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Abstract. Quaternionic networks have emerged as a lightweight alter-
native to standard neural networks. We propose using a Quaternionic
conditional Generalized Adversarial Network adapted to document
image binarization. A double discriminator ensures that the output is
consistent over a coarse and a finer level of resolution, while the genera-
tor is tasked with producing the binarized document. We achieve excel-
lent binarization results, while our network is significantly smaller (4x
smaller) than its real-valued counterpart.
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1 Introduction and Related Work

Document image binarization is the task of converting a scanned document image
into a binary segmentation. One segment corresponds to the content of the docu-
ment, while the other segment must cover non-textual components. Binarization
is usually desired in order to reduce storage space for large document collections,
save communication bandwidth, prepare the document for a subsequent docu-
ment processing step, or simply enhance the document for better readability.
Binarization can be especially challenging when it comes to handling scanned
historical manuscripts, as its efficiency is affected by various types of degra-
dation. Poor preservation, bleed-through, faded ink, stains, are some the most
common “culprits” that make successful binarization, as well as other processes
of document analysis, even more difficult. When it comes to modern documents,
another set of problems is related to contemporary picture capturing conditions,
e.g. non-uniform lighting due to use of strobe flash [13].
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Classical binarization techniques were relying on treating the problem as that
of choosing a single, global threshold of intensity that would be used to sepa-
rate background from foreground segments. A threshold is selected automati-
cally according to optimizing an objective that is based on the image intensity
statistics [19]. Global thresholding is definitely suboptimal, as its underlying
premise is false: No single threshold is applicable for all pixels in an image, and
image statistics are in general non-stationary. The immediate extension of global
thresholding has been adaptive thresholding, or choosing a different threshold
for each different area of patch of the image [8,20,25]. Another group of methods
has focused on fitting the image to a more elaborate model of image formation.
A Total Variation framework is used in [11], where a data fidelity is traded off
a regularization term, which encodes a prior belief that both segments must be
spatially consistent, all the while preserving separating edges. Postprocessing
is not uncommon, and can be used to rectify the output of an initial process-
ing phase. Such tools may include morphological image processing operations
(opening, closing, erosion, dilation, etc.) or non-local filtering [11].

After the starting gun for the comeback of neural networks and deep learn-
ing has been fired with Alexnet and other developments around 2014, it has not
been long before document image processing techniques were also flooded with
deep model solutions. Regarding binarization in particular, neural networks are
essentially treated as complex, non-linear filters that are to be learned from data.
To this end, fully convolutional networks (FCNs) have been the go-to solution
in most cases [2,4,31,33,34]; exceptions include the recurrent architecture pro-
posed in [34], where Grid Long-Short Term Memory units are used. In general
however, convolutional architectures provide a very useful inductive bias when
processing images. Although more recent competitors such as transformers [23]
claim to have rendered convolutions and recurrent units next to unnecessary
[32], convolutions especially seem to remain always ubiquitous in cutting-edge
vision models in general. In [17], a “morphological” neural network learns a set
of morphological operations over an input image; these operations include the
weights of a layer that combines dilation and erosion operations, as well as the
parameters of the morphological structuring element.

Recently, authors have set forward considerations other than processing accu-
racy [13]. Model size is another factor that can be very important, especially
when it comes to applying vision techniques on embedded systems, or in general
machines that are heavily resource-constrained. Methods that involve pruning
weights or neurons, or whole blocks of model components is one strategy that
may result in a neural network that is as efficent, or almost as efficient, as the
non-pruned network [5,15,24] The advantage in this case is that due to the
smaller size of total parameters, we have in this sense a smaller network and
less storage requirements, as well as potentially speedier inference. Recent work
in network pruning methods shows that it is not rare to attain good model
compression rates at little loss of efficiency (e.g. [5]).

