
1978
978-1-4244-1821-3/08/$25.00©2008 IEEE

Abstract— Kernel k-means is an extension of the standard k-
means clustering algorithm that identifies nonlinearly separa-
ble clusters. In order to overcome the cluster initialization
problem associated with this method, in this work we propose
the global kernel k-means algorithm, a deterministic and in-
cremental approach to kernel-based clustering. Our method
adds one cluster at each stage through a global search proce-
dure consisting of several executions of kernel k-means from
suitable initializations. This algorithm does not depend on clus-
ter initialization, identifies nonlinearly separable clusters and,
due to its incremental nature and search procedure, locates
near optimal solutions avoiding poor local minima. Further-
more a modification is proposed to reduce the computational
cost that does not significantly affect the solution quality. We
test the proposed methods on artificial data and also for the
first time we employ kernel k-means for MRI segmentation
along with a novel kernel. The proposed methods compare fa-
vorably to kernel k-means with random restarts.

I. INTRODUCTION
LUSTERING, the goal of which is to partition data points
into homogeneous groups, arises in a number of fields

such as pattern recognition, machine learning, data mining
and image processing. One of the most popular clustering
algorithms is k-means, where homogeneous groups are iden-
tified by minimizing the clustering error defined as the sum
of the squared Euclidean distances between each dataset
point and the corresponding cluster center. This algorithm
suffers from two serious limitations. First the solution de-
pends heavily on the initial positions of the cluster centers,
resulting in poor minima, and second it can only find linear-
ly separable clusters.

A simple but very popular workaround for the first limita-
tion is the use of multiple restarts where the centers of the
clusters are randomly placed to different initial positions and
thus better local minima can be found. Still we have to de-
cide on the number of restarts and also we are never sure if
the initializations tried are good so as to obtain a near optim-
al minimum. To deal with this problem the global k-means
algorithm has been proposed [1], which employs the k-
means algorithm as a local search procedure. This algorithm
incrementally solves the M-clustering problem by solving all
intermediate problems with 1, …, M clusters using k-means.
The solution with M clusters is built deterministically, so
there is no dependency on initial conditions, and near optim-
al minima is found as shown in [1].

Kernel k-means [2] is an extension of the standard k-
means algorithm that maps data points from input space to a
higher dimensional feature space through a nonlinear trans-

Grigorios Tzortzis and Aristidis Likas are with the Department of Com-

puter Science, University of Ioannina, GR 45110, Ioannina, Greece (email:
{gtzortzi, arly}@cs.uoi.gr).

formation and minimizes the clustering error in feature
space. Thus nonlinearly separated clusters are obtained in
input space overcoming the second limitation of k-means.
An important property of kernel k-means is its close relation
to spectral clustering which is discussed further in Section
II.B. The soft version of kernel k-means with a geodesic
kernel is also available [3].

In this work we propose the global kernel k-means algo-
rithm, a deterministic algorithm for optimizing the clustering
error in feature space that employs kernel k-means as a local
search procedure. The algorithm works in an incremental
fashion by solving all problems with 1, …, M clusters, using
kernel k-means, in order to solve the M-clustering problem.
The idea behind the proposed method is that a near optimal
solution with M clusters can be obtained by starting with a
near optimal solution with M‐1 clusters and initializing the
M-th cluster appropriately based on a local search. During
the local search the M-th cluster is initialized several times
(specifically N times where N is the size of the dataset) and
the solution with the lowest clustering error is kept as the
solution with M clusters. Since the optimal solution for the
1-clustering problem is known, the above procedure can be
applied iteratively to find a near optimal solution to the M-
clustering problem. This algorithm combines the advantages
of both global k-means and kernel k-means and so it avoids
both limitations of k-means. A drawback of global kernel k-
means is its high computational complexity, inherited from
the other two algorithms, as it requires running kernel k-
means MN times. In order to lower the complexity a speed-
ing up scheme is proposed, called fast global kernel k-
means, which requires running kernel k-means only M times.

We present experimental results that compare global ker-
nel k-means, its fast version and kernel k-means with mul-
tiple restarts on artificial data and on MRI segmentation. The
results back our claim that the global kernel k-means algo-
rithm locates near optimal solutions as it outperforms kernel
k-means with multiple restarts in terms of clustering error.
The fast version in some cases proves equal to the original
algorithm and its clustering error is always lower compared
to the average clustering error achieved by kernel k-means
during the restarts.

In the following section we formally define clustering er-
ror and describe briefly the k-means, global k-means and
kernel k-means algorithms. In Section III we present the
proposed global kernel k-means algorithm along with an
analysis of its computational complexity. The speeding up
scheme is also described in this section. Our experimental
evaluation is presented in Section IV. Finally Section V con-
cludes this work.

