521k parameters)
5. [(2, 8),mpool, (4, 8),mpool, (4, 8)], (112, 2) (494k parameters)
6. [(1, 64),mpool, (2, 112)], (64, 2) (746k parameters)
7. [(2, 96)], (100, 2) (768k parameters)
8. [(2, 16),mpool, (4, 18),mpool, (4, 32)], (128, 2) (744k parameters)

where we have used the same convention to represent architectural choices as in
Sect. 3.



212 G. Sfikas et al.

Table 1. Comparison of HTR models in terms of model size and test set error rate.
Model size is evaluated in terms of model number of parameters, and error rate is
evaluated in terms of CER over the test set of three different datasets (IAM [14],
RIMES [1], Memoirs [28]). For both considered metrics, a lower value is more desirable.
Both works of Li et al. [11] and Wick et al. (+syn) [36] use additional synthetic data in
training, while for the rest only the predefined training set is used to train the model.

#Millions of Params IAM RIMES Memoirs

Li et al. (+syn) [11] 334 3.42 − −
Li et al. (+syn) [11] 558 2.89 − −
Wick et al. (+syn) [36] 4.8 3.96 − −
Wick et al. [36] 4.8 5.09 − −
Yousef et al. [37] 3.4 4.9 − −
Diaz et al. [3] 12 2.75 − −
Retsinas et al. [23] 10 4.62 2.75 −
Real-valued model 10 6.2 3.9 11.2

PHM/n = 2 model 5.1 6.5 6.5 11.4

Quaternion model 2.6 6.9 4.3 11.8

PHM/n = 4 model 2.6 6.9 7.0 11.4

PHM/n = 8 model 1.4 7.5 4.7 11.8

PHM/n = 16 model 1.03 7.4 4.5 12.4

SOHN/n = 16 model 0.74 8.6 5.5 12.7

PHM/n = 32 model 2.8 6.6 3.9 12.1

SOHN/n = 32 model 0.46 8.9 5.7 12.6

As a remark on the results of Tables 2, 3, we can state that it seems that
trimming down a network to less parameters leads to error rates that vary widely;
some of the compared variants are much worse than the proposed SOHN models,
while others come quite close. We can however deduce that while applying a
Shared-Operation architecture invariably leads to a slight detriment of accuracy,
attempting to enforce a constrained budget on a real-valued architecture is very
much dependent on the way the baseline network is “pruned-down”.



Shared-Operation Hypercomplex Networks for HTR 213

Table 2. Peformance comparison of HTR models on a budget of 500k parameters.
Loss, CER and WER over the IAM test set are reported. See text for details.

Model type Number of Parameters Test Loss Best CER Best WER

Ours (SOHN/n=32) 459k 25.3 8.9 29.6

Non-PHM variant #1 500k 35.4 16.6 50.9

Non-PHM variant #2 513k 72.4 37.2 82.7

Non-PHM variant #3 576k 44.8 17.3 52.9

Non-PHM variant #4 521k 27.3 9.0 30.6

Non-PHM variant #5 494k 61.7 26.3 65.4

Table 3. Peformance comparison of HTR models on a budget of 750k parameters.
Loss, CER and WER over the IAM test set are reported. See text for details.

Model type Number of Parameters Test Loss Best CER Best WER

Ours (SOHN/n=16) 742k 26.4 8.6 28.9

Non-PHM variant #6 746k 34.2 13.1 42.2

Non-PHM variant #7 768k 53.7 23.6 64.5

Non-PHM variant #8 744k 31.2 10.9 34.9

5 Conclusion and Future Work

We have presented a new type of hypercomplex architecture called Shared-
Operation Hypercomplex Networks. This scheme is based on the idea that the
multiplication operation matrices used in hypercomplex layers can be shared
across the network. As more parameters are shared, the computational com-
plexity alongside the trainable parameters is significantly reduced. Our claims
are to an extent corroborated by the reported experimental results, which test
SOHN based networks and PHM variants of our method against the current
state of the art in handwritten text recognition. While cutting down the number
of matrices to a single one does not throw off the model mechanics and adequate
error rates are still achieved, our experiments suggest that learning multiple Ai

matrices (as in standard PHM) is still beneficial, and by no means the difference
in accuracy between PHM and SOHN is insignificant. In general however, inte-
gration of the proposed method results in high network compression with small
accuracy drop. For future work, we plan to extend the model with other ways
of constraining the expenses related to the two Kronecker factors, like low-rank
approximations or other types of factorizations. Another direction of research
could involve imposing contraints in the form of a probabilistic prior over the Ai

matrices, which could in this context help regulate between choosing a global,
shared representation versus a local representation [29,30]. In terms of appli-
cations, interesting use cases include segmentation-free HTR frameworks [2] or
word-level recognition systems [26].



