IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

1181

The Global Kernel ~£-Means Algorithm for
Clustering in Feature Space

Grigorios F. Tzortzis and Aristidis C. Likas, Senior Member, IEEE

Abstract—Kernel k-means is an extension of the standard
k-means clustering algorithm that identifies nonlinearly sep-
arable clusters. In order to overcome the cluster initialization
problem associated with this method, we propose the global kernel
k-means algorithm, a deterministic and incremental approach
to kernel-based clustering. Our method adds one cluster at each
stage, through a global search procedure consisting of several
executions of kernel k-means from suitable initializations. This
algorithm does not depend on cluster initialization, identifies
nonlinearly separable clusters, and, due to its incremental nature
and search procedure, locates near-optimal solutions avoiding
poor local minima. Furthermore, two modifications are developed
to reduce the computational cost that do not significantly affect
the solution quality. The proposed methods are extended to
handle weighted data points, which enables their application to
graph partitioning. We experiment with several data sets and the
proposed approach compares favorably to kernel k-means with
random restarts.

Index Terms—Clustering, graph partitioning, k-means, kernel
k-means.

1. INTRODUCTION

LUSTERING, the goal of which is to partition data

C points into homogeneous groups, arises in a number
of fields such as pattern recognition, machine learning, data
mining, and image processing. One of the most popular clus-
tering algorithms is k-means [1], where groups are identified
by minimizing the clustering error defined as the sum of the
squared Euclidean distances between each data set point and
the corresponding cluster center. This algorithm suffers from
two serious limitations. First, the solution depends heavily on
the initial positions of the cluster centers, resulting in poor
minima, and second it can only find linearly separable clusters.
A simple but very popular workaround for the first limita-
tion is the use of multiple restarts, where the centers of the
clusters are randomly placed at different initial positions, hence
better local minima can be found. Still we have to decide on
the number of restarts and also we are never sure if the ini-
tializations tried are sufficient so as to obtain a near-optimal

Manuscript received October 16, 2008; revised January 20, 2009; accepted
March 18, 2009. First published May 29, 2009; current version published July
09, 2009.

The authors are with the Department of Computer Science, University of
Ioannina, GR 45110 Ioannina, Greece (e-mail: gtzortzi @cs.uoi.gr; arly @cs.uoi.
o).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2009.2019722

minimum. To deal with this problem, the global k-means al-
gorithm has been proposed [2], which employs the k-means al-
gorithm as a local search procedure. This algorithm incremen-
tally solves the M -clustering problem by solving all interme-
diate problems with 1, ..., M clusters using k-means. The so-
lution with M clusters is built deterministically, so there is no
dependency on initial conditions, and near-optimal solutions are
found as shown in [2].

Kernel k-means [3] is an extension of the standard k-means
algorithm that maps data points from the input space to a fea-
ture space through a nonlinear transformation and minimizes
the clustering error in feature space. Thus, nonlinearly separated
clusters in input space are obtained, overcoming the second lim-
itation of k-means.

In this paper, we propose the global kernel k-means algo-
rithm, a deterministic algorithm for optimizing the clustering
error in feature space that employs kernel k-means as a local
search procedure in order to solve the M -clustering problem.
The algorithm works in an incremental fashion by solving
all intermediate problems with 1,... M clusters, using
kernel k-means. The idea behind the proposed method is that a
near-optimal solution with & clusters can be obtained by starting
with a near-optimal solution with k£ — 1 clusters and initializing
the kth cluster appropriately based on a local search. During
the local search, NV initializations are tried, where N is the size
of the data set. The & — 1 clusters are always initialized to the
(k — 1)-clustering problem solution, while the kth cluster for
each initialization includes a single data set point. The solution
with the lowest clustering error is kept as the solution with &
clusters. Since the optimal solution for the 1-clustering problem
is known, the above procedure can be applied iteratively to
find a near-optimal solution to the M -clustering problem. This
algorithm combines the advantages of both global k-means and
kernel k-means, therefore it avoids both limitations of k-means.
A drawback of global kernel k-means is its high computational
complexity, inherited from the other two algorithms, as it
requires running kernel k-means M N times when solving the
M -clustering problem.

To lower the complexity, two speeding up schemes are
proposed called fast global kernel k-means and global kernel
k-means with convex mixture models. The first variant, for each
intermediate problem locates the data set point that guarantees
the greatest reduction in clustering error when the new cluster
is initialized to include this point and executes kernel k-means
only once from this initialization. The second variant locates
a set of exemplars in the data set, by fitting a convex mixture
model [4], and then, for each intermediate problem, tries only
the exemplars as possible initializations for the new cluster
instead of the whole data set.

1045-9227/$25.00 © 2009 IEEE

1182

Graph partitioning algorithms focus on clustering the nodes
of a graph. Spectral methods have been effectively applied for
optimizing many graph cut objectives, including ratio associa-
tion and normalized cut. The main drawback of these methods
is the need to calculate the eigenvectors of the graph affinity ma-
trix which has substantial cost for large graphs. Weighted kernel
k-means [5], a version of kernel k-means that assigns different
weights to each data set point, is closely related to graph parti-
tioning as its objective becomes equivalent to many graph cut
criteria if the weights and kernel are set appropriately [5]-[8].
Hence, it can be used to locally optimize many graph cut objec-
tives. Based on that, we have developed weighted versions of
the proposed methods and use them to locate near-optimal so-
lutions in graph partitioning problems without the need to com-
pute eigenvectors.

We present experimental results that compare global kernel
k-means, its two variants and kernel k-means with multiple
restarts on artificial data, digits, face images, and graphs. The
results back our claim that global kernel k-means locates near-
optimal solutions as it outperforms kernel k-means with mul-
tiple restarts in terms of clustering error. There are cases where
the speeding up schemes prove equal to the original algorithm,
while in most of the experiments, they are superior to the best
run of kernel k-means and their clustering error is always lower
compared to the average of kernel k-means.

In the following section, we formally define clustering error
and briefly describe k-means, global k-means, and kernel
k-means. In Section III, we present the proposed global kernel
k-means algorithm along with an analysis of its computational
complexity, while the speeding up schemes are described in
Section IV. The weighted versions of the proposed methods
are presented in Section V and their application to graph
partitioning is discussed next. Section VII contains the experi-
mental evaluation, while Section VIII concludes this work. A
preliminary version of this work has been presented in [9].

II. PRELIMINARIES

A. k-Means and Global k-Means

Suppose we are given a data set X = {x1,X2,...,Xn},
x,, € R, and we aim to partition this data set into M disjoint
clusters C1,Co, .. .,Cps. The k-means algorithm [1] finds local
optimal solutions with respect to the clustering error, defined as
the sum of squared Euclidean distances between each data point
X, and the center my, of the cluster that x,, belongs to. Analyt-

ically, the clustering error is given by

N M

E(my,... my) =Y I(xy €Cp)[xn —mgl* (1)

n=1k=1

where 1(Y') = 1if Y is true and O otherwise.

The two main disadvantages of the k-means algorithm are
the dependence of the final solution on the initial position of the
cluster centers and that the clusters must be linearly separable.
To deal with the initialization problem, the global k-means al-
gorithm has been proposed [2], which is an incremental—deter-
ministic algorithm that employs k-means as a local search pro-
cedure. This algorithm obtains near-optimal solutions in terms
of clustering error.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

In order to solve the M -clustering problem using global
k-means, we proceed as follows. As the optimal solution to the
1-clustering problem corresponds to the data set centroid, we
begin by solving the 2-clustering problem. We run k-means
N times, each time starting with the following initial cluster
centers: one cluster center is always placed at the optimal
position of the 1-clustering problem and the other, during the
nth run, is initially placed at data point x,,. The solution with
the lowest clustering error is kept as the solution of the 2-clus-
tering problem. In general, for the k-clustering problem, let
(m3,...,mj_,) denote the solution to the (k — 1)-clustering
problem. We perform N executions of the k-means algorithm,
with (mf,...,m}_,,x,) as initial cluster centers for the nth
run, and keep the solution resulting in the lowest clustering
error. The above procedure is repeated until £k = M.

It is obvious that the above algorithm does not suffer from
the initialization of the cluster centers problem and computes
a clustering of the data points in a deterministic way. Also, it
provides all solutions with 1, ..., M clusters when solving the
M -clustering problem without additional cost. The experiments
reported in [2] verify that global k-means is better than k-means
with multiple restarts. A drawback of global k-means is that
it is computationally heavy as it requires running the k-means
algorithm M N times. To speed up its execution, two variants
are proposed in [2] that do not considerably degrade the per-
formance of the algorithm. Another variant has been recently
proposed in [10].