The Global Kernel k-Means Clustering Algorithm
Grigorios Tzortzis and Aristidis Likas

C

 2008 International Joint Conference on Neural Networks (IJCNN 2008) 1979

II. PRELIMINARIES

A. k-Means and Global k-Means
Suppose we are given a dataset ܺ ൌ ሼ࢞ଵ, ,ଶ࢞ … , ࢞ ,ேሽ࢞

א Թௗ and we aim to partition this dataset into M disjoint
clusters ܥଵ, …,ଶܥ , ெ. The k-means algorithm finds localܥ
optimal solutions with respect to the clustering error defined
as the sum of squared Euclidean distances between each data
point ࢞ and the cluster center that ࢞ belongs to. Ana-
lytically the clustering error is given by:

…,ଵሺܧ ெሻ, ൌܫሺ࢞ א ࢞ሻԡܥ െ ԡଶ
ெ

ୀଵ

ே

ୀଵ

 (1)

where ܫሺܻሻ ൌ 1 if ܻ is true and 0 otherwise.
The two main disadvantages of the k-means algorithm are

first the dependence of the final solution on the initial posi-
tion of the cluster centers and second that clusters must be
linearly separable. To deal with the initialization problem the
global k-means algorithm has been proposed [1], an incre-
mental-deterministic algorithm that employs the k-means
algorithm as a local search procedure. This algorithm obtains
near optimal solutions in terms of clustering error.

In order to solve the M-clustering problem using global k-
means we proceed as follows. We begin by solving the 1-
clustering problem using k-means. The optimal solution to
this problem is known and the cluster center corresponds to
the dataset centroid. Then we solve the 2-clustering prob-
lem. We run k-means N times, each time starting with the
following initial cluster centers: one cluster center is always
placed at the position resulting from the 1-clustering prob-
lem and the other during the n-th run is initially placed at
data point ࢞. The solution with the lowest clustering error is
kept as the solution of the 2-clustering problem. In general
for the k-clustering problem let ሺଵ

,כ … ିଵ,
כ ሻ denote the

solution to the k‐1-clustering problem. We perform N execu-
tions of the k-means algorithm, with ሺଵ

,כ … ିଵ,
כ , ሻ as࢞

initial cluster centers for the n-th run, and keep the one re-
sulting in the lowest clustering error. The above procedure is
repeated until ݇ ൌ .ܯ

It is obvious that the above algorithm does not suffer from
the initialization of the cluster centers problem and computes
a clustering of the data points in a deterministic way. Also it
provides all intermediate solutions with 1, …, M clusters
when solving the M-clustering problem without additional
cost. The experiments performed in [1] verify that global k-
means is better than k-means with multiple restarts. A draw-
back of global k-means is that it is computationally heavy as
it requires running the k-means algorithm MN times. To
speed up execution two variants of the global k-means algo-
rithm are proposed in [1] that do not considerably degrade
the performance of the algorithm.

B. Kernel k-Means
Kernel k-means [2] is a generalization of the standard k-

means algorithm where data points are mapped from input
space to a higher dimensional feature space through a nonli-
near transformation ߶ and then k-means is applied in the
feature space. This results in linear separators in feature

space which correspond to nonlinear separators in input
space. Thus kernel k-means avoids the problem of linearly
separable clusters in input space that k-means suffers from.

The objective function that kernel k-means tries to minim-
ize is the equivalent of the clustering error in the feature
space shown in (2). We can define a kernel matrix ܭ א
Թேൈே where ܭ ൌ ߶ሺ࢞ሻ்߶ሺ࢞ሻ and by taking advantage of
the kernel trick we can compute the squared Euclidian dis-
tances in (2) without explicit knowledge of the transforma-
tion ߶ using (3). Any positive semi-definite matrix can be
used as a kernel matrix. Notice that in this case cluster cen-
ters in the feature space cannot be calculated directly.
Usually a kernel function ܭሺ࢞, -ሻ is used to directly pro࢞
vide the inner products in the feature space without explicit-
ly defining transformation ߶ (for certain kernel functions the
corresponding transformation is intractable). Some kernel
function examples are given in Table I; ܭሺ࢞, ሻ࢞ ൌ ܭ

…,ଵሺܧ ெሻ, ൌܫሺ࢞ א ሻ࢞ሻԡ߶ሺܥ െ ԡଶ
ெ

ୀଵ

ே

ୀଵ

where ൌ
∑ ࢞ሺܫ א ሻே࢞ሻ߶ሺܥ
ୀଵ
∑ ࢞ሺܫ א ሻேܥ
ୀଵ

(2)

ԡ߶ሺ࢞ሻ െԡଶ ൌ ܭ െ
2∑ ࢞൫ܫ א ேܭ൯ܥ

ୀଵ

∑ ࢞൫ܫ א ൯ேܥ
ୀଵ

∑ ∑ ࢞൫ܫ א ࢞ሺܫ൯ܥ א ேܭሻܥ

ୀଵ
ே
ୀଵ

∑ ∑ ࢞൫ܫ א ࢞ሺܫ൯ܥ א ሻேܥ
ୀଵ

ே
ୀଵ

(3)

It must be noted that, by associating a weight with each
data point, the weighted kernel k-means algorithm is derived
[4] and it is proven that its objective function is equivalent to
that of many graph partitioning problems such as ratio asso-
ciation, normalized cut etc if the weights and kernel are set
appropriately [4] –[6]. Usually spectral methods, like the one
in [7], are employed to solve these problems by calculating
the eigenvectors of the kernel matrix. Spectral methods per-
form well because they compute globally optimal solutions
of a relaxation of the problem considered. Calculating the
eigenvectors of large matrices may prove problematic
though. Kernel k-means avoids the need to calculate eigen-
vectors but cannot find the optimal solution because it de-
pends on cluster initialization.