214 G. Sfikas et al.

Acknowledgments. This research has been partially co - financed by the EU
and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call “OPEN INNOVATION IN CUL-
TURE”, project Bessarion (T6YBΠ - 00214).

References

1. Augustin, E., Carré, M., Grosicki, E., Brodin, J.M., Geoffrois, E., Prêteux, F.:
Rimes evaluation campaign for handwritten mail processing. In: International
Workshop on Frontiers in Handwriting Recognition (IWFHR 2006), pp. 231–235
(2006)

2. Coquenet, D., Chatelain, C., Paquet, T.: DAN: a segmentation-free document
attention network for handwritten document recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 45, 8227–8243 (2023)

3. Diaz, D.H., Qin, S., Ingle, R., Fujii, Y., Bissacco, A.: Rethinking text line recogni-
tion models. arXiv preprint arXiv:2104.07787 (2021)

4. Dimitrakopoulos, P., Sfikas, G., Nikou, C.: Variational feature pyramid networks.
In: International Conference on Machine Learning, pp. 5142–5152. PMLR (2022)

5. Grassucci, E., Zhang, A., Comminiello, D.: Lightweight convolutional neural net-
works by hypercomplex parameterization. arXiv preprint arXiv:2110.04176 (2021)

6. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376. ACM (2006)

7. Isokawa, T., Kusakabe, T., Matsui, N., Peper, F.: Quaternion neural network and
its application. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS
(LNAI), vol. 2774, pp. 318–324. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45226-3 44

8. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what
you read: non-recurrent handwritten text-line recognition. Pattern Recogn. 129,
108766 (2022)

9. Knigge, D.M., et al.: Modelling long range dependencies in ND: from task-specific
to a general purpose CNN. arXiv preprint arXiv:2301.10540 (2023)

10. Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Application
to Orbits, Aerospace and Virtual Reality. Princeton University Press, Princeton
(1999)

11. Li, M., et al.: TROCR: transformer-based optical character recognition with pre-
trained models. arXiv preprint arXiv:2109.10282 (2021)

12. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312 (2017)

13. Markou, K., et al.: A convolutional recurrent neural network for the handwritten
text recognition of historical greek manuscripts. In: Del Bimbo, A., et al. (eds.)
ICPR 2021. LNCS, vol. 12667, pp. 249–262. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-68787-8 18

14. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

15. Nguyen, T.D., Phung, D., et al.: Quaternion graph neural networks. In: Asian
Conference on Machine Learning, pp. 236–251. PMLR (2021)

16. Nitta, T.: A quaternary version of the backpropagation algorithm. In: Proceedings
of ICNN 1995 - International Conference on Neural Networks, pp. 2753–2756 (1995)

http://arxiv.org/abs/2104.07787
http://arxiv.org/abs/2110.04176
https://doi.org/10.1007/978-3-540-45226-3_44
https://doi.org/10.1007/978-3-540-45226-3_44
http://arxiv.org/abs/2301.10540
http://arxiv.org/abs/2109.10282
http://arxiv.org/abs/1712.01312
https://doi.org/10.1007/978-3-030-68787-8_18
https://doi.org/10.1007/978-3-030-68787-8_18


Shared-Operation Hypercomplex Networks for HTR 215

17. Parcollet, T., Morchid, M., Linarès, G.: Quaternion convolutional neural networks
for heterogeneous image processing. In: ICASSP 2019–2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8514–8518.
IEEE (2019)

18. Parcollet, T., Morchid, M., Linarès, G.: A survey of quaternion neural networks.
Artif. Intell. Rev. 53(4), 2957–2982 (2020)

19. Parcollet, T., et al.: Quaternion recurrent neural networks. arXiv preprint
arXiv:1806.04418 (2018)

20. Prince, S.J.: Understanding Deep Learning. MIT Press (2023). https://udlbook.
github.io/udlbook/

21. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In: 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), vol. 1, pp. 67–72. IEEE (2017)

22. Retsinas, G., Elafrou, A., Goumas, G., Maragos, P.: Online weight pruning via
adaptive sparsity loss. In: 2021 IEEE International Conference on Image Processing
(ICIP), pp. 3517–3521. IEEE (2021)

23. Retsinas, G., Sfikas, G., Gatos, B., Nikou, C.: Best practices for a handwritten text
recognition system. In: Uchida, S., Barney, E., Eglin, V. (eds.) DAS 2022. LNCS,
vol. 13237, pp. 247–259. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06555-2 17

24. Retsinas, G., Sfikas, G., Louloudis, G., Stamatopoulos, N., Gatos, B.: Compact
deep descriptors for keyword spotting. In: 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 315–320. IEEE (2018)