B. Kernel k-Means

Kernel k-means [3] is a generalization of the standard
k-means algorithm where data points are mapped from input
space to a higher dimensional feature space through a non-
linear transformation ¢ and then k-means is applied in feature
space. This results in linear separators in feature space which
correspond to nonlinear separators in input space. Thus, kernel
k-means avoids the limitation of linearly separable clusters in
input space that k-means suffers from.

The objective function that kernel k-means tries to minimize
is the clustering error in feature space, shown in (2). We can de-
fine a kernel matrix K € RV*N, where K;; = ¢(x;)Top(x;)
and by taking advantage of the kernel trick, we can compute
the squared Euclidean distances in (2) without explicit knowl-
edge of the transformation ¢ using (3). Any positive-semidef-
inite matrix can be used as a kernel matrix. Notice that in this
case cluster centers my, in feature space cannot be calculated.
Usually, a kernel function K (x;,x;) is used to directly provide
the inner products in feature space without explicitly defining
transformation ¢ (for certain kernel functions the corresponding
transformation is intractable), hence K;; = K(x;,x;). Some
kernel function examples are given in Table I. Kernel k-means
is described in Algorithm 1.

Algorithm 1: Kernel k-Means

Input: Kernel matrix K, number of clusters k, initial clusters
Cqi,...,Cx

Qutput: Final clusters Cy, . . ., Cg, clustering error £/

1: for all points x,, n = 1,..., N do

TZORTZIS AND LIKAS: THE GLOBAL KERNEL k-MEANS ALGORITHM FOR CLUSTERING IN FEATURE SPACE

TABLE I
EXAMPLES OF KERNEL FUNCTIONS

B)
K(Xi,x]') = (x;FX]' —'r’)’)
K (xi,%;) = exp (—||x; — x;|2/20?)
K(x;,x;) = tanh ('y(x;xj-) + 9)

Polynomial Kernel

Gaussian Kernel

Sigmoid Kernel

2: for all clustersC; 7 = 1 to k do

3: Compute ||$(x,,) — m;||? using (3)
4: end for

5: Find ¢*(x,) = arg min;(||¢(x,) —
6: end for

7: for all clusters C; 7 = 1 to k do

m;|?)

8: Update cluster C; = {x,|c*(x,,) = i}
9: end for

10: if converged then

11: return final clusters C1, ...

12: else

,Cr and E calculated using (2)

13: Gotostep 1

14: end if
N M
n=1k=1
where
N
Yo (% € Ch)(xn)
m; = ~
Zn:l I(Xn S Ck)
2N I(x; € Cp)K,
”qs(xn)_mkHQ:Knn_ j=1]

>imy I(xj € Ch)

Yol Sy 1(x; € Cl)I(x1 € Ci)K
Z;\;l Z;\;l I(X]' € Ck)I<Xl S Ck>

3)

|

It can be shown that kernel k£-means monotonically converges
if the kernel matrix is positive semidefinite, i.e., is a valid kernel
matrix. If the kernel matrix is not positive semidefinite, the al-
gorithm may still converge, but this is not guaranteed. As for
the computational complexity, in [6], it is shown that kernel
k-means requires O(N?27) scalar operations, where 7 is the
number of iterations until convergence is achieved. If we also
have to calculate the kernel matrix, O(N2d) extra scalar opera-
tions are required.

It must be noted that, by associating a weight with each data
point, the weighted kernel k-means algorithm is obtained [5].
It has been proved that its objective function is equivalent to
that of many graph partitioning problems such as ratio associ-
ation, normalized cut, etc., if the weights and the kernel matrix

1183

are set appropriately [5]-[7]. This subject is further analyzed in
Sections V and VL

It has also been proved that performing k-means in the kernel
pca space is equivalent to kernel k-means [11]. However, this
approach has two drawbacks: it requires computation of the
eigenvectors of the kernel matrix and it highly depends on the
initialization of k-means. Calculating the eigenvectors of large
matrices is expensive and even prohibitive as it requires O(N?)
operations.

III. GLOBAL KERNEL k-MEANS

In this paper, we propose the global kernel k-means algo-
rithm for minimizing the clustering error in feature space (2).
Our method builds on the ideas of global k-means and kernel
k-means. Global kernel k-means maps the data set points from
input space to a higher dimensional feature space with the help
of a kernel matrix K € RV >V | as kernel k-means does. In this
way, nonlinearly separable clusters are found in input space.
Also, global kernel k-means finds near-optimal solutions to the
M -clustering problem by incrementally and deterministically
adding a new cluster at each stage and by applying kernel
k-means as a local search procedure instead of initializing all
M clusters at the beginning of the execution. Thus, the prob-
lems of cluster initialization and getting trapped in poor local
minima are also avoided. In a nutshell, global kernel k-means
combines the advantages of both global k-means (near-optimal
solutions) and kernel k-means (clustering in feature space).

A. Algorithm Description

Suppose we want to solve the M -clustering problem using
global kernel k-means. Since the calculation of the cluster cen-
ters in feature space is intractable, for the same reason as for
kernel k-means, we will represent a cluster in terms of the data
points that belong to it instead of its center. We start by solving
the 1-clustering problem using kernel k-means. The optimal so-
lution to this problem is trivial as all data points are assigned
to the same cluster. We continue with the 2-clustering problem
where kernel k-means is executed N times. During the nth ex-
ecution, the initialization is done by considering two clusters
one of which contains only x,, and the other is X — {x,}.
Among the N solutions, the one with the lowest clustering error
is kept as the solution with two clusters. In general, for the
k-clustering problem, let (C7,...,C;_;) denote the solution
with k& — 1 clusters and assume that x,, € C}. We perform N
executions of the kernel k-means algorithm, with (Cf,...,C, =
C} —{xn},...,C;_1,Cr = {x,}) as initial clusters for the nth
run, and keep the one resulting in the lowest clustering error.
The above procedure is repeated until K = M. The global kernel
k-means pseudocode is given in Algorithm 2.

Algorithm 2: Global Kernel k-Means

Input: Kernel matrix K, number of clusters M

Output: Final clustering of the points C1,Cs, . ..,Cys

// There is no need to solve for one cluster as the solution
is trivial and optimal. C{ = X

1184

1: for all k-clustering problems k = 2 to M do

2: for all points x,, n = 1,..., N do // Suppose x,, € C*

3: Run Kernel k-Means with:
input (K, k,Cy,...,C, =C:—{xn},...,C5_1,Ck, =
{xn})
output (C{,...,C¢, E})

4: end for

3 Find £} = min, (E}) and set (Cy,...,C;) to the
partitioning corresponding to Ej,
/l This is the solution with & clusters

6: end for

7:return C; = Cy,...,Cy = Cj; as output of the algorithm

The rationale behind the proposed method is based on the as-
sumption that a near-optimal solution with k clusters can be ob-
tained through local search, from an initial state with k£ — 1 near-
optimal clusters [solution of the (k — 1)-clustering problem] and
the kth cluster initialized appropriately. As we consider only
one data point belonging to the kth cluster when it is initial-
ized, this is equivalent to initializing, during the nth run, the kth
cluster center at point ¢(x,,) in feature space. Limiting the set of
possible positions for the kth center only to the data set points
when mapped to feature space seems reasonable. Our experi-
ments verify that the proposed algorithm computes near-optimal
solutions, although it is difficult to prove theoretically. Note that
during the execution of the algorithm, solutions for every k-clus-
tering problem with &k < M are also obtained without additional
cost, which may be desirable in case we want to decide on the
number of clusters for our problem.

B. Computational Complexity

Duetoits close relation to global k-means and kernel k-means,
the global kernel k-means algorithm inherits their computational
cost. Given the values of the kernel matrix, the complexity
of kernel k-means is O(N27) scalar operations, where T is
the number of iterations until convergence is achieved. In the
global kernel k-means algorithm, in order to solve the M-clus-
tering problem, we must run kernel k-means M N times. This
makes the complexity of global kernel k-means O(N3M7).
If we also have to calculate the kernel matrix, extra O(N?d)
scalar operations are required, making the overall complexity
O(N?(NMt + d)). Storage of the matrix requires O(N?)
memory and a scheme for dealing with insufficient memory
has been proposed in [12], which can be readily applied to our
algorithm. As the computational complexity is high for large
data sets two speeding up schemes are proposed next.

IV. SPEEDING-UP EXECUTION

A. Fast Global Kernel k-Means

The fast global kernel k-means algorithm is a simple method
for lowering the complexity of the original algorithm. It is based

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

on the same ideas as the fast global k-means variant proposed
in [2]. We significantly reduce the complexity by overcoming
the need to execute kernel k-means /N times when solving the
k-clustering problem given the solution for the (k — 1)-clus-
tering problem. Specifically, kernel k-means is employed only
once and the kth cluster is initialized to include the point x,, that
guarantees the greatest reduction in clustering error.