 It has also been proved that performing k-means in the
kernel pca space is equivalent to kernel k-means [8]. How-
ever this approach has two drawbacks: it is expensive since,
like spectral clustering, it requires computation of the eigen-
vectors of the kernel matrix and it highly depends on the
initialization of k-means.

TABLE I
EXAMPLES OF KERNEL FUNCTIONS

Polynomial Kernel ܭሺ࢞, ሻ࢞ ൌ ሺ்࢞࢞ ሻఋߛ
Gaussian Kernel ܭሺ࢞, ሻ࢞ ൌ expሺെฮ࢞ െ ฮ࢞

ଶ ⁄ଶߪ2 ሻ
Sigmoid Kernel ܭሺ࢞, ሻ࢞ ൌ tanhሺߛሺ்࢞࢞ሻ ሻߠ

1980 2008 International Joint Conference on Neural Networks (IJCNN 2008)

III. GLOBAL KERNEL K-MEANS
In this paper we propose the global kernel k-means algo-

rithm for minimizing the clustering error in feature space,
defined in (2). Our method builds on the ideas of the global
k-means and kernel k-means algorithms. Global kernel k-
means maps the dataset points from input space to a higher
dimensional feature space with the help of a kernel matrix
ܭ א Թேൈே as kernel k-means does. In this way nonlinearly
separable clusters are found in input space. Also global ker-
nel k-means finds near optimal solutions to the M-clustering
problem by incrementally and deterministically adding a
new cluster center at each stage and by applying kernel k-
means as a local search procedure instead of initializing all
M clusters at the beginning of the execution. Thus the prob-
lems of initializing the cluster centers and getting trapped in
poor local minima are also avoided. In a nutshell global ker-
nel k-means combines the advantages of both global k-
means (near optimal solutions) and kernel k-means (cluster-
ing in feature space).

Suppose we want to solve the M-clustering problem using
global kernel k-means. Since the calculation of the cluster
centers in feature space is intractable, for the same reason as
for kernel k-means, we will define a cluster in terms of the
data points that belong to it instead of its center. We start by
solving the 1-clustering problem using kernel k-means. The
optimal solution to this problem is trivial as all data points
belong to the same cluster. We continue with the 2-
clustering problem where kernel k-means is executed N
times. During the n-th execution the initialization is done by
considering two clusters one of which contains only ࢞. The
solution with the lowest clustering error is kept as the solu-

tion with 2 clusters. In general for the k-clustering problem
let ሺܥଵכ, … , כିଵܥ ሻ denote the solution with k‐1 clusters and
assume that ࢞ א -We perform N executions of the ker . כܥ
nel k-means algorithm, with ሺܥଵכ, … , ܥ ൌ כܥ െ ሼ࢞ሽ,
… , כିଵܥ , ܥ ൌ ሼ࢞ሽሻ as initial clusters for the n-th run, and
keep the one resulting in the lowest clustering error. The
above procedure is repeated until ݇ ൌ .ܯ

The rationale behind the proposed method is based on the
assumption that a near optimal solution with k clusters can
be obtained through local search starting from a state with k‐
1 near optimally defined clusters (solution of the k‐1-
clustering problem) and the k-th cluster initialized appro-
priately. It is quite reasonable to consider only one data point
belonging to the k-th cluster when it is initialized as this is
equivalent to initializing, during the n-th run, the k-th cluster
center at point ߶ሺ࢞ሻ in feature space. Limiting the set of
possible positions for the k-th center only to dataset points
when mapped to feature space seems reasonable. Our expe-
riments verify that the proposed algorithm computes near
optimal solutions although it is difficult to prove theoretical-
ly. Note that during the execution of the algorithm also solu-
tions for every k-clustering problem with ݇ ൏ are obtainedܯ
without additional cost which may be desirable in case we
want to decide on the number of clusters for our problem.

A. Computational Complexity
Due to its close relation to global k-means and kernel k-

means the global kernel k-means algorithm inherits their
high computational cost. Given a kernel matrix the demand-
ing step of the kernel k-means algorithm is the calculation of
the distance between each point in feature space to every
center, given by (3), in order to find the closest center. This
is repeated for a number of iterations ߬ until convergence is
achieved. As shown in [5] the complexity of kernel k-means
is ܱሺܰଶ߬ሻ scalar operations. In the global kernel k-means
algorithm, in order to solve the M-clustering problem we
must run kernel k-means MN times. This makes the com-
plexity of global kernel k-means ܱሺܰଷ߬ܯሻ. If we also have
to calculate the kernel matrix an extra ܱሺܰଶ݀ሻ scalar opera-
tions are required making the overall complexity
ܱሺܰଶሺܰ߬ܯ ݀ሻሻ. Storage of the matrix requires ܱሺܰଶሻ
memory and a scheme for dealing with insufficient memory
was proposed in [9] which can be readily applied to our al-
gorithm. As this is a very high complexity for large datasets
a speeding up scheme is considered next.