Hypercomplex architectures constitute a line of work within the research
direction that aims for smaller models [21]. This is a type of neural network archi-
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tectures that is based on challenging the de facto choice of using real-valued rep-
resentations in all aspects of neural networks. In hypercomplex networks, we have
inputs, intermediate outputs, weights, biases and activations that are defined on
hypercomplex number domains. Hypercomplex numbers in a sense generalize
the notion of complex numbers, where each number is defined as a composition
of a real and an imaginary part, with an imaginary part that can itself comprise
multiple, independent dimensions and multiple, orthogonal imaginary axes. The
most well-studied hypercomplex algebra is that of quaternions. Aside from the
major application of quaternions involving representations of spatial rotations
[10], in computer science quaternions have been used in the domains of signal
processing, digital image processing and computer vision [1,6,30]. An applica-
tion, for which the theoretical prerequisite has been laid down in the 90s [18],
is that of quaternion neural networks. It may seem that superficially there is no
gain in representing groups of 4 as quaternions on the basis of a trivial bijec-
tion between quaternions H and four-dimensional vectors in R

4; however, due
to using quaternion operations – and specifically, quaternion multiplication –
the network under the hood uses significantly less parameters than a real-valued
model of corresponding size [21].

In this work, we propose a lightweight, quaternion-based architecture over a
state-of-the-art backbone that is based on a conditional Generative Adversarial
Network geared for the task of document image binarization. To this end, the
network includes two key components: namely, i. a double discriminator that
is intended to check that the generated binarization over a coarse and a fine
resolution. ii. focal loss, which acts to mitigate the detrimentary effect of having
imbalanced background and foreground classes. All components are defined in
terms of quaternionic operations, including fully-connected layers, convolutions,
and activations. We achieve results with little or minimal loss in accuracy over
tests in the DIBCO 2017 dataset [22], all the while using a network with a total
size that is 4 times smaller than the real-valued model.

The remainder of this paper is structured as follows. In Sect. 2 we briefly
review the theoretical requirements concerning quaternions. In Sect. 3 we present
the proposed model, and in Sect. 4 we present numerical evaluation results. We
close with our concluding remarks in Sect. 5.

2 Quaternion Neural Networks

2.1 Preliminaries

In this section, we shall provide a brief introduction in the theoretical preliminar-
ies regarding quaternions and hypercomplex numbers in general. Sets of hyper-
complex numbers are forms of mathematical structures that are comprised of
numbers of “higher-dimensionality”. Dimensionality in this sense can be under-
stood as the dimension of the linear space with which each corresponding set
is isomorphic. For example, the set H of quaternions is isomorphic to the set
of 4-dimensional vectors of R4 (disregarding for the time being other forms of
algebraic structure), as we can trivially define a bijection between the two sets.
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This is straightforward from the definition of a quaternion, which is as follows.
Any q ∈ H can be written as:

q = a + bi + cj + dk, (1)

where a, b, c, d are real numbers, and i, j,k are so-called imaginary units which
correspond to an equal number of imaginary axes. The “a” component corre-
sponds to the real axis. From this definition, we can see that quaternions are a
generalization of the set of real numbers R and the set of complex numbers C.
Indeed, for b = c = d = 0 we obtain a quaternion that is also a real number; for
c = d = 0 we obtain a complex number.

With respect to algebraic structure, we can endow H with summation and
product operations so that they form a division algebra or skew-field [7]. This
means quaternions H adhere to all the properties of an algebraic field, such as
e.g. the field R, with the exception of being commutative with respect to multi-
plication. So, in general we have pq �= qp for p, q ∈ H. Regarding the definitions
of addition and multiplication, the former is simply a sum of corresponding real
or imaginary components. In particular,

p + q = (ap + aq) + (bp + bq)i + (cp + cq)j + (dp + dq)k, (2)

where we use p = ap+bpi+cpj+dpk and q = aq +bqi+cqj+dqk. Multiplication
over H is more complex; we can break down its definition by defining first a
multiplication rule between pairs of real and imaginary units. The identity 1 of
course leaves any q intact by definition, 1q = q, and for the imaginary units we
have:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j, ijk = −1. (3)

From the above relation we immediately can see that the square root of −1
does not correspond only to ±i as in the set of complex numbers C, but to the
further two imaginary units as well; furthermore, the equation μ2 + 1 = 0 in
fact possesses an infinite number of solutions in H. By combining the Eqs. 2 and
3 with the distributive property, we readily obtain the multiplication rule for
quaternions p, q:

pq =(apaq − bpbq − cpcq − dpdq)+
(apbq + bpaq + cpdq − dpcq)i+
(apcq − bpdq + cpaq + dpbq)j+
(apdq + bpcq − cpbq + dpaq)k. (4)

This rule is also know as a Hamilton product [21]. It is especially important
regarding the application of quaternions to neural networks, as one of the major
differences between “standard” neural network layers and quaternionic layers is
that multiplication in all cases is performed according to Eq. 4.

