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Abstract. The final and perhaps the most crucial step in Object Detection is
the selection of the best candidates out of all the proposed regions a framework
outputs. Typically, Non-Maximum Suppression approaches (NMS) are employed
to tackle this problem. The standard NMS relies exclusively on the confidence
scores, as it selects the bounding box with the highest score within a cluster of
boxes determined by a relatively high Intersection over Union (IoU) between
each other, and then suppresses the remaining ones. On the other hand, algorithms
like Confluence determine clusters of bounding boxes according to the proximity
between them and select as best the box that is closer to the other ones within
each cluster. In this work, we combine these methods by creating clusters of
high confidence scores according to their IoU and then we calculate the sums of
the Manhattan distances between the vertices of each box and all the others, in
order to finally select the one with the minimum overall distance. Our results are
compared with the standard NMS and the Locality-Aware NMS (LANMS), an
algorithm that is widely used in Object Detection and merges the boxes row by
row. The research field that this work explores is the text detection on historical
maps and the proposed approach results to average precision that is 2.14-2.94%
higher for evaluation IoU in range 0.50 to 0.95 with step 0.05 than the two other
methods.
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1 Introduction

Historical maps are an important and unique source of information for studying geo-
graphical transformations over years. In this paper, the focus is on the text detection
task of the digital historical map processing workflow. This task is very important and
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crucial, since it provides the input for the recognition process that follows. At the same
time, this task is extremely challenging due to the complex nature of the historical maps.
As it can be observed in the example of Fig. 1, text in the historical maps can be of any
size, any orientation, may be curved, with variable spacing and usually overlaps with
other graphical map elements.

Current approaches for text detection in historical maps include the use of color
and spatial image and text attributes [1, 2]. In [3], text in maps is identified based
on the geometry of individual connected components without considering most of the
aforementioned text detection challenges. Approach [4] uses 2-D Discrete Cosine Trans-
formation coefficients and Support Vector Machines to classify the pixels of lines and
characters on raster maps. Recently, Convolutional Neural Network (CNN) architectures
have been proved efficient for text detection in historical maps. In [S] and [6], Deep CNN's
are introduced for end-to-end text reading of historical maps. A text detection network
predicts word bounding boxes at arbitrary orientations and scales. Several text detection
neural network models are evaluated in [7] and [8]. The pixel-wise positions of text
regions are detected in [9] by employing a CNN-based architecture.
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Fig. 1. Part of a historical map from the dataset provided in [5].

Following the recent promising approaches based on CNN architectures, in this work
we first apply the deep neural network of [5] and focus on the final and perhaps the most
crucial step for text detection, which is the selection of the best candidates out of all
the proposed regions coming as output of the CNN framework. As it is demonstrated
in Fig. 2, the network output usually corresponds to several overlapping blocks around
the text area (Fig. 2b), while the desired final output is just one block around the text
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area (Fig. 2a). This is a common problem for object detection applications and several
Non-Maximum Suppression (NMS) approaches has been proposed for solving it. The
standard NMS relies exclusively on the confidence scores, as it selects the bounding
box with the highest score within a cluster of boxes determined by a relatively high
Intersection over Union (IoU) between them, and then suppresses the remaining ones.
The Locality-Aware NMS (LANMS) [10], also used in [5], is based on merging the boxes
row by row. On the other hand, algorithms like Confluence [11] determine clusters of
bounding boxes according to the proximity between them and they select as best the box
that is closer to the other ones within each cluster. However, it can be observed that in
NMS-based approaches the most confident box does not always correspond to the best
solution (Fig. 2b). Indeed, there may exist other candidate boxes, with slightly lower
confidence score than the selected one, which provide more accurate predictions of the
desired bounding box. In the proposed work, we try to find the best solution that can be
applied to the difficult case of historical maps and combine the standard NMS with the
Confluence approach. Initially, we create clusters of high confidence scores according to

(b)

Fig. 2. (a) The ground truth bounding boxes (orange), (b) The total high-confident boxes predicted
by the network (black) and the ones with the maximum confidence score for each word (green).
As it can be observed, the most confident bounding boxes do not always correspond to the best
solution.
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their IoU. Then, we calculate the sums of the Manhattan distances between the vertices
of each box and all the others in the cluster, in order to finally select the one with the
minimum overall distance. To achieve this, we also generalize the Confluence algorithm
in order to process blocks of any orientation. As it is demonstrated in the experimental
results, the proposed method gives an average boost of 2.14-2.94%, concerning the
average precision metric for IoU in range 0.50 to 0.95 with step 0.05, when compared
with standard NMS and LANMS.

The rest of the paper is organized as follows: Section 2 introduces the proposed text
detection method, Section 3 demonstrates the experimental results and Sect. 4 presents
the conclusion of this work.