B. Fast Global Kernel k-Means
The fast global kernel k-means algorithm is a simple me-

thod for lowering the complexity of the original algorithm. It
is based on the same ideas as the fast global k-means variant
proposed in [1]. We significantly reduce the complexity by
overcoming the need to execute kernel k-means N times
when solving the k-clustering problem given the solution for
the k‐1-clustering problem. Specifically kernel k-means is
employed only once and the k-th cluster is initialized to in-
clude the point ࢞ that guarantees the greatest reduction in
clustering error. In more detail, we compute an upper bound
ܧ כିଵܧ െ ܾ of the final clustering error when the k-th
cluster is initialized to include point ࢞. ܧିଵכ is the cluster-

Algorithm outline: Global kernel k-means
Input: Kernel matrix ܭ, Total number of clusters M
Output: Final clustering of the points ܥଵ, …,ଶܥ , ெܥ
//There is no need to solve for 1 cluster as the solution is
trivial and optimal. ܥଵכ ൌ ܺ
1. Solve all k–clustering problems for ݇ ൌ 2 to M
2. For each such problem run kernel k-means N times for

݊ ൌ 1 to N with input (ܭ, …,כଵܥ ,݇ , כିଵܥ , ܥ ൌ ሼ࢞ሽ)
and output ሺܥଵ, … , ሻܧ ,ܥ

3. Find ܧכ ൌ min ሺܧሻ and set ܥଵכ, … , -to the partition כܥ
ing corresponding to ܧכ (this is the solution with ݇ clus-
ters).

4. Set ܥଵ ൌ …,כଵܥ , ெܥ ൌ כெܥ as output of the algorithm

Algorithm outline: Kernel k-Means
Input: Kernel matrix ܭ, Number of clusters ݇, Initial clus-
ters ܥଵ,… , ܥ
Output: Final clusters ܥଵ,… , ܧ , Clustering errorܥ
1. For each point ࢞ and every cluster ܥ compute

ԡ߶ሺ࢞ሻ െԡଶ using (3)
2. Find ܿכሺ࢞ሻ ൌ argminሺԡ߶ሺ࢞ሻ െԡଶሻ
3. Update clusters as ܥ ൌ ሼ࢞|ܿכሺ࢞ሻ ൌ ݅ሽ
4. If not converged go to step 1 otherwise stop and return

final clusters ܥଵ,… , ܧ andܥ calculated using (2).

 2008 International Joint Conference on Neural Networks (IJCNN 2008) 1981

ing error corresponding to the k‐1-clustering problem solu-
tion and ܾ measures the guaranteed reduction of the error
and is defined in (4) where ݀ିଵ denotes the squared dis-
tance between ࢞ and its cluster center in feature space after
solving the k‐1-clustering problem. We select as initializa-
tion for the k-th cluster the point ࢞ that maximizes ܾ:

ܾ ൌmax ሺ݀ିଵ െ
ே

ୀଵ

ԡ߶ሺ࢞ሻ െ ߶ሺ࢞ሻԡଶ, 0ሻ

where ԡ߶ሺ࢞ሻ െ ߶ሺ࢞ሻԡଶ ൌ ܭ ܭ െ ܭ2

(4)

The correctness of the above upper bound is derived from
the two following facts. First when the k-th cluster is initia-
lized at point ࢞ it will allocate all points that are closer to
 in feature space than to their cluster center in the solution࢞
with k‐1 clusters (distance ݀ିଵ). Quantity ܾ measures the
reduction in error due to this reallocation. Second, since ker-
nel k-means monotonically converges as long as the kernel
matrix is positive semi-definite, we are sure that the error
will never exceed our bound.

When using this variant of the global kernel k-means al-
gorithm in order to solve the M-clustering problem we must
execute kernel k-means M times instead of MN times. Given
the kernel matrix, calculation of ܾ requires ܱሺܰሻ scalar
operations as ݀ିଵ is calculated when executing kernel k-
means for the k‐1-clustering problem. Each time we have to

calculate N ܾs and this must be repeated M times in order
to solve the problem with M clusters. Thus the overall cost
incurred by the need to estimate the upper bound is
ܱሺܰଶܯሻ. Overall the fast global kernel k-means algorithm
has ܱ൫ܰଶሺ߬ܯ ݀ ܯሻ൯ ൌ ܱ൫ܰଶሺ߬ܯ ݀ሻ൯ complexity
which is considerably lower than that of global kernel k-
means and is comparable to the complexity of kernel k-
means when ܯ is sufficiently small. This reduction in com-
plexity comes at the cost of finding solutions with higher
clustering error than the original algorithm in some cases.
Our experiments indicate that the performance of the fast
version is similar to that of global kernel k-means in many
cases. This lower computational cost could make our algo-
rithm a very good alternative to spectral methods for graph
cut optimization, if weights are specified in the same way as
in [4]-[6], as it also computes near optimal solutions.