In more detail, we compute an upper bound)} < E;_; —b}
of the final clustering error, when the kth cluster is initialized to
include point x,,. Ej;_; is the clustering error corresponding to
the (k — 1)-clustering problem solution and b} measures the
guaranteed reduction of the error and is defined in (4). In this
equation, d271 denotes the squared distance between x; and its
cluster center in feature space after solving the (k—1)-clustering
problem. We select as initialization for the kth cluster the point
X, with the highest b} value

N
b= max (diy = llé(x) = 6(x:)II0)
=1
where
6(xn) — (x> = K + Kii — 2Kni. (4)

The above upper bound is derived from the following argu-
ments. First, when the kth cluster is initialized to include point
X, it will allocate all points x; that are closer to x,, in fea-
ture space than to their cluster center in the solution with k£ — 1
clusters (distance dﬁ;_l). Therefore, for each such point x;, the
clustering error will decrease by di, ;| — ||¢(x,,) — p(x;)||. The
quantity b measures the reduction in error due to this reallo-
cation. Second, since kernel k-means converges monotonically,
we can be sure that the final error will never exceed our bound.

When using this variant of the global kernel k-means al-
gorithm to solve the M -clustering problem, we must execute
kernel k-means M times instead of M N times. Given the
kernel matrix, calculation of b} requires O(N) scalar oper-
ations as dj,_, is calculated when executing kernel k-means
for the (k — 1)-clustering problem. Each time we have to
calculate N quantities b} and this must be repeated M times
in order to solve the problem with M clusters. Thus, the
cost incurred by the need to estimate the upper bound is
O(N?M). Overall, the fast global kernel k-means algorithm
has O(N?(M7 + d + M)) = O(N?*(M7 + d)) complexity,
which is considerably lower than that of global kernel k-means
and is comparable to the complexity of kernel k-means when
M is small. In general, this reduction in complexity comes at
the cost of finding solutions with higher clustering error than
the original algorithm. However, as our experiments indicate,
in several problems, the performance of the fast version is
comparable to that of global kernel k-means, which makes it a
good fast alternative.

B. Global Kernel k-Means With Convex Mixture Models

Another way, apart from fast global kernel k-means, to lower
the complexity of the global kernel k-means algorithm when
solving the M -clustering problem, is to select a set of good ex-
emplars (Xg C X) in feature space, with an exemplar-based

TZORTZIS AND LIKAS: THE GLOBAL KERNEL k-MEANS ALGORITHM FOR CLUSTERING IN FEATURE SPACE

method, and then apply global kernel k-means with the restric-
tion that the points tried as initializations for the newly added
cluster come from set X'z only.

In order to solve the k clustering problem, given the solution
with k& — 1 clusters, we must run kernel £-means as many times
as the number of selected exemplars instead of N times. In each
of these runs, we initialize the kth cluster to include an exemplar
of those selected. Many algorithms that perform exemplar-based
clustering can be used for this purpose, such as affinity propaga-
tion [13]. In our work, we use the method proposed by Lashkari
et al. [4], which is based on the use of exemplar-based mixture
models also called convex mixture models (CMMs).

Clustering with a convex mixture model results in soft assign-
ments of data points to clusters in such a way that the likelihood
is maximized, as with standard mixture models Given a data

N
> gifi(x)
j=1

| X [~
i=1 |i=1
+ const. (5)

where ¢; denotes the prior probability of the jth component
satisfying the constraint Z;\;l ¢; = 1, f;(x) is an exponential
family distribution on random variable X with its expecta-
tion parameter equal to the jth data point and, taking into
account the bijection between regular exponential families,
and Bregman divergences [14], d, is the Bregman diver-
gence corresponding to the components’ distribution, i.e.,
[i(x) = C(x)exp(—pfd,(x,x;)). Note that the exponential
family distributions used in the components are centered at the
data set points and have no adjustable parameters. Moreover, a
convex mixture model has as many components as the number
of data set points, hence it represents all data points as cluster
center candidates (candidate exemplars). The constant 3 con-
trols the sharpness of the components and 0 < § < oo. Also,
this parameter controls the number of clusters identified by
the algorithm when the soft assignments are turned into hard
ones. Higher (values result in more clusters in the final solu-
tion. To solve the above Rptlmlzatlon problem, we maximize

L({q;}}21; X) over {g};— st Z _1¢; = 1, which are the
only unknown parameters of the s1mp11ﬁed likelihood function.

The log-likelihood function (5) can be expressed in terms of
the Kullback-Leibler (KL) divergence if we define P(x) =
1/N, x € X, to be the empirical distribution of the data set,

Qx) = Zj'v:l ¢; fj(x) the mixture model distribution, and by
noting that
D(ﬁ”Q):—ZP)log Q(x) — (ﬁ)
x€X
= — L ({g;};21; X) + const. ©6)

where IH](P) is the entropy of the empirical distribution that does
not depend on the parameters of the mixture model. Now the

1185

maximization of (5) is equivalent to the minimization of (6).
This minimization problem is convex and can be solved with an
efficient-iterative algorithm. As proved in [15], the updates on
the components’ prior probabilities are given by

P(x)f;(x)
SN d (%)

and the algorithm is guaranteed to converge to the global min-
imum as long as q](o) > 0 V. The prior ¢; associated with data
point x; is a measure of how likely this point is to be an ex-
emplar. This is an important fact for our integration of convex
mixture models with global kernel k-means.

The convex mixture model as presented in [4] performs clus-
tering in input space. In this work, we propose a slight mod-
ification so as to perform clustering in feature space. For this
reason, we use the same nonlinear transformation ¢ as in kernel
k-means to map the data points to feature space and the log-like-
lihood (5) becomes

1 &
X) = NZlog
=1
:N
> e

(N

q§t+1) _ q;;)

N
L ({g;}j50; > gif; (6(xi)
i=1

—Bdy (d(x:),0(x;5))

1 N
= — N log
N;Og

+ const. (8)

where f;(¢(x)) is an exponential family distribution with its
expectation parameter equal to the mapping of the jth data point
in feature space. If we select Euclidean distance as the Bregman
divergence, as in our experiments, then we obtain a Gaussian
convex mixture model in feature space and d,(¢(x;), $(x;))
can be expressed in terms of a kernel function as

I = K + Kjj — 2K,

dp (P(xi); (%)) = [[(xi) — P(x
C)

Given the convex mixture model corresponding to the likeli-
hood defined in (8) we now proceed to its integration with global
kernel k-means. Let us note that to get the exemplars in feature
space the likelihood is optimized only once. For the implemen-
tation of the algorithm that optimizes (8), we follow the same
steps as in [4]. Letting s;; = exp(—fd,(¢p(x;), ¢(x;))) and
using two auxiliary vectors z and n, we update the prior proba-
bilities ¢; as follows:

N
_) 0 _ Sig (+1) (f) (f)
Zi _Z ijd; Ty sz(t) 5
Jj=1 1=1
(10)
where qj(»o) > 0 for all data points we want to consider as pos-

sible exemplars. As our target is to identify a number of good
exemplars, say P exemplars, we run the algorithm until the
P highest ¢; values correspond to the same data points for a
number of consecutive iterations. Moreover, we require that the
order among the P highest ¢; values remains the same during
these iterations. Note that this convergence criterion differs from
that proposed in [4]. The points of the data set that correspond to
the P highest g; values are those considered as good exemplars
and are included in set Xg.

1186

Clustering with the convex mixture model corresponding to
likelihood (8) requires to select a value for the parameter (3. It
is possible to identify a reasonable range of 3 values by deter-
mining a reference value [3y. For this purpose, we choose the
empirical value proposed in [4], but appropriately modified for
clustering in feature space, defined in (11). In our experiments,
we set 3 = [y and obtain good solutions in most cases

Bo=Nlog N/ > dy (¢(xi), h(x;)) - (11)

1,5

After we have determined the set of exemplars X'g, we
run global kernel k-means. We will refer to the data points
belonging to X'r as XJE 7 = 1,...,P. Now suppose we
want to solve the M -clustering problem. We must solve
all intermediate problems with 1,..., M clusters but now
instead of trying IV different initializations for the newly
added cluster, one for each point in X', we try only P ini-
tializations, one for each point in X'r. In more detail, for
the k-clustering problem, let (C,...,C;_;) denote the so-
lution with £ — 1 clusters and assume that Xf € Cr. We
perform P executions of the kernel k-means algorithm with
(Ci,....Cr = Cr — {xF},....C;_,Cr = {x]'}) as initial
clusters for the pth run, and keep the one resulting in the lowest
clustering error as the solution with % clusters. Remember that
initializing cluster C, to contain point xZ during the pth run

P
is the same as placing the kth center at point qﬁ(xf) in feature
space. The above procedure is repeated for k = 2,..., M.