Another way of representing quaternions, is by writing them as a sum of two
components. In turn, this can be done in (at least) two ways. One way is to
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consider the real part to be a single component S(q), and the rest as another
component V (q). In this manner, one part corresponds to the real axis, and the
other part corresponds to the imaginary axes collectively.

q = S(q) + V (q), (5)

where S(q) = a and V (q) = bi+ cj + dk. Another way to represent quaternions
is by the Caley-Dickson construction. This amounts to writing q ∈ H as a sum
of a real and imaginary part, like members of C:

q = α + βk, (6)

where k is the imaginary unit we defined previously, and α, β ∈ C (generalizing
the analogous construction for C, where α, β ∈ R). Assuming α = γ + δi and
β = ε + ζi, it is straightforward again to combine with the imaginary unit
multiplication rule of Eq. 3 and the distributive property in H, to obtain our
initial definition in Eq. 1.

Furthermore, many properties and notions that are well-known from R or
C are inherited to, or are generalized gracefully to elements of H. For exam-
ple, we define a length or magnitude of a quaternion as: |q| =

√
qq =

√
qq =√

a2 + b2 + c2 + d2, where q is the conjugate of q, defined as q = a−bi−cj−dk.
Quaternions with a zero real part are called pure quaternions, and quaternions
with unitary length |q| = 1 are called unit quaternions. The Taylor series is a
very useful tool that generalizes to H, namely as ep =

∑∞
n=0

pn

n! . Given a quater-
nion p that is both unit and pure, we also obtain a generalization of Euler’s
identity, epθ = cosθ + p sin θ. It is trivial to see that for p = i we get Euler’s
identity for complex numbers. Quaternions can also be written in polar form:
q = |q|eμθ, with θ ∈ R, and p ∈ H again unit and pure. Quaternion p and real
angle θ are referred to as the eigenaxis and eigenangle [1]. The eigenaxis and
eigenangle can be computed as: μ = V (q)/|V (q)|, θ = tan−1(|V (q)|/S(q)). For
pure q, hence S(q) = 0, we have θ = π/2.

Extensions of convolution are also of special importance to applications to
quaternionic neural networks. As quaternion multiplication is non-commutative,
it is perhaps unsurprising that convolution of signals f and g is also non-
commutative, f ∗ g �= g ∗ f . Hence, different variants of convolution can be
employed, depending on whether the kernel multiplies the signal from the left
or the right; in 2D especially, a bi-convolution operation can also be defined,
which has one part of the kernel multiplying the input from the left, and the
other part from the right. For all intents and purposes within the scope of the
current application, we treat these variants as equivalent; we shall use a left-side
convolution by convention:

(w ∗ f)(k, l) =
∫

Ωy

∫

Ωx

w(x, y)f(k − x, l − y)dxdy (7)

As a sidenote, a set of other interesting properties of quaternions emerge once
we consider matrices with quaternionic values. Properties that are well-known
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from complex matrix algebra may generalize naturally to quaternions, while
others may diverge immensely from our experience on R or even C. For example,
square quaternionic matrices do have sets of eigenvalues and eigenvectors, in
the sense of vectors that solve the equation Ax = λx, for A ∈ H

N×N , x ∈
H

N , λ ∈ H. However, since in general λx �= xλ due to non-commutativity of
multiplication in H, the problems Ax = λx are Ax = xλ are different. The two
sets of eigenvalues are distinct, and are referred to as left eigenvalues and right
eigenvalues respectively. Very little is known regarding connections between the
two sets [16,36].