IV. EXPERIMENTAL EVALUATION
In this section we study the performance of global kernel

k-means, its fast version and simple kernel k-means on a
number of artificial datasets and also on segmentation of
simulated MRI images. Our aim is to discover if indeed
global kernel k-means avoids getting trapped in poor local
minima and also how close the solutions of the fast global
kernel k-means algorithm are to those of the original algo-
rithm. The experiments were conducted on a computer run-

Fig. 1. Global kernel k-means, fast global kernel k-means and kernel k-

means (run with minimum clustering error) on the two rings dataset.

Fig. 2. Global kernel k-means, fast global kernel k-means and kernel k-

means (run with minimum clustering error) on the ‘IJCNN 2008’ logo.

Fig. 3. Global kernel k-means on the ten rings

dataset.

Fig. 4. Fast global kernel k-means on the ten

rings dataset.

Fig. 5. Kernel k-means (the run with mini-

mum clustering error) on the ten rings dataset.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Two rings dataset- 2 clusters

-0.5 0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5
'IJCNN 2008' dataset-9 clusters

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

Ten rings dataset-10 clusters
Global Kernel k-Means

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

8

Ten rings dataset-10 clusters
Fast Global Kernel k-Means

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

Ten rings dataset-10 clusters
Kernel k-Means with minimum error

1982 2008 International Joint Conference on Neural Networks (IJCNN 2008)

ning Windows XP with 3.5GB ram and 2.4GHz Intel Core 2
Duo processor. The code was implemented in MATLAB1.

A. Artificial Datasets
We compared the three clustering algorithms mentioned

above on three different artificial datasets. In all our experi-
ments we used the Gaussian kernel, defined in Table I,
which has a parameter ߪ whose value needs to be deter-
mined a priori. When comparing the algorithms the same ߪ
was used for all three so as to obtain a meaningful compari-
son. The quality of the solutions produced by the three algo-
rithms was evaluated in terms of the clustering error defined
in equation (2). Given the value of ߪ, in order to measure the
performance of the global kernel k-means and fast global
kernel k-means algorithms we ran each algorithm once since
they find deterministic solutions. For the kernel k-means
algorithm we ran the algorithm 100 times, because the solu-
tion depends on the initialization of the clusters, and report
the average clustering error, its standard deviation and min-
imum-maximum values during the 100 runs.

The first dataset (Figure 1) contains two rings with a total
of 500 points. It is obvious that this problem is not linearly
separable which makes k-means inappropriate for it. Run-
ning global kernel k-means and its fast version for ܯ ൌ 2 we
manage to identify the two rings. Kernel k-means finds the
two ring solution only in 12 out of 100 runs. In Table II we
can see that the solution with two rings corresponds to the
lowest clustering error. This solution is depicted in Figure 1.

 The second dataset (Figure 3) consists of five copies of
two rings where the inner ring is dense and has 700 points
while the outer ring has 300 points. The whole dataset has
5000 points and 10 clusters. For this difficult clustering
problem, the global kernel k-means algorithm manages to
find ten rings as shown in Figure 3 which is also the solution
with the lowest clustering error in Table II. The fast global
kernel k-means algorithm fails to identify the rings correctly:
it splits the outer ring into two parts and merges one of them
with the inner ring as shown in Figure 4. This problem is
quite hard to solve and the greedy decisions that fast global
kernel k-means makes result in suboptimal solutions with
higher clustering error. Finally kernel k-means never identi-
fies the ten rings solution during the 100 runs and also its

1 For better understanding the experimental results please view the fig-

ures in color.

average clustering error is higher than that of fast global
kernel k-means. Figure 5 depicts the clustering result corres-
ponding to the lowest clustering error during the 100 runs of
kernel k-means.

The third dataset is the ‘IJCNN 2008’ logo and contains 9
clusters, one for each letter, with a total of 243 points. Glob-
al kernel k-means as well as its fast version split the logo
correctly to its letters which is also the solution with lowest
clustering error in Table II. Kernel k-means separates the
logo to its letters only in 5 out of 100 runs. Figure 2 shows
the clustering result with the lowest clustering error.

Despite the fact that kernel k-means was initialized 100
times for all datasets it never achieved a clustering error
lower than that of global kernel k-means. This observation
together with the fact that global kernel k-means correctly
locates the rings in the second dataset, which is a difficult
problem to solve, justify our statement that it finds near op-
timal solutions. Moreover the fast version of the algorithm in
some cases, such as the first and third datasets, proves equal
to the original algorithm but when the problem is hard, as
with the second dataset, it is inferior to the original algo-
rithm but still superior over kernel k-means as its error is
lower than the average error of kernel k-means. Finally ker-
nel k-means is very sensitive to the initialization of the clus-
ters and finds from near optimal solutions to very bad ones
during the 100 runs which make it difficult to decide on the
number of restarts. Also we can never be sure if we managed
to locate a near optimal solution during those repetitions.