When using this variant of global kernel k-means, we select P
exemplars in order to solve the M -clustering problem. The idea
behind this is that the exemplars identified by the convex mix-
ture model contain most of the information required by global
kernel k-means to partition the data set. So by trying only the P
exemplars as possible initializations for the newly added cluster,
we hope to approximate the solution of the original global kernel
k-means algorithm. Usually one should choose P > M, but
P < N because in most cases only a small subset of the data set
contains useful (nonredundant) information for the partitioning.

As for the complexity of this variant, we must run kernel
k-means M P times instead of M N times to solve the M -clus-
tering problem. This is a great reduction, especially for large
data sets, if we consider that P < N for the aforementioned
reasons. Of course, there is the additional cost of identifying
the exemplars. The algorithm (10) considered here has a com-
plexity of O(NN?) per iteration [4]. Moreover, the calculation
of the quantities s;; requires an additional O(N?) operations
if the kernel matrix is given. If the algorithm requires 7' it-
erations to converge, the overall cost becomes O(N?27’). The
global kernel k-means algorithm has a cost of O(N?(PMt +
d)) in this case (since we consider P exemplars) including the
kernel calculation. So the overall cost of the proposed variant is
O(N%(PMT+d+7")).Its complexity is considerably lower to
that of the original algorithm when P < N. Our experiments
indicate that despite the reduction to the complexity, the quality
of the solutions is satisfactory, and in many cases, very similar
to that of the original algorithm. Finally, its complexity is higher
than that of fast global kernel k-means, but it finds better solu-
tions that are closer to those of the original algorithm as shown

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

in our experiments. This happens because this method is less
greedy, as it tries P initializations when solving the k-clustering
problem instead of one.

V. ADDING WEIGHTS TO GLOBAL KERNEL k-MEANS
AND ITS SPEEDING-UP SCHEMES

A. Weighted Kernel k-Means

If we associate a positive weight with each data point the
weighted kernel k-means algorithm is derived [5]. The weights
play a crucial role in proving an equivalence of clustering to
graph partitioning, which is the reason we are interested in this
version of kernel k-means. Again, suppose we want to solve the
M -clustering problem. The objective function is expressed as
follows, where w; > 0 is the weight associated with data point
X

N M
E(ml,...,mM ZZ X Eck wt||¢(xt) mk||2
1=1 k=1

where

SN I(xi € Cr)wi(xi)
Zi\il I(X,L' S Ck)wl ’

Note that the center of the cluster in feature space is the weighted
average of the points that belong to the cluster. Once again, we
can take advantage of the kernel trick and calculate the squared
Euclidean distances in (12) without explicitly defining transfor-
mation ¢, using (13). Algorithm 1 can be applied for this version
of kernel k-means by only modifying lines 3 and 11, where the
point to cluster center distances must be calculated using (13)
and the clustering error using (12)

23 I(x) € Cr)w;Ky;
Sy I(x € Cr)w;

Zj\f:l Zf\:l I(x; € Cp)I(x; € Cr)w;w K
S S I(x; € C)I(xi € Cr)wjuwr

(12)

mj; =

llp(x:) ? = Kii —

— my||

13)

B. Weighted Global Kernel k-Means

It is straightforward that we can use the global kernel
k-means algorithm to optimize the objective function defined
in (12) by associating a weight with each data point. Algorithm
2 can be applied with the slightest modification to get the
weighted global kernel k-means algorithm. Specifically, we
must include on the input the weights and run weighted kernel
k-means instead of kernel k-means in line 3. All other steps
remain the same.

C. Weighted Fast Global Kernel k-Means

Fast global kernel k-means can also be extended to handle
weights for each data point. Again, we must run weighted kernel
k-means instead of kernel k-means, but the issue that changes is
the way we select the point that guarantees the greatest reduction
in clustering error when solving the k-clustering problem given
the solution with & — 1 clusters. This point will be used to ini-
tialize the kth cluster for the one and only run of weighted kernel

TZORTZIS AND LIKAS: THE GLOBAL KERNEL k-MEANS ALGORITHM FOR CLUSTERING IN FEATURE SPACE

k-means. Now the weights must be taken into account, resulting
in a modified definition of the quantity by (14) that measures the
reduction in clustering error when the kth cluster is initialized
to include point x,,. Again, d,_, denotes the squared distance
between x; and its cluster center in feature space after solving
the (k — 1)-clustering problem

N
= wimax (dg_l () — d(x)|)? ,o) (14

i=1

The above definition measures the reduction in clustering
error by identifying the points that will be allocated by the new
cluster center ¢(x,,). For each such point x;, the clustering error
will decrease by w;(d},_; — ||¢(x,) — ¢(x;)||?). Apparently,
we select as 1n1t1ahzat10n for the kth cluster the point x,, that
maximizes b}. No other modifications are required to obtain
the weighted fast global kernel k-means algorithm.

D. Weighted Global Kernel k-Means With
Convex Mixture Models

The global kernel k-means with CMM algorithm is divided
into two parts. The first is the identification of a set X' of
good exemplars and the second the application of global kernel
k-means, where for the newly added cluster, we try only
the exemplars in X'g as possible initializations. It is obvious
that weights can be applied to the second part, as shown in
Section V-B. Now we focus our description on the first part and
propose a modification to the convex mixture model algorithm
in order to accommodate weights. We can incorporate the
weights into the convex mixture model objective through the
empirical distribution of the data set. More specifically, instead
of a uniform distribution, we use

Wi

P(X) = { Zi\le wy

7

xeX
(15)

otherwise.

If Q(x) = Z;V:l q; fi(¢(x)) is the convex mixture model
distribution in feature space, we can write the convex mixture
model objective in terms of the KL divergence as

D(PIQ) == P(x)logQ(x) —

xXEX

H(P). (16)

This is the same objective as for the unweighted case but with
(15) as the empirical distribution. It can be proved that the min-
imization of (16) can be performed in the same way as in the
unweighted case, thus the updates on the components’ priors
probabilities are given by

P(x)f; (p(x))
N (%))

with P(x) defined in (15). We can use the algorithm described
®

in (10) to update the priors with a slight modification on 7",
now defined as

q§t+1) _ q§f) 17

(18)

N
N Sii

= E P(x;) (f,J)'
i=1 Zi

1187

The change on the empirical data set distribution results in
a change on the formula for the empirical value of the 3 pa-
rameter, now given by (19). The derivation can be found in the
Appendix
o — N2y Plxi) log Plx)
= ==)
>ijm1 P(xi)dy (6(xi), ¢(x;))

In summary, to run weighted global kernel k-means with
CMM, one must define an empirical distribution of the form
(15), in order to incorporate the weights into the convex mixture
model objective, and find the mixture components prior prob-
abilities g; using the updates described in (17). A good range
of values for the 3 parameter is determined through 3y, defined
in (19). After identifying the set of exemplars Xg, we run
weighted global kernel k-means as described in Section V-B.

19)

VI. GRAPH PARTITIONING

Graph partitioning is another approach to clustering data. In
this problem, we are given a graph G = (V,&, A), where V
denotes the set of vertices, £ is the set of edges, and A is an [V| x
[V| affinity matrix which contains the pairwise similarities of the
vertices, i.e., the weights of the edges and we aim to partition the
graph into M disjoint clusters such that V; UVoU. ..UV = V.

A number of different graph partitioning objectives have
been proposed such as ratio association, ratio cut, normalized
cut, etc. Usually spectral methods, like the one in [16], are em-
ployed to solve these problems by calculating the eigenvectors
of the affinity matrix. Spectral methods perform well because
they compute globally optimal solutions of a relaxation of
the problem considered. Calculating the eigenvectors of large
matrices, i.e., for graphs with many vertices, is computationally
expensive, as it requires O(/N?) operations, and may also be
infeasible. In [5]-[7], it is proved that the weighted kernel
k-means objective is equivalent to that of many graph cut
problems if the weights and kernel are set appropriately. The
proof is based on formulating the problems as trace maximiza-
tions following a similar approach to [17], where the k-means
objective is formulated as a trace maximization. Weighted
kernel k-means avoids the need to calculate eigenvectors but
cannot find the optimal solution because it depends on cluster
initialization. Even when calculation of eigenvectors is pos-
sible, the experiments in [6] show that weighted kernel k-means
can further improve the clustering result produced by spectral
methods.