2 Methodology

Recent Object Detection networks usually provide a very large number of bounding
box predictions, each one assigned with a confidence score. The number ranges from
a few thousand, in cases of region proposal-based [12] or grid-based [13] detectors, to
millions, in cases of dense [10] detectors (one prediction per pixel).

As mentioned in the previous section, the standard NMS selects repetitively the
bounding box with the maximum confidence score and suppresses the ones that signif-
icantly overlap with it. However, it appears that in practice this is not always the best
strategy. In particular, in many cases the most confident box misses a considerable part
of the text, while other ones capture it more precisely (Fig. 2b). A second issue is that
many of the boxes, which are to be suppressed and they have a slightly lower confidence
score than the most confident box, correspond to better predictions of the ground truth
bounding box. This situation occurs especially when dealing with dense-detection net-
works. Indeed, in our experiments we reported various cases, where the difference in
confidence between the most confident box and some of the suppressed boxes is less
than 10~*, while the later ones corresponded to better prediction accuracy.

Considering the above, we repetitively define clusters of boxes, which consist of the
most confident and the ones that significantly overlap with it, such as the standard NMS.
Then, by calculating the sums of the Manhattan distances between the vertices of each
one and the other boxes in the cluster, the one with the minimum overall distance is
selected, similarly to [11]. However, we extend [11] in order to include rotated boxes.
The Manhattan distances are then calculated for all the four vertices of every pair of
boxes, instead of two diagonal ones. Figure 3 depicts the process of the calculation of
the distance between two boxes.

In this work, the MapTD network [5], which produces dense predictions, is used
for detecting text on the maps. A threshold of 0.95 is applied in order to eliminate
the bounding boxes with low confidence scores. Let B denote the list of the remaining
candidate boxes. The main steps of the proposed algorithm are as follows:

Step 1: Sort the list B in a descending order with respect to the confidence scores of
the candidate bounding boxes.

Step 2: Initiate an empty list F' to store the final boxes.

Step 3: Select the first (most confident) box in B and calculate the IoU between this
box and every other box in the list.
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Fig. 3. Example of the distance calculation between two bounding boxes ABCD and A’'B'C'D’.
The distance is the sum of the Manhattan distance between every pair of similar vertices.

Step 4: Define a cluster by creating a list C including the most confident box and all
the boxes that have a minimum overlap with it, which is determined by a predefined IoU
threshold. Remove all the boxes that are stored in list C from the main list B.

Step 5: Calculate the distances between each box and every other box in list C.
Specifically, t he distance between two bounding boxes b; with vertices ABCD and
b; with vertices A'B’'C’'D’ as shown in Fig. 3, is given by calculating the sum of the
Manhattan distances between the four pairs of the corresponding vertices. Following the
approach described in Sect. 3.2 of [11], the coordinates are normalized as follows:

x; — min(X) yi — min(Y) .
= ; , YVi= - , Vie{A,B,C,D,As,Br,Cr, D1}
max(X) — min(X) max(Y) — min(Y)
ey
where
X = {xa, XB, XC, XD, Xs, XB/, XCr, XD}
and
Y ={ya,YB, YC: YD, YAr» YB1> YCr> YDr}
The distance between two bounding boxes is calculated as
Dy by = |xa — x|+ [va = vy | + x5 —xp [ + |y — vy [+
+ |xC —Xc |+ |yC — Yot |xD —Xp |+ |yD —Yp 2
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The overall distance Dy, for every box in cluster C, is the sum of all the distances
between bounding box b and all the other boxes as follows:

N,
Dy = Zi; Dy Vb e C.b # i 3)

where N¢ denotes the number of boxes in C.
Step 6: Weight the total distance Dy, as:

Dy =Dp(1 =S, + &) “4)

where S; € [0, 1] is its confidence score and ¢ is a positive number near zero, which
ensures that the total distance does not vanish when S, — 1. In our experiments, ¢ is
set to 0.1.

Step 7: Select the box with the minimum Dj, and store it in the list F.

Step 8: Repeat steps 3 to 7 until list B becomes empty.

3 Experimental Results

In order to evaluate the proposed method, we trained MapTD models using the same
dataset and training details as [5]. The dataset consists of 31 historical maps of the USA
from the period 18661927 and it is publicly available!. We also follow the same 10-fold
cross-validation of [5]. In particular, in every fold we use 27 maps for training and 3
maps for testing. One map is held out for validation across all folds. For the training
we use Minibatch Stochastic Gradient Descent with minibatch size 16 x 512 x 512 and
Adam optimizer with 81 = 0.9, 8, = 0.999, ¢ = 10~8. The learning rate is « = 10~*
for the first 2!7 training steps and & = 107> for the rest of a total of 220 training steps. For
evaluation on each of the 3 test images of each fold, we take predictions on overlapping
tiles of size 4096 x 4096, , with stride equal to 2048. The predicted bounding boxes of
the network are filtered with a confidence score threshold of 0.95, in order to keep the
most confident ones. All the three NMS methods use the same IoU threshold, equal to
0.1, in order to ensure that even slightly overlapping bounding boxes will belong to the
same cluster [5].