B. MRI Segmentation
We have tested global kernel k-means, fast global kernel

k-means and kernel k-means with multiple restarts on simu-
lated MRI images downloaded from the BrainWeb site [10].
Specifically we used the normal brain database, which con-
tains a single 3-d brain image, with the following simulation
parameters: T1 modality, 1mm slice thickness, 3% noise and
20% intensity non-uniformity. The corresponding ground
truth (discrete version) is also available and assigns to each
voxel the label of the tissue that contributes most to that
voxel. The tissues are divided in ten categories: background,
cerebrospinal fluid (CSF), grey matter, white matter, mus-
cle/skin, skin, skull, fat, glial matter and connective. For our
experiments we focused on brain slices along the z-axis and
in particular on those around the middle of the 3-d volume
where the first seven tissue categories prevail, thus we con-
sidered clustering into seven clusters.

We segmented the slices 60, 80 and 100, shown in Figures
6-8, into seven clusters based on information derived from
pixel intensities and considered only the pixels of the seven
prevalent tissue categories. The ground truth for each of the
above slices is depicted in Figures 9-11. Typical approaches
consider only pixel intensities as features and employ k-
means or Gaussian mixture models. In this work we suggest
the use of kernel k-means for MRI segmentation. Moreover
each pixel was represented with a vector containing not only
the pixel intensity, but also the intensity histogram of a win-
dow around the pixel. The histogram was normalized so as
bin quantities to represent probabilities. Based on this repre-
sentation, we defined a kernel (5) that calculates the similari-

TABLE II
ARTIFICIAL DATASETS RESULTS IN TERMS OF CLUSTERING ERROR. THE

KERNEL PARAMETER ߪ VALUE IS ALSO SHOWN

Method/Dataset
ߪ ൌ 1

Two
Rings

ߪ ൌ 1.8

Ten
Rings

ߪ ൌ 0.7

‘IJCNN
2008’

Global kernel k-means 320.17 966.87 27.97
Fast global kernel k-

means 320.17 1073.18 27.97

Kernel k-
means (100

runs)

Mean 334.4 1107.97 37.72
Std 6.4 177.24 6.16
Min 320.17 981.53 27.97
Max 351.05 1765.29 63.03

 2008 International Joint Conference on Neural Networks (IJCNN 2008) 1983

ty between two pixels based on the similarity between their
intensities and the similarity between the corresponding his-
tograms. More specifically, if ܫሺ݅ሻ is the intensity of pixel ݅
and ௭ܲሺ݅ሻ is the probability associated with the ݖ-th bin of
pixel’s ݅ histogram, the kernel element ܭ is computed as:

ܭ ൌ exp ቆ
െԡܫሺ݅ሻ െ ሺ݆ሻԡଶܫ

ଶߪ2
ቇ ටܲݖሺ݅ሻܲݖሺ݆ሻ

ݏ݊݅ܤ

ൌ1ݖ
 (5)

The above kernel definition implies a positive semi-
definite (i.e. valid) kernel matrix as it can be interpreted as a
Gram matrix. The validity of the kernel is easily proven
based on the property that if ࢞ ൌ ሺ࢞, ,ܭ ሻ and࢞ areܭ
valid kernels then also ܭሺ࢞, ᇱሻ࢞ ൌ ,࢞ሺܭ ࢞

, ሻܭሺ࢞, ࢞
, ሻ is a

valid kernel. In our case ܭ is the Gaussian kernel among
the intensities and ܭ is simply the dot product between the
square roots of the histogram vectors. Note that ܭ ൌ 1
which is the maximum value for this kernel.

When comparing the clustering algorithms, the quality of
the solution was once again measured in terms of clustering
error. To decide on the kernel parameter values clustering
error is not a valid measure though. Instead we define the
misclassification error using the ground truth information.
Specifically, each cluster on the final solution is assigned the
label of the majority tissue class present on the cluster. The
pixels of the other classes in the cluster are counted as mis-
classifications. Summing the misclassified pixels over all
clusters and dividing by the total number of pixels gives the
misclassification error. By trying different combinations for
the ߪ value, window size and number of bins we decided to
use ߪ ൌ 0.7 , a 31-by-31 window and split the intensity
range of the whole slice into 70 equally spaced bins. The
above parameters were discovered using slice 80 and were
applied directly on the other two slices so as to see if they
are effective in nearby slices. Note that tissue distribution
changes across slices.

Fig. 6. MRI slice 60.

Fig. 7. MRI slice 80.

Fig. 8. MRI slice 100.

Fig. 9. Ground truth for slice 60. In black are

the 3 tissues we ignore in our experiments.

Fig. 10. Ground truth for slice 80. In black

are the 3 tissues we ignore in our experiments.

Fig. 11. Ground truth for slice 100. In black

are the 3 tissues we ignore in our experiments.

Fig. 12. Segmented tissues for slice 60 with

fast global kernel k-means. In dark blue are the 3
tissues we ignore in our experiments.

Fig. 13. Segmented tissues for slice 80 with

fast global kernel k-means. In dark blue are the 3
tissues we ignore in our experiments.