As discussed in Section V, weighted global kernel k-means
and its two variants can also be used to optimize (12). Hence,
these algorithms can also be applied to graph partitioning and
incorporate the advantages they bring over kernel k-means to
this task. As shown in our experiments, these algorithms out-
perform weighted kernel k-means on graph partitioning in most
cases and thus can be considered as a good alternative to spectral
methods, especially the two variants which demonstrate good
solution quality with low computational cost. In the following,
we focus on the ratio association and normalized cut problems,
which we experimented with, and describe how the weights and
kernel must be set to obtain the equivalence. The reader is re-
ferred to [6] and [7] for a thorough analysis.

1188

Let links(.A, B) denote the sum of the edge weights between
nodes in A and B, i.e., links(A,B) = 37, 4 ZjeB A;; and let
degree(.A) denote the sum of the edge weights between nodes
in A and all vertices, i.e., degree(A) = links(.A, V). Also let D
be the diagonal |V| x |V| degree matrix where D;; = 2‘331 Ajj.

1) Ratio Association: The ratio association problem tries to
maximize within cluster association relative to the cluster size.
The objective function is

M links(Vi, Vi)

RA(G) = Vi

(20)

max
Vi,es Vi

i=1

As proved in [6] and [7], to make the objective function of
weighted kernel k-means equivalent to that of ratio association,
we must set w; = 1 and K = A. As w; = 1, this is practically
reduced to the unweighted version of the algorithms where the
affinity matrix is in place of the kernel matrix. Obviously data
set X contains the nodes and N = |V|.

2) Normalized Cut: The normalized cut problem aims to
minimize the cut between clusters and the remaining vertices,
relative to the degree of the cluster. This objective is very pop-
ular in graph partitioning [18], [19] and is defined as

2 Jinks(Vi, V\ Vi)

NC(G) = i
(G) vl?.l.l,rxle; degree(V;)

2y

As shown in [5]-[7], to make the objective function of
weighted kernel k-means equivalent to that of normalized cut,
we must set w; = D;; and K = D~ AD~!. Obviously data
set X contains the nodes and N = |V)|.

The above definitions of the kernel matrix do not guarantee
that it will be positive semidefinite (i.e., valid), a condition that
is sufficient but not necessary to guarantee convergence of the
discussed algorithms. A workaround for this problem is pro-
posed in [6] which relies on a diagonal shift of the kernel ma-
trix. More specifically, for the ratio association problem, we set
K = M + A, where [is the identity matrix and A is a con-
stant large enough to ensure that K is positive semidefinite. For
the normalized cut problem, we set K = AD~! + D~1AD~!,
A good issue is that this modification of the kernel matrix does
not change the objective of the optimization problem we solve,
although it can degrade the performance of the algorithms, as
shown in [6], when the shift is too large.

VII. EXPERIMENTAL EVALUATION

In this section, we extensively study the performance of
global kernel k-means, its two variants, and kernel k-means
with multiple restarts by applying these algorithms on many
clustering problems.! These problems range from artificial data
sets to handwritten digits, face images, and graphs. Our aim is
to test the effectiveness of the proposed global kernel k-means
algorithm and its two variants on different tasks, examine if
indeed the original algorithm avoids getting trapped in poor
local minima, and also discover how close the solutions of
the speeding-up schemes are to those of the original algo-
rithm. In all the experiments, except for graph partitioning, the

IFor better understanding of the experimental results, it is suggested to view
the figures in color.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

Gaussian kernel is used and its parameter o value is empirically
determined. Note that appropriate kernel selection is out of
the scope of this work and that is the reason we only try the
Gaussian kernel with prespecified o value. The experiments
were conducted on a computer with 3.5-GB RAM and 2.4-GHz
Intel Core 2 Duo processor and the code? was implemented in
MATLAB.

A. Artificial Data Sets

We compare the four clustering algorithms on two artificial
data sets that are not linearly separable, hence any algorithm,
such as k-means, which identifies linearly separable clusters in
input space is inappropriate. To obtain a meaningful compar-
ison, the same o value is used for the Gaussian kernel in all
four methods. For the global kernel k-means with CMM, we set
B = Bo [see (11)], 5;; = exp(—P||d(x;) — p(x;)]|?), and select
twice as many exemplars as the number of clusters (P = 2M).
The quality of the solutions produced by the algorithms is eval-
uated in terms of clustering error. As global kernel k-means and
its two variants perform clustering deterministically they are run
once. On the other hand, kernel k-means is restarted 100 times
and we report the average and minimum clustering error for the
100 runs.

The first data set (Fig. 1) consists of five copies of two rings
where the inner ring is dense and has 700 points while the outer
ring has 300 points. The whole data set has 5000 points and
ten clusters. For this difficult clustering problem, global kernel
k-means manages correctly to discriminate ten rings as shown
in Fig. 1(a). Also, global kernel k-means with CMM identifies
the ten rings correctly. This demonstrates that the exemplars de-
termined through the CMM algorithm capture most of the in-
formation required to partition the data set. The solution cor-
responding to those two algorithms is the one with the lowest
clustering error in Table II. Fast global kernel k-means fails
to correctly identify all the rings: it splits the outer ring into
two parts and merges one of them with the inner ring as illus-
trated in Fig. 1(b). As the problem is quite difficult to solve, the
greedy decisions made by this algorithm result in suboptimal
solutions with higher clustering error. Finally, kernel k-means
never splits correctly the ten rings during the 100 runs and also
note that its average clustering error is higher than that of fast
global kernel k-means. Fig. 1(c) depicts the clustering result cor-
responding to the lowest clustering error during the 100 runs of
kernel k-means.

The second data set (Fig. 2) contains three rings with a total of
550 points and we perform clustering into three clusters. Global
kernel k-means identifies the three rings as shown in Fig. 2(a),
which is also the solution with the lowest clustering error in
Table II. This problem is even more difficult than the previous
one, as it is proved by the fact that global kernel k-means with
CMM fails to discriminate the three rings. This algorithm splits
the middle ring into two parts and merges one of them with the
outer ring as illustrated in Fig. 2(b). Fast global kernel k-means
provides a similar “optical” result with global kernel k-means
with CMM [Fig. 2(c)], but with higher clustering error indi-
cating that the exemplars provide higher quality information for

2The code is available from http://www.cs.uoi.gr/~gtzortzi

TZORTZIS AND LIKAS: THE GLOBAL KERNEL k-MEANS ALGORITHM FOR CLUSTERING IN FEATURE SPACE 1189
8 8
ol {/"’\ 6 /""‘\
* }
a4} 4
A
2 2
0 0 °
-2t -2
-4t & -4
[] ®
-6 \ -6
e A
-4 gl e e gl e
-8 6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8
(a) (b) (©)

Fig. 1. Clustering results for the ten rings data set. (a) Global kernel k-means and global kernel k-means with CMM. (b) Fast global kernel k-means. (c) Kernel

k-means (the run with minimum clustering error).

2.5 2.5
PRl g PRt
15 fﬁ" m\\ 15 fﬁ" N\,,
+ *
I, y i y
B + B +
0.5/ 3 % 0.5 # P
it (o) } i Lej }
-0.50 % J -0.5[% 7 ;
i # i’4- &
-1.5 * -1.5 b
{‘h’*ﬂm - .,..w"f!' %*Mm 5 M&"#f
-2.; -2.;
-25 -15 -05 0.5 1.5 2.5 -25 -15 -05 0.5 1.5 2.5

(b)

25 25
IR - i
1.5 +I % 1.5 +" *‘_*
f » Jf »
+ +
£ % §
0.5 3 rd % 0.5 y %
-05 % i‘ ¢ 7 } -0.5 ®; }
’ *** I £ ’ % —— #
+ i - i
-1.5 * -1.5 *
\+ww#+ff xﬂ‘*W#*ﬁ/
235 15 -05 05 15 25 235 -15 -05 05 15 25
©)

Fig. 2. Clustering results for the three rings data set. (a) Global kernel k-means. (b) Global kernel k-means with CMM. (c) Fast global kernel k-means. (d) Kernel

k-means (the run with minimum clustering error).

TABLE II
ARTIFICIAL DATA SETS RESULTS IN TERMS OF CLUSTERING ERROR

Three Ten

Method/Dataset Rings Rings
oc=055| c=138
Global Kernel k-Means 365.88 966.87
Global Kernel k-Means with CMM 368.74 966.87
Fast Global Kernel k-Means 370.4 1073.18
Kernel k-Means Average 378.68 1107.97
(100 runs) Min 373.09 981.53

splitting the data set. Finally, kernel k-means fails to locate the
rings correctly during the 100 runs and even its best run, de-
picted in Fig. 2(d), has a clustering error which is worse than
that of all the other methods.