25. Retsinas, G., Sfikas, G., Nikou, C.: Iterative weighted transductive learning for
handwriting recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR
2021. LNCS, vol. 12824, pp. 587–601. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-86337-1 39

26. Retsinas, G., Sfikas, G., Nikou, C., Maragos, P.: From Seq2Seq to handwritten
word embeddings. In: British Machine Vision Conference (BMVC) (2021)

27. Romero, D.W., Bruintjes, R.J., Tomczak, J.M., Bekkers, E.J., Hoogendoorn, M.,
van Gemert, J.C.: Flexconv: continuous kernel convolutions with differentiable ker-
nel sizes. arXiv preprint arXiv:2110.08059 (2021)

28. Sfikas, G., Giotis, A.P., Louloudis, G., Gatos, B.: Using attributes for word spot-
ting and recognition in polytonic greek documents. In: 2015 13th International
Conference on Document Analysis and Recognition (ICDAR), pp. 686–690. IEEE
(2015)

29. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: MR brain tissue classification
using an edge-preserving spatially variant Bayesian mixture model. In: Metaxas,
D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp.
43–50. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8 6

30. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Majorization-minimization mix-
ture model determination in image segmentation. In: CVPR 2011, pp. 2169–2176.
IEEE (2011)

31. Sfikas, G., Retsinas, G., Gatos, B., Nikou, C.: Hypercomplex generative adversarial
networks for lightweight semantic labeling. In: El Yacoubi, M., Granger, E., Yuen,
P.C., Pal, U., Vincent, N. (eds.) ICPRAI 2022, Part I. LNCS, vol. 13363, pp.
251–262. Springer, Cham (2022)

32. Tay, Y., et al.: Lightweight and efficient neural natural language processing with
quaternion networks. arXiv preprint arXiv:1906.04393 (2019)

33. Van Loan, C.F.: The ubiquitous kronecker product. J. Comput. Appl. Math.
123(1–2), 85–100 (2000)

http://arxiv.org/abs/1806.04418
https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://doi.org/10.1007/978-3-031-06555-2_17
https://doi.org/10.1007/978-3-031-06555-2_17
https://doi.org/10.1007/978-3-030-86337-1_39
https://doi.org/10.1007/978-3-030-86337-1_39
http://arxiv.org/abs/2110.08059
https://doi.org/10.1007/978-3-540-85988-8_6
http://arxiv.org/abs/1906.04393


216 G. Sfikas et al.

34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

35. Wick, C., Zöllner, J., Grüning, T.: Transformer for handwritten text recognition
using bidirectional post-decoding. In: Lladós, J., Lopresti, D., Uchida, S. (eds.)
ICDAR 2021. LNCS, vol. 12823, pp. 112–126. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86334-0 8

36. Wick, C., Zöllner, J., Grüning, T.: Rescoring sequence-to-sequence models for text
line recognition with CTC-prefixes. In: Uchida, S., Barney, E., Eglin, V. (eds.) DAS
2022. LNCS, vol. 13237, pp. 260–274. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06555-2 18

37. Yousef, M., Hussain, K.F., Mohammed, U.S.: Accurate, data-efficient, uncon-
strained text recognition with convolutional neural networks. Pattern Recogn. 108,
107482 (2020)

38. Zhang, A., et al.: Beyond fully-connected layers with quaternions: Parameterization
of hypercomplex multiplications with 1/n parameters. In: International Conference
on Learning Representations (ICLR 2021) (2021)

39. Zhao, C., Ni, B., Zhang, J., Zhao, Q., Zhang, W., Tian, Q.: Variational convolu-
tional neural network pruning. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2780–2789 (2019)

40. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In:
Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11212, pp. 645–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01237-3 39

https://doi.org/10.1007/978-3-030-86334-0_8
https://doi.org/10.1007/978-3-030-86334-0_8
https://doi.org/10.1007/978-3-031-06555-2_18
https://doi.org/10.1007/978-3-031-06555-2_18
https://doi.org/10.1007/978-3-030-01237-3_39
https://doi.org/10.1007/978-3-030-01237-3_39

	Shared-Operation Hypercomplex Networks for Handwritten Text Recognition
	1 Introduction and Related Work
	2 Hypercomplex Numbers and Hypercomplex Layers
	2.1 Quaternions
	2.2 Quaternion and Parameterized Hypercomplex Layers

	3 Proposed Model for Handwritten Text Recognition
	3.1 Shared-Operation Parameterized Hypercomplex Layer
	3.2 Model Architecture

	4 Experiments
	4.1 Datasets
	4.2 Varying the Hypercomplex Dimension and PHM vs SOHN
	4.3 PHM Model vs Real-Valued Model on a Resource Budget

	5 Conclusion and Future Work
	References