Fig. 14. Segmented tissues for slice 100 with

fast global kernel k-means. In dark blue are the 3
tissues we ignore in our experiments.

BackgroundMuscle/Skin

White Grey CSF Skull

Skin

White Grey CSF Skull

Muscle/Skin SkinBackground BackgroundMuscle/Skin

SkinWhite Grey CSF

Skull

1984 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Our experimental evaluation focuses only on the compari-
son of fast global kernel k-means and kernel k-means with
multiple restarts because global kernel k-means incurs a very
high computational complexity, due to the large dataset size
(each slice is of size 181-by-217), which makes its applica-
tion impractical (requires a couple of days even when not
considering all pixels as possible initializations). The global
kernel k-means algorithm was run once, using the above
parameter values, for slice 80 and the result was almost iden-
tical to that of the fast version. This is very encouraging be-
cause it seems that the fast version results equal those of the
original algorithm for the MRI segmentation problem. The
original algorithm was not further considered in our experi-
ments. We also experimented with the simpler approach of
using ܭ ൌ exp ቀିԡூሺሻିூሺሻԡ

మ

ଶఙమ
ቁ as a kernel i.e. a Gaussian

kernel on pixel intensities and no histogram. We compare
the two approaches in Table III using fast global kernel k-
means. It is evident that the histogram information does help
to reduce the misclassification error. This backs our decision
to adopt a more complex kernel.

To compare the two algorithms using the kernel given in
(5) we ran fast global kernel k-means only once while kernel
k-means was restarted 100 times for each slice and report
here the average clustering error, its standard deviation and
minimum-maximum values during the 100 runs. The results
for the three slices are summarized in Table IV where also
the misclassification error is shown. Note that for kernel k-
means the misclassification error reported corresponds to the
run with minimum clustering error. As we can see the best
solutions identified by kernel k-means during the 100 runs
are almost identical for slices 60, 80 and 100 to that of fast
global kernel k-means. For slice 60, only 3 out of 100 runs

are better for slice 80, 12 out of 100 runs and for slice 100,
28 out of 100 runs. The solution with minimum clustering
error is found 1, 5 and 3 times for slices 60, 80 and 100 re-
spectively. A more fair and correct comparison though is the
one between the average clustering error during the 100 runs
and the corresponding error of the fast global kernel k-means
algorithm where clearly kernel k-means is outperformed for
all slices. This is because during the restarts very bad solu-
tions are also discovered. Moreover consider that executing
those restarts is time consuming due to the large dataset size
(requires in our implementation around 16 hours) while fast
global kernel k-means is almost 21 times faster (takes around
45 minutes to run). The misclassification error for the two
algorithms is identical for slice 60 while for slice 80 kernel
k-means is slightly better and for slice 100 fast global kernel
k-means is slightly better. The above suggest that choosing
the fast global kernel k-means algorithm for MRI segmenta-
tion is a wiser solution. By examining the results in Table IV
for slice 100 we observe that lower clustering error does not
guarantee and lower misclassification error. We focus
though primarily on clustering error when comparing the
two algorithms as this is the quantity optimized by both al-
gorithms.

 Figures 12-14 depict the clustering result of fast global
kernel k-means on the three slices. Since different tissues
share the same pixel intensities (e.g. background and skull),
as shown in Figure 15, it is difficult to place them on differ-
ent clusters even when working with a kernel that takes ad-
vantage of the window information. For slice 60 we can see
that grey and white matter form pure clusters. The back-
ground is split into two clusters and one of them is mixed
with the skull while CSF is mixed with skin. For slice 80
grey matter, white matter, CSF and skin form quite pure

TABLE III
COMPARISON OF THE KERNEL IN (5) WITH ܭ ൌ exp ቀିԡூሺሻିூሺሻԡ

మ

ଶఙమ
ቁ IN TERMS

OF MISCLASSIFICATION ERROR USING FAST GLOBAL KERNEL K-MEANS
Kernel/Slice Slice 60 Slice 80 Slice 100

Kernel given in (5)
ߪ ൌ 0.7 Win=31x31

Bins=70
19.89% 14.1% 15.82%

Gaussian
kernel on
pixel in-
tensities

ߪ ൌ 0.2 26.24% 22.37% 18.53%
ߪ ൌ 0.4 23.24% 22.11% 18.08%
ߪ ൌ 0.7 23.53% 22.22% 18.09%
ߪ ൌ 1.0 23.77% 22.27% 18.09%

Fig. 15. Tissue pdf estimation for slice 80.