Overall, global kernel k-means achieves the lowest clus-
tering error for both data sets and none of the 100 runs of kernel
k-means provides a better result. This observation together
with the fact that it correctly locates the rings in both data
sets, which are difficult clustering problems, justify our claim
that it provides near-optimal solutions. Also, the global kernel
k-means with CMM algorithm provides identical results to the
original algorithm for the first data set and is the second best
method for the other data set, thus making it a good alternative
with lower computational cost. To further demonstrate the po-
tential of this method, we reran the experiment for the ten rings

by selecting fewer exemplars (equal to the number of clusters,
i.e., P = M) and again the rings were correctly identified.
This further supports the fact that the exemplars identified
are of very good quality. Fast global kernel k-means may be
inferior to the original algorithm and the other variant for these
hard problems, but is still superior over kernel k-means. As
expected, kernel k-means is very sensitive to initialization and
during the 100 runs finds from near-optimal solutions to very
bad ones for both data sets. Therefore, it makes it difficult to
decide on the sufficient number of restarts. As a final comment,
we would like to stress that data sets consisting of concentric
rings, like the above, can be clustered more effectively by using
kernels based on geodesic distance instead of the Gaussian
kernel, as in [20].

B. Handwritten Digits

For handwritten digits recognition, we selected the Pendigits
and the Multiple Features data sets, which are available from
the University of California at Irvine (UCI) repository [21]. The
Pendigits data set contains 7494 training digits and 3498 testing
digits represented as vectors in 16-dimensional space. The Mul-
tiple Features data set consists of 200 digits per class that are
represented in terms of various feature sets. We have selected
two of them, the first describing the digits using profile corre-
lations (216 features) and the other using Zernike moments (47

1190

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

TABLE III
HANDWRITTEN DIGITS RESULTS IN TERMS OF CLUSTERING ERROR (CE) AND NORMALIZED MUTUAL INFORMATION (NMI)

Pendigits Full Pendigits.tes Profile Correlations | Zernike Moments
Method/Dataset oc=21 c=28 oc=9 o=06.5

CE | NMI CE | NMI CE | NMI CE | NMI

Global Kernel k-Means - - - - 1310.77 | 0.789 790.43 0.507
Global Kernel k-Means with CMM | 6514.95 | 0.776 | 1490.44 | 0.749 1311.5 0.773 790.48 0.506
Fast Global Kernel k-Means 6514.95 | 0.776 | 1504.81 0.75 1325.82 0.752 791.06 0.531
Kernel k-Means Average 6668.34 | 0.739 | 1537.69 | 0.713 1330.81 0.729 797.58 0.502
(100 runs) Min 6514.94 | 0.777 | 1485.2 | 0.754 | 1310.79 0.787 790.45 0.503

features). For all data sets, the class label of the digits is also
available (0-9). We test the global kernel k-means with CMM
and fast global kernel k-means algorithms on the Multiple Fea-
tures, the whole Pendigits, and the Pendigits.tes (testing digits
only) data sets. We do not test the global kernel k-means algo-
rithm on Pendigits as its size (10992 digits) makes the algo-
rithm’s application time consuming. In all cases, we perform
clustering into ten clusters (equal to the number of class labels).
The algorithms are compared to kernel k-means with multiple
restarts.

The performance of the above algorithms is primarily mea-
sured in terms of clustering error, but as the labels of the digits
are available, we can also form the confusion matrix between
clusters and classes and calculate normalized mutual informa-
tion (NMI) [5]. This measure indicates how much the clustering
and true class labels match and is defined as

2y M se ﬂ log — ni N
i e

H(r) + H(()

where N is the data set size, M is the number of clusters, ¢
is the number of classes, n? is the number of points in cluster
[from class h, H(w) = — Zf‘il(n,/N) log(n;/N) is the en-
tropy of the clusters, and H(¢) = — Y_5_,(n'/N)log(n’/N)
is the entropy of the classes. High NMI values indicate that the
clustering solution and the partitioning based on the true class
labels match well.

For the experiments, the same o value is used for the Gaussian
kernel in all algorithms in order to obtain a meaningful com-
parison. For the global kernel k-means with CMM algorithm,
we set 3 = [y [see (11)], si; = exp(—pld(xi) — d(x;)[1?),
and select twice as many exemplars as the number of clusters
(P = 2M), hence we select 20 exemplars. This algorithm,
global kernel k-means, and fast global kernel k-means are run
once. Kernel k-means is run 100 times and we report here the av-
erage and minimum performance values. The results are shown
in Table III. Note that the NMI values of the “Min” row are
those achieved by the restart with minimum clustering error.

When clustering the whole Pendigits data set, we observe
that fast global kernel k-means, global kernel k-means with
CMM, and the run of kernel k-means with minimum clustering
error are evenly matched. The solution with minimum clus-
tering error is identified in only seven out of 100 runs by kernel
k-means. The average clustering error and NMI values are
considerably worse though, as very bad solutions are identified
during the restarts. When considering only the testing digits,
kernel k-means achieves lower clustering error on its best

NMI =

(22)

run, but on average, it is worse than the other two algorithms.
In more detail, 15 out of 100 runs achieve lower clustering
error than fast global kernel k-means, but only three out of
100 achieve lower than global kernel k-means with CMM. As
global kernel k-means with CMM has lower clustering error
than fast global kernel k-means and is very close to the best run
of kernel k-means, we can state that the exemplars identified
are of good quality. As for the NMI values, they are similar for
the three algorithms, despite the differences in clustering error,
except for the average NMI of kernel k-means, which is quite
lower due to bad solutions occurring during the restarts.

For the profile correlations case of the Multiple Features data
set, global kernel k-means is the best in terms of both clustering
error and NMI. Kernel k-means exhibits a similar behavior to
the Pendigits data set when compared to the two variants, i.e.,
its best run is superior, but on average, it is worse. In particular,
40 out of 100 runs achieve lower clustering error than fast global
kernel k-means, but only eight out of 100 are better than global
kernel k-means with CMM. Note that global kernel k-means
with CMM is very close to the original algorithm, whereas fast
global kernel k-means is not. The NMI values are closely related
to clustering error for this data set, i.e., lower clustering error
results in higher NMI values. Clustering with the Zernike mo-
ments features leads to a similar behavior to profile correlations
in terms of clustering error. The two variants are now closer to
the best of kernel k-means as nine out of 100 runs and only one
out of 100 are better than fast global kernel k-means and global
kernel k-means with CMM, respectively. The NMI scores are
low and do not follow the clustering error trend. Fast global
kernel k-means is considerably better than the other methods
which in turn are close to each other.

C. Olivetti Data Set

The Olivetti face database [22] contains ten 64 x 64 gray
scale images of each of 40 individuals. We selected the first
100 images, belonging to ten individuals, and applied the same
preprocessing as in [13], resulting in 900 images belonging to
ten individuals (classes). We test the global kernel k-means, fast
global kernel k-means, and global kernel k-means with CMM
algorithms and compare them to kernel k£-means with multiple
restarts as well as affinity propagation [13]. Affinity propaga-
tion was tested on this data set in [13] and [23], achieving good
results, and thus serves as a good measure for the performance
of our methods. For our experiments, each image is represented
with a vector containing the pixel intensities. Again the same
o is used for the Gaussian kernel for all algorithms. For the
global kernel k-means with CMM algorithm, we set 3 = (3 [see

TZORTZIS AND LIKAS: THE GLOBAL KERNEL k-MEANS ALGORITHM FOR CLUSTERING IN FEATURE SPACE

1191

TABLE IV
OLIVETTI RESULTS IN TERMS OF CLUSTERING ERROR
Method/Clusters 10 20 30 40 50 70 100 150
o=26.5 Clusters | Clusters | Clusters | Clusters | Clusters | Clusters | Clusters | Clusters
Global Kernel k-Means 220.76 192.31 174.3 161.23 150.39 134.54 117.54 96.94
Global Kernel k-Means with CMM 221.43 192.91 175.42 162.27 152.67 137.75 120.32 101.26
Fast Global Kernel k-Means 222.6 195.81 178.57 165.11 155.47 139.14 122.99 104.96
Kernel k-Means Average 223.43 196.52 179.77 167.89 158.35 143.33 127.15 107.19
(100 runs) Min 221.4 193.78 177.58 165.03 154.74 140.44 124.39 104.45
TABLE V
OLIVETTI RESULTS IN TERMS OF MISCLASSIFICATION ERROR
Method/Clusters 10 20 30 40 50 70 100 150
o=26.5 Clusters | Clusters | Clusters | Clusters | Clusters | Clusters | Clusters | Clusters
Global Kernel k-Means 56.78% 41.22% 32.89% 25.33% | 18.78% | 13.89% | 12.22% 7.33%
Global Kernel A~-Means with CMM | 57.66% 45.89% 32.67% | 22.22% | 19.89% 18.33% 11.78% 9.11%
Fast Global Kernel k-Means 58.56% 47.67% 37.33% 28.78% 25.44% 17% 12.56% 9%
Kernel k-Means Average 57.95% 42.2% 34.58% 29.6% 25.83% | 19.84% | 14.96% | 10.14%
(100 runs) Min 55.67% | 38.44% | 31.44% | 28.67% 21% 19.56% 14.33% 6.89%
Affinity Propagation 60.22% | 47.67% | 38.56% 29% 23.11% | 14.89% | 9.67% 5.11%

(D], si; = exp(—P|p(x:) — #(x;)]|?), and the number of se-
lected exemplars equals three times the number of clusters (P =
3M). For affinity propagation, we set the preferences equal to
a common value that yields the desired number of clusters and
the pairwise similarities equal to 5(4, 7) = —||¢(x;) — d(x;) ||
Finally, kernel k-means is restarted 100 times.