Table 1 represents in details the average results across all folds for IoU values in range
0.50 to 0.95 with step 0.05. As it can be observed, the proposed algorithm outperforms
the standard NMS and LANMS in average by 2.14% and 2.94%, respectively.

The differences between the proposed and the other two methods increase as the
evaluation threshold becomes higher and reach a maximum when the threshold is 0.8.
More specifically, the differences are as follows:

e Proposed — standard NMS &#xFOEO; 0.50: 1.41%, 0.55: 1.83%, 0.60: 2.62%, 0.65:
3.18%,0.70: 4.17%,0.75:5.17%, 0.80: 5.17%, 0.85: 4.33%, 0.90: 1.55%, 0.95: 0.03%

e Proposed — LANMS &#xFOEO; 0.50: 1.79%, 0.55: 2.14%, 0.60: 2.72%, 0.65: 2.84%,
0.70: 3.39%, 0.75: 3.33%, 0.80: 3.38%, 0.85: 1.77%, 0.90: 0.09%, 0.95: -0.01%

1 Https://weinman.cs.grinnell.edu/research/maps.shtml#data
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Table 1. Overall Evaluation (Confidence threshold = 0.95, NMS threshold = 0.1)

Evaluation IoU | Method Predicted Ground Truth Correctly Average
threshold boxes boxes predicted Precision
boxes
0.50 standard 32583 33315 29954 85.99%
NMS
LANMS 32436 29955 85.61%
Proposed 32583 30081 87.40%
0.55 standard 32583 33315 29567 84.06%
NMS
LANMS 32436 29625 83.75%
Proposed 32583 29734 85.89%
0.60 standard 32583 33315 29045 81.44%
NMS
LANMS 32436 29163 81.33%
Proposed 32583 29310 84.06 %
0.65 standard 32583 33315 28275 77.72%
NMS
LANMS 32436 28493 78.07%
Proposed 32583 28587 80.90 %
0.70 standard 32583 33315 27012 71.67%
NMS
LANMS 32436 27289 72.45%
Proposed 32583 27453 75.83%
0.75 standard 32583 33315 24836 61.79%
NMS
LANMS 32436 25306 63.62%
Proposed 32583 25423 66.96 %
0.80 standard 32583 33315 21285 46.83%
NMS
LANMS 32436 21752 48.62%
Proposed 32583 21924 52.00%
0.85 standard 32583 33315 15221 25.14%
NMS
LANMS 32436 15917 27.70%
Proposed 32583 15996 29.47 %

(continued)
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Table 1. (continued)

Evaluation IoU | Method Predicted Ground Truth Correctly Average
threshold boxes boxes predicted Precision
boxes
0.90 standard 32583 33315 6880 5.45%
NMS
LANMS 32436 7562 6.92%
Proposed 32583 7573 7.00%
0.95 standard 32583 33315 737 0.07%
NMS
LANMS 32436 892 0.11%
Proposed 32583 868 0.10%
Average standard 54.02%
results NMS
LANMS 54.82%
Proposed 56.96 %

Figure 4 depicts two representative examples of how the proposed method results in
more accurate bounding boxes. In analogy to the differences on the average precision,
the bounding boxes of the proposed algorithm are better than these of LANMS, the
boxes of which are better than standard NMS.

| ."/'/'://r\
m---! ~-—-——-~—4;—v——L - L \"ﬁ

Fig. 4. Two samples with predicted bounding boxes for the three methods: standard NMS (green
boxes), LANMS (red boxes) and proposed method (blue boxes). (Color figure online)

4 Conclusion

In this paper, a method is proposed that increases the accuracy of text detection on
historical maps. It focuses on a particular post-processing step of the text detection
pipeline by selecting the best solution among a large set of candidate bounding boxes,
which are predicted by a deep CNN. To this direction, two existing Non-Maximum
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Suppression methods are combined, namely, the standard NMS and the Confluence.
The proposed method tackles a problem of NMS-based approaches, where the most
confident box does not always correspond to the best solution, since there may exist
other candidate boxes, with slightly lower confidence score than the selected one, which
provide more accurate predictions of the desired bounding box. Instead of eliminating
the bounding boxes that significantly overlap with the most confident, the method creates
a cluster with all of them and selects as best the box that is closer to all others.

The experimental results show that the proposed method outperforms the standard
NMS and LANMS on average precision metric and results to more accurate bounding
boxes, a step that is very important, since it provides the input for the recognition process
that follows text detection.
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