Method/Slice
ߪ ൌ 0.7 Win=31x31

Bins=70

Slice 60 Slice 80 Slice 100
CE ME CE ME CE ME

Fast global kernel
k-means 5208.32 19.89% 5064.99 14.1% 5010.15 15.82%

Kernel k-
means

(100 runs)

Mean 5286.95

19.89%

5244.39

14.01%

5094.85

15.97% Std 66.29 127.63 141.7
Min 5207.65 5064.27 5009.75
Max 5364.68 5477.84 5808.77

TABLE IV
CLUSTERING ERROR (CE) FOR FAST GLOBAL KERNEL K-MEANS AND KERNEL K-MEANS WITH MULTIPLE RESTARTS ON MRI SEGMENTATION. THE
MISCLASSIFICATION ERROR (ME) FOR FAST GLOBAL KERNEL K-MEANS AND THE RUN OF KERNEL K-MEANS WITH MINIMUM CE IS ALSO SHOWN

-100 0 100 200 300 400 500 600 700 800 900
0

0.005

0.01

0.015

0.02

0.025

0.03

Pixel Intensity

Ti
ss

ue
 p

ro
ba

bi
lit

y
de

ns
ity

 fu
nc

tio
n

Background
CSF
Grey Matter
White Matter
Muscle/Skin
Skin
Skull

Background

Skull

Skin
CSF

Muscle/Skin
Grey Matter

White Matter

 2008 International Joint Conference on Neural Networks (IJCNN 2008) 1985

clusters. Again the background is split and the one part is
mixed with the skull. Finally for slice 100 the result is simi-
lar to that of slice 60. Note that although some tissues are
broken to two clusters, e.g. the white matter in slice 100,
these clusters are pure something that is considered a good
solution. Overall the clustering solution found by fast global
kernel k-means is satisfactory especially for the inner part of
the brain.

V. CONCLUSIONS
We have presented the global kernel k-means clustering

algorithm, an algorithm that maps data points from input
space to a higher dimensional feature space through the use
of a kernel function and optimizes the clustering error in the
feature space by locating near optimal minima. The main
advantages of this method are its deterministic nature, which
makes it independent of cluster initialization, and the ability
to identify nonlinearly separable clusters in input space.
Another important feature of the proposed algorithm is that
in order to solve the M-clustering problem all intermediate
clustering problems, with 1, …, M clusters, are solved. This
may prove useful in problems where we seek the actual
number of clusters. Moreover we developed the fast global
kernel k-means algorithm which considerably reduces the
computational cost of the original algorithm without degrad-
ing significantly the quality of the solution.

We tested the above algorithms on artificial data and ob-
served that they compare favorably to kernel k-means with
multiple restarts. The original algorithm always found the
best solution and in some cases the fast version proved
equal. We proposed the use of kernel k-means for MRI seg-
mentation and suggested the use of a composite kernel in-
cluding not only pixel intensity but also local histogram in-
formation. For this task the fast global kernel k-means algo-
rithm finds solutions that are almost equal to the best one
identified by kernel k-means during the restarts and is a lot
faster to execute. These facts make our method a viable clus-
tering scheme that identifies near optimal solutions.

As for future work a possible direction is the use of paral-
lel processing to accelerate the global kernel k-means algo-
rithm since the local search performed when solving the k-
clustering problem requires running kernel k-means N times
and these executions are independent of each other. Another
important issue is the development of theoretical foundations
behind the assumptions of the method. As already mentioned
kernel k-means is closely related to spectral clustering. So
extending the proposed algorithm by associating weights
with each data point, following the ideas in [4]-[6], and us-
ing it to solve graph cut problems and comparing it to spec-
tral methods is another possible research direction. Finally
we plan to use the global kernel k-means in conjunction with
criteria and techniques for estimating the optimal number of
clusters.

ACKNOWLEDGMENT
This work has been supported by Interreg IIIA (Greece-

Italy) grant I2101005.

REFERENCES
[1] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means cluster-

ing algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451-461, Feb.
2003.

[2] B. Scholkopf, A. Smola, and K. –R. Muller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Computation, vol.
10, pp. 1299-1319, July 1998.

[3] J. Kim, K. –H. Shim, and S. Choi, “Soft geodesic kernel k-means,” in
Proc. 32nd IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, 2007, pp. 429-432.

[4] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, spectral clus-
tering and normalized cuts,” in Proc. 10th ACM Knowledge Discover
and Data Mining Conf., 2004, pp. 551-556.

[5] I. S. Dhillon, Y. Guan, and B. Kulis, “A unified view of kernel k-
means, spectral clustering and graph cuts,” University of Texas at
Austin, Tech. Rep. TR-04-25, 2004.

[6] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors: a multilevel approach,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 29, no. 11, pp. 1944-1957, Nov. 2007.

[7] A. Y. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proc. of Neural Information Processing Sys-
tems, 2001.

[8] J. Li, D. Tao, W. Hu, and X. Li, “Kernel principle component analysis
in pixels clustering,” in Proc. Int. Conf. on Web Intelligence, 2005, pp.
786-789.

[9] R. Zhang and A. I. Rudnicky, “A large scale clustering scheme for
kernel k-means,” in Proc. 16th Int. Conf. on Pattern Recognition,
2002, pp. 289-292.

[10] C. A. Cocosco, V. Kollokian, R. K. –S. Kwan, and A. C. Evans,
“BrainWeb: Online interface to a 3d MRI simulated brain database,”
NeuroImage, vol.5, no.4, 1997.
Available: http://www.bic.mni.mcgill.ca/brainweb/