We partition the data set in different number of clusters using
all the above algorithms and for every experiment we report the
clustering error and the misclassification error. For the misclas-
sification error, each cluster is associated with the class (indi-
vidual) whose images are the majority in that cluster. The im-
ages of the other classes are counted as misclassifications. Note
that as the number of clusters increases the misclassification
error naturally drops.

Table IV shows the clustering error achieved by the algo-
rithms for different number of clusters. We do not report the
clustering error for affinity propagation as it is naturally much
higher relative to the other algorithms, since affinity propaga-
tion identifies exemplars and not centers as representatives of
the clusters. As we can see, the performance of the algorithms
is very similar for ten clusters, but as the number of clusters
increases (the problem gets harder), the differences in perfor-
mance become clear. Global kernel k-means is the best method
achieving constantly the lowest clustering error. Global kernel
k-means with CMM is the second best algorithm for 20 or more
clusters. This supports our claim that good exemplars are identi-
fied and then fine tuned with global kernel k-means. Fast global
kernel k-means is very close to the best run of kernel k-means,
a little worse for 50 or less clusters and better for more. Finally,
the average clustering error of kernel k-means is the highest in
all cases, demonstrating that bad solutions are identified during
the restarts.

In Table V, the algorithms are compared in terms of misclas-
sification error. The results do not follow the clustering error
trend, leading to the conclusion that lower clustering error does
not necessarily imply and lower misclassification error. There
are some similarities though, as kernel k-means gradually be-
comes the worst performer as the number of clusters increases,

except for some fluctuations for 50 and 150 clusters. Also,
global kernel k-means is among the best algorithms in all cases.
Affinity propagation starts as the worst algorithm and ends as
the best. In general, the two variants of global kernel k-means
are inferior to the original algorithm, but both are better than the
best run of kernel k-means for 70 and 100 clusters and global
kernel k-means with CMM is also better for 40 and 50 clusters.

Overall, we can state that global kernel k-means is the best
algorithm followed by the CMM variant, the fast global kernel
k-means algorithm, and finally kernel k-means. This observa-
tion is primarily based on clustering error performance as this is
the objective optimized by the algorithms. As for affinity prop-
agation, its performance appears to be close to that of global
kernel k-means when the number of clusters is large (70 or
more), but worse for fewer clusters (Table V).

D. Graph Partitioning

As already discussed, the weighted versions of kernel
k-means, global kernel k-means, and the two variants can be
used to optimize many graph cut objectives. In our experi-
ments, we test the weighted version of global kernel k-means
and its two variants against weighted kernel k-means with
multiple restarts, on the three graphs listed in Table VI that are
available through the graph partitioning archive [24]. These
graphs are undirected and all edge weights are equal to one,
so the affinity matrix is symmetric and its entries are either
zero or one. Each graph is partitioned into 32, 64, and 128
clusters and for each number of clusters we maximize the ratio
association objective and we also minimize the normalized cut
objective. The kernel and the weights are defined as discussed
in Section VI. A problem that usually occurs is that the kernel
matrix might not be positive semidefinite, thus the algorithms
may not converge. For this reason, we diagonally shift the
kernel matrix by a small amount as mentioned in Section VI.
Note that we perform a diagonal shift that does not necessarily
make the kernel matrix positive semidefinite, but is sufficient
for the algorithms to converge. This is done in order to avoid
adding a big diagonal shift which consequently will decrease

1192

A
I
S

©
=3
o

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

Il Kernel k—-Means (average)
[Kernel k-Means (best)
[_IFast Global Kernel k-Means

IS
o
=]
~
o
S

[Global Kernel k-Means with CMM
Il Giobal Kernel k-Means

[Kernel k-Means (average)

[Kernel k-Means (best)
[C__IFast Global Kernel k-Means

[Global Kernel k-Means with CMM
I Global Kernel k-Means

I Kernel k-Means (average)

[Kernel k-Means (best)
[__IFast Global Kernel k-Means

[Global Kernel k-Means with CMM
I Global Kernel k-Means

1200

w

(3.

=]
=
=3
=

w

(=3

=]
<«
=3
o

N
<«
=]

N
=3
o

-

(3.

o
w
(=3
=3

-

(=3

o
N
(=3
=]

Ratio Association (32 clusters)
Ratio Association (64 clusters)
8
o

<«

=]
-
(=3
o

add32

data

(a)

uk add32

1000

800

600

400

Ratio Association (128 clusters)

200

data

(b)

uk

add32

data uk

(©)

Fig. 3. Ratio association values achieved by global kernel k-means and its variants as well as by 50 restarts of kernel k-means: (a) 32 clusters; (b) 64 clusters;

and (c) 128 clusters.

TABLE VI
TEST GRAPHS USED FOR GRAPH PARTITIONING

Graph Name | Number of Nodes | Number of Edges
add32 4960 9462
data 2851 15093
uk 4824 6837

the algorithms’ performance as shown in [6]. For the weighted
global kernel k-means with CMM algorithm, we set = [
[see (19)], si; = exp(—B(Ki + K;; — 2K;;)), and select
twice as many exemplars as the number of clusters (P = 2M).
Finally, weighted kernel k-means is restarted 50 times.

Fig. 3 depicts the ratio association values achieved by the al-
gorithms for 32, 64, and 128 clusters. For this task, we use the
unweighted version of the algorithms since w; = 1. Clearly
global kernel k-means is the best algorithm as it achieves the
highest ratio association for all graphs and all number of clus-
ters. For the add32 and data graphs, its two variants are also
better than the best run of kernel k-means. Surprisingly, for
the data graph, fast global kernel k-means is superior to global
kernel k-means with CMM. For the uk graph and 32 clusters,
the two variants are inferior to the best run of kernel k-means,
but as the number of clusters increases and the problem gets
harder, the global kernel k-means with CMM jumps ahead for
64 clusters and then fast global kernel k-means follows for 128
clusters. For this graph and 128 clusters, the ratio association
achieved by the two variants is 38% higher than that of the
best run of kernel k-means while for add32 and 128 clusters
it is 36% higher. This shows that the speeding-up schemes are
considerably better than kernel k-means in many cases. Note
that the two variants are very close to the original algorithm in
some experiments, such as the data graph for 64 and 128 clus-
ters where the original algorithm achieves only 2% higher ratio
association than the best variant and the add32 graph for 128
clusters where it achieves 5% higher ratio association than the
best variant. This demonstrates that there are cases where the
two speeding-up schemes lower the computational complexity
without degrading the quality of the solution of the original al-
gorithm. Between the two variants, there is no clear winner as
global kernel k-means with CMM is better for the add32 and uk
graphs, while fast global kernel k-means is superior for the data
graph.

Results on normalized cut values for 32, 64, and 128 clusters
are shown in Fig. 4. For this task, we use the weighted version of
the algorithms described in Section V. We do not set 3 = (for
the global kernel k-means with CMM algorithm as the 3 value
is huge, resulting in bad exemplars. Instead, we set 3 = 10733,
B = 10758y, and B = 1072, for the add32, data, and uk
graphs, respectively. Once again, global kernel k-means is the
best performer for all graphs and all number of clusters as it
achieves the lowest normalized cut, which in some cases is two
to three times less than that of the second best algorithm. Global
kernel k-means with CMM, although this time not close to the
original algorithm, is clearly the second best method. In general,
fast global kernel k-means has a similar performance to the best
run of kernel k-means. There are cases where fast global kernel
k-means is better, such as the uk graph for 32 and 128 clusters,
and others where kernel k-means gets ahead, such as the data
graph for 64 clusters and the add32 graph for 128 clusters.