2.2 Quaternion Layers

Conversion of “standard” linear transformations (in the sense of assuming real
values on inputs, outputs and transformation parameters) is the “workhorse”
behind converting real-valued networks to quaternionic ones. Recall that in gen-
eral a feed-forward neural network can be written as a composition of � layers,
which are in turn defined as compositions of a linear and a non-linear part.
Formally we write:

f [x, θ] = f � ◦ f �−1 ◦ · · · ◦ f1[x, θ], (8)

where f [x, θ] represents the NN, which takes an input x conditioned on param-
eters θ and outputs a vector y. All components are made up of quaternionic
variates, x ∈ H

dx , θ ∈ H
dθ , y ∈ H

dy , where dx, dθ, dy represent input, parame-
ter and output dimensionalities. Note that in practical terms, assuming that we
have a network consisting of dθ quaternionic parameters, they will take up as
much space as 4dθ, since each quaternion is intrinsically 4-dimensional. Layers
are represented as f1, · · · , f � in the above formulation. In general, each layer
consists of a linearity or linear component fL()̇ and a non-linearity or activation
fNL()̇.

Quaternion Linearities. The linear component is written as:

g = Wf + b, (9)

where g ∈ H
M , f ∈ H

N represent layer outputs and inputs, and W, b are the
weights and biases of the layer, which are of course part of the full set of param-
eters θ. W is a quaternionic matrix H

M×N and b is a quaternionic vector H
M .

We can rewrite this relation as:

gi =
N∑

j=1

wijf j + bi, (10)

where additions and multiplications follow the rules for quaternions (cf. Sect. 2).
Multiplication between wij and f j is effectively a Hamilton product (Eq. 4). We
then use the fact that we can rewrite Eq. 4 as a matrix-vector product, where
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one of the quaternions (here, the weight component wij) is rewritten as a 4 × 4
(real) matrix: ⎡

⎢
⎢
⎣

ga

gb

gc

gd

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

wa −wb −wc −wd

wb wa −wd wc

wc wd wa −wb

wd −wc wb wa

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

fa

fb

fc

fd

⎤

⎥
⎥
⎦ , (11)

The key observation now is that we can combine Eqs. 9 and 11 and use the
trivial bijection between R

4 and H, i.e. (a, b, c, d)T → (a+ bi+ cj+dk), in order
to write Eq. 9 in a block-matrix form as follows:

⎡

⎢
⎢
⎣

g1

g2

· · ·
gM

⎤

⎥
⎥
⎦ =

⎡

⎢
⎣

w11 . . . w1N

...
. . .

...
wM1 . . . wMN

⎤

⎥
⎦

⎡

⎢
⎢
⎣

f1

f2

· · ·
gN

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

b1

b2

· · ·
bN

⎤

⎥
⎥
⎦ . (12)

In the above equation each boldface element represents a 4×1 vector (on the
vectors) or a 4×4 submatrix (on the matrix). Hence, we are dealing with dimen-
sions equal to 4dg, 4df for the input and output vectors. However, due to the
bijective relation between the two equation forms Eq. 11 and 12, the multiply-
ing matrix only has 4dgdf independent parameters. A real matrix construction
would have 4 ∗ 4dgdf independent parameters, i.e. equal to the number of all
matrix elements. Thus, we have four-fold saving in number of parameters (sim-
ilar discussions concerning why quaternion layers lead to extensive parameter
savings can be found in e.g. [21] or [28, Section 3])

Convolutions can be interpreted as a constrained version of the fully con-
nected layer, where extensive parameter sharing is employed in the form of the
convolution kernel. It is well-known that convolutions, as linear operations, can
be written in a matrix-vector form as Töplitz matrices [9]. Hence, the entirety
of the aformentioned analysis also applies in their case. Similar considerations
hold for transpose convolutions or deconvolutions.

Quaternion non-linearities. Regarding activation functions, we formally
require a mapping from H to H. In practice, so-called split activation functions
are usually employed, where simply real-valued activations are used over each of
the quaternionic (real/imaginary) componenets separately.

3 Proposed Model

The proposed architecture is based on a Quaternionic conditional Generative
Adversarial Network, comprised of a total of three composing networks: A gen-
erator network, tasked with producing a binarization given the original input
image; a global discriminator network, tasked with discerning between produced
binarization that are unlikely to be artificial and those that are; a local dis-
criminator network, which acts similarly as the global discriminator but on the
level of small-sized patches (32 × 32 pixels). In this manner, the binarization
estimate can be evaluated by the networks in two resolution scales: a coarse one
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Fig. 1. Visual results using the proposed Quaternionic Double-Discriminator GAN
model. Lines correspond to selected images from the DIBCO 2017 test set. Columns
correspond to: original image, binarization result, ground truth.

that corresponds to the global discriminator, and a finer one that corresponds
to the local discriminator. The generator is structured as a U-Net, with skip
connections between corresponding layers of the same size. Global and local dis-
criminators are defined as in [4], with the exception of adding 1 × 1 convolution
layers when it is necessary to change input or output channel depth to a multiple
of 4. Training loss is defined as a weighted average of Binary cross-entropy losses
for the three composing networks. Formally we have:

L = μ(Lglobal + σLlocal) + λLgen. (13)

We set loss aggregation hyperparameters to μ = 0.5, σ = 5, λ = 75, as suggested
in [4]. Concerning imbalances in the number of background and foreground ele-
ments, one major strategy is using resampling in order to prioritize classes that
are initially under-represented, by sampling more augmented samples from low-
volume classes. The other major strategy is to tweak the loss function, so that
under-represented classes are artifically assigned a larger loss. In this manner,
training can be implicity manipulated towards an optimum that classifies small
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classes as well the larger ones. The latter rationale is followed by Focal loss [12],
employed for training the current model.

4 Experiments

We have used the DIBCO 2017 dataset to test the proposed quaternionic GAN.
All grayscale inputs are augmented with three extra zero channels so as to be
able to be cast as quaternions. Each image is broken into 256×256-sized patches
with a stride equal to 128. As in [4], all the images from previous DIBCO compe-
titions together with DIBCO 2018 have been used to train the model. In Table 3
we review results of the proposed model against other state-of-the-art meth-
ods, using the following metrics: F-measure (F-m), pseudo F-measure (pseudo
F-m), distance reciprocal distortion metric (DRD), peak Signal-to-Noise Ratio
(PSNR). In Tables 1 and 2, a more detailed report of results is presented. It com-
pares our model versus its non-quaternionic counterpart [4], and furthermore
we report extra metrics – Recall, Precision, PseudoRecall and PseudoPrecision.
This is done for all of the DIBCO 2017 test images separately. Comparing the

Table 1. Binarization numerical results using the proposed Quaternion Double-
Discriminator GAN. Each line corresponds to a different DIBCO 2017 test image.

F-m Pseudo F-m PSNR DRD Recall Precision PseudoRecall PseudoPrecision

1 71.85 68.02 12.08 10.52 83.82 62.87 85.05 56.67

2 84.81 82.54 15.60 6.81 94.22 77.59 96.77 74.21

3 75.56 71.83 13.46 9.77 89.28 65.5 91.09 59.3

4 71.88 68.32 14.11 0.87 83.28 63.23 84.89 57.16

5 74.84 70.68 16.08 11.54 95.94 61.35 96.78 55.67

6 94.4 95.33 15.96 2.22 96.1 92.76 99.7 91.33

7 94.12 94.4 15.99 2.35 96.83 91.55 99.56 89.74

8 92.79 95.1 19.43 2.64 92.97 92.61 99.09 91.42

9 86.55 84.1 14.95 4.52 96.35 78.57 96.13 74.74

10 88.6 86.19 14.38 4.03 99.16 80.08 99.62 75.95

11 92.84 91.72 16.79 3.73 99.57 86.96 99.76 84.87

12 84.59 83.93 14.86 7.69 96.83 75.09 99.1 72.79

13 66.2 64.55 11.5 25.38 97.65 50.07 99.65 47.74

14 87.51 87.29 16.78 5.75 96.98 79.73 99.26 77.9

15 93.31 93.42 16.77 2.72 97.04 89.86 98.99 88.45

16 87.49 84.86 18.09 5.23 99.44 78.11 99.77 73.83

17 77.4 72.64 15.37 7.68 95.3 65.16 95.72 58.53

18 84.4 87.75 14.95 7.05 88.18 80.93 98.21 79.3

19 91.67 92.57 18.98 3.1 93.98 89.46 99.55 86.51

20 91.42 93.92 16.95 3.29 92.82 90.06 99.73 88.75

Avg 84.61 83.45 15.60 6.81 94.22 77.59 96.77 74.21
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Table 2. Binarization numerical results using a non-quaternionic Double-Discriminator
GAN (baseline model, cf. [4]). Each line corresponds to a different DIBCO 2017 test
image. Compared to the proposed model, similar results are achieved, albeit at a much
heavier computational burden.