Overall, we conclude that global kernel k-means can be ef-
fectively applied to graph partitioning as it clearly outperforms
kernel k-means with multiple restarts on this task and also is
the best algorithm of those considered in all experiments. The
two variants are very good alternatives to the original algo-
rithm when the ratio association criterion is considered. For the
normalized cut criterion, although global kernel k-means with
CMM is inferior to the original algorithm, we may still consider
its application in place of global kernel k-means, if lower com-
putation time is important. Unfortunately, the same cannot be
said for fast global kernel k-means as it is very close to kernel
k-means with multiple restarts.

VIII. CONCLUSION

We have proposed the global kernel k-means clustering al-
gorithm, a method that maps data points from input space to
a higher dimensional feature space through the use of a kernel
function and optimizes the clustering error in the feature space
by locating near-optimal solutions. The main advantages of this
method are its deterministic nature, which makes it independent
of cluster initialization, and the ability to identify nonlinearly
separable clusters in input space. Another important feature of
the proposed algorithm is that in order to solve the M -clustering
problem, all intermediate clustering problems with 1,..., M

TZORTZIS AND LIKAS: THE GLOBAL KERNEL k-MEANS ALGORITHM FOR CLUSTERING IN FEATURE SPACE

10

1193

Il Kernel k-Means (average)

©

[__1Fast Global Kernel k-Means
[Global Kernel k-Means with CMM
8| HIll Global Kernel k-Means

[Kernel k-Means (best) | 25| [Kernel k-Means (best)

I Kernel k-Means (average) 70 I Kernel k-Means (average)

[Kernel k-Means (best)
[__Fast Global Kernel k-Means [__IFast Global Kernel k-Means
[Global Kernel k-Means with CMM 60| I Global Kernel k-Means with CMM

I Global Kernel k-Means

Il Global Kernel k-Means

Normalized cut (32 clusters)
Normalized cut (64 clusters)

add32

data uk

(a)

add32

Normalized cut (128 clusters)
N w o~ (3
o o =) o

-
o

data uk

(b)

add32

data uk

(c)

Fig. 4. Normalized cut values achieved by global kernel k-means and its variants as well as by 50 restarts of kernel k-means: (a) 32 clusters; (b) 64 clusters;

(c) 128 clusters.

clusters are solved. This may prove useful in problems where
we seek the true number of clusters.

Moreover, we developed two variants of the algorithm to ac-
celerate its execution. The fast global kernel k-means variant
considerably reduces the computational cost by requiring one
run of kernel k-means for each intermediate clustering problem.
The global kernel k-means with CMM variant first identifies a
set of good exemplars, by fitting a convex mixture model to the
data, and then tries only these exemplars as possible initializa-
tions for the newly added cluster in each of the intermediate
problems. This variant has less computational savings, but it
provides solutions closer to those of the original algorithm as
shown by our experiments.

We also extended the above algorithms to handle weighted
data points based on the weighted kernel k-means algorithm.
The use of weights makes possible the application of these
methods to graph partitioning, as their objective function can
become equivalent to several graph cut criteria, if the weights
and kernel matrix are set appropriately.

The aforementioned methods have been tested on several di-
verse data sets in order to ensure their broad applicability and
draw reliable conclusions. In general, we could state that global
kernel k-means and its two variants outperform kernel k-means
with multiple restarts. Global kernel k-means, whenever ap-
plied, is the best performer. For the large Pendigits data set,
where the computational cost makes the application of this al-
gorithm time consuming, the two variants are good alternatives,
particularly global kernel k-means with CMM. For the Olivetti
data set, global kernel k-means is close to affinity propagation
when the number of clusters is large and is clearly better for
fewer clusters. As for the two variants, global kernel k-means
with CMM is better. For the graph partitioning problem, where
the weighted versions are used, the global kernel k-means al-
gorithm is by far the best. The two variants are good alterna-
tives when the ratio association is optimized, but for normal-
ized cut only the global kernel k-means with CMM variant pro-
vides solutions similar to the original algorithm. Overall, we
conclude that the exact global kernel £-means method is the best
choice whenever the data set size allows its use. If the data set is
large or time is a critical factor then the global kernel k-means
with CMM variant could be applied and if further accelera-

tion is required the fast global kernel k-means variant could be
employed.

As for future work, a possible direction is the use of parallel
processing to accelerate the global kernel k-means algorithm,
since the local search performed when solving the k-clustering
problem requires running kernel k-means NV times and these ex-
ecutions are independent of each other. Another important issue
is the development of theoretical results concerning the near-op-
timality of the obtained solutions. Also, we plan to use global
kernel k-means in conjunction with criteria and techniques for
estimating the optimal number of clusters and integrate it with
other exemplar-based techniques. Finally, the application of this
algorithm to graph partitioning needs further investigation and
a comparison with spectral methods and other graph clustering
techniques is required.

APPENDIX
DETERMINING 3y FOR WEIGHTED GLOBAL KERNEL k-MEANS
‘WITH CONVEX MIXTURE MODELS

We follow the same approach as in [4] and reformulate our
problem as a rate-distortion problem. By making use of [4,
Proposition 1] and defining

Q%) =, 5 ($(x)) = g;C(x)e” -GN (23)
A — i XEX
P'(j,x) :P(x)P’(j|x):{ S wi (24)
0, otherwise

where Q’(j,x) is the joint distribution of the convex mixture
model, P(x) is the data set empirical distribution given by (15),
P’(j,x) is a distribution which has P(x) as its marginal, and
ri; = P'(j|x;), the minimization of (16) becomes equivalent to
minimizing the following objective:

N
D(P'Q) =Y P(xi)ri
ij=1
+ const.

[bg q_ +8d, (6(xi), $(x;))
Vi
(25)

Actually, since P’(j,x) # 0 only for x € X, the objective
function is expressed only in terms of variables ¢; and P’ (j|x;),
therefore our goal is to minimize (25) in the space of distribu-

1194

tions of random variable (J,I) € {1,...,N} x {1,..., N},
namely, in the product space of mixture model component in-
dices x data point indices. For any set of values r;;, setting
¢ = Zfil P(x;)r;; minimizes (25). Substituting this on the

above equation, we obtain
D (P'|Q'(P")

N
. e

= E P(x;)rsj log — 75— i

=1 =1 P(Xir)ris;

+ Bd, (p(xi), p(x;)) | + const.
=W(J; 1) + BE1dy, ($(xi), ¢(x;)) 4 const. (26)

where the first term is the mutual information under distribu-
tion P’(j,x) and the second term is the expected value of the
pairwise distances in feature space under the same distribution.
Note that (26) is almost identical to [4, eq. (8)]. The only differ-
ence is on the empirical distribution of the data set.

If we interpret the above problem in the framework of
rate distortion theory, we can think of 7;; as a probabilistic
encoding, in feature space, of the data set onto itself with the
corresponding average distortion D = Ejrd,(p(x;), p(x;))
and the rate I(.J;1). For the derivative of the rate-distortion
function R(D) [25], we have OR/OD = —f. In order to iden-
tify a good reference value for (3, we follow the same approach
as in [4] and define (3 to be the slope of a line connecting the
following two points on the rate distortion graph: the case of
sending any point to itself

L 1=y
= { 0, i#]
with zero distortion and rate equal to the entropy of the
data set R(0) = — Zf\;l P(x;)log P(x;) and the case of a
random code r;; = 1/N with zero rate and average distortion
D = (1/N) X0 _1 P(xi)dy((xi), d(x;)). Thus, the empir-
ical value of the (3 parameter for the weighted convex mixture
model becomes

Bo=N—r Zé\;l P(x;)log P(x;)
Egj:l P(Xi)dcp (¢(Xz) ¢(X]))

with P(x) given by (15).

REFERENCES

[1] R. Xu and D. Wunsch, II, “Survey of clustering algorithms,” IEEE
Trans. Neural Netw., vol. 16, no. 3, pp. 645-678, May 2005.

[2] A.Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern Recognit., vol. 36, no. 2, pp. 451-461, Feb. 2003.

[3] B. Scholkopf, A. J. Smola, and K.-R. Muller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, no.
S, pp. 1299-1319, Jul. 1998.

[4] D. Lashkari and P. Golland, “Convex clustering with exemplar-based
models,” Adv. Neural Inf. Process. Syst., vol. 20, pp. 825-832, 2008.

[5] L S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, spectral clus-
tering and normalized cuts,” in Proc. 10th ACM SIGKDD Int. Conf.
Knowl. Disc. Data Mining, 2004, pp. 551-556.

[6] I.S.Dhillon, Y. Guan, and B. Kulis, “A unified view of kernel k-means,
spectral clustering and graph cuts,” Univ. Texas, Austin, TX, Tech. Rep.
TR-04-25, 2