F-m Pseudo F-m PSNR DRD Recall Precision PseudoRecall PseudoPrecision

1 72.25 68.25 12.12 10.36 84.68 63 85.77 56.68

2 85.79 83.29 14.86 5.92 96.46 77.24 97.26 72.83

3 76.28 72.16 13.45 9.8 93.2 64.56 94.89 58.22

4 72.25 68.34 13.94 11.44 87.96 61.3 89.57 55.24

5 73.55 69.74 15.82 12.56 95.27 59.89 96.28 54.67

6 93.98 94.75 15.62 2.52 96.29 91.78 99.7 90.26

7 93.79 94.03 15.74 2.63 96.95 90.83 99.68 9.05

8 93.23 95.05 19.68 2.51 94.06 92.42 99.19 91.24

9 86.43 83.96 14.86 4.65 97.17 77.82 97.31 73.83

10 88.6 86.23 14.38 4.04 99.08 80.12 99.6 76.03

11 92.9 91.85 16.84 3.68 99.49 87.13 99.75 85.11

12 85.13 84.48 15.04 7.3 97.01 75.84 99.33 73.5

13 66.6 64.94 11.59 24.7 997.48 50.58 99.63 48.17

14 88.7 88.5 17.26 5.07 97.18 81.57 99.44 79.7

15 93.2 693.3 16.73 2.7 97.27 89.57 99.21 88.05

16 88.8 86.39 18.64 4.42 99.27 80.33 99.72 76.2

17 75.76 71.46 15.28 7.86 88.87 66.03 89.49 59.48

18 85.37 88.75 15.25 6.49 88.79 82.2 98.91 80.48

19 92.68 93.92 19.59 2.5 93.87 91.53 99.47 88.95

20 92.65 95.17 17.67 2.6 92.92 92.37 99.71 91.03

Avg 84.9 83.72 15.71 6.69 94.66 77.80 97.19 74.43

Table 3. Comparison of state-of-the-art document binarization methods, using DIBCO
2017 test set accuracy as a benchmark. Lines denoted as “Comp #x” refer to winners of
the corresponding competition [22]. DD-GAN-x refers to a baseline, real-valued double
discriminator model. The results under DD-GAN-1 are the figures reported in the
original publication, [4], while DD-GAN-2 corresponds to the figures we computed after
running the authors’ implementation [3], without any parameter finetuning. Quaternion
DD-GAN refers to the proposed method, which achieves good results while being very
economical in terms of network size (4× smaller compared to DD-GAN).

F-measure Pseudo F-measure PSNR DRD

Comp #1 (U-Net) 91.04 92.86 18.28 3.4

Comp #1 (FCN-VGG) 89.67 91.03 17.58 4.35

Comp #3 (Deep SN) 89.42 91.52 17.61 3.56

Otsu 77.73 77.89 13.85 15.54

Sauvola 77.1 77.89 14.25 8.85

DD-GAN-1 90.98 92.85 17.6 3.34

DD-GAN-2 84.9 83.72 15.71 6.69

Quaternion DD-GAN 84.61 83.45 15.6 6.81
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two tables, we can conclude that in may cases we can observe a slight loss in
performance, though for the most part losses are insignificant. On the other
hand, the proposed model is 4× smaller (cf. Subsect. 2.2) than the real-valued
state-of-the-art GAN of [4].

5 Conclusion

We have presented a model for document image binarization that encompasses
two key components: i. a Generative Adversarial architecture that is comprised of
two discriminators, aimed to capture data interdependencies on a coarse as well
as a finer scale of the input document image; ii. use of quaternionic layers, that
replace real-valued fully connected, convolution and deconvolution layers. The
end-result is a model that attains state-of-the-art performance in a multitude of
binarization metrics, all the while being several times (4×) more compact than
its real-valued counterpart (Fig. 1). For future work, we envisage exploring uses
of more recent developments in hypercomplex architectures for binarization [35],
or ways to fusion quaternion networks with other methodological paradigms, like
probabilistic approaches on inference [26,27]. Also, more extensive tests are to be
conducted, including other DIBCO datasets, or more recently published datasets
[14] and other binarization methods [29].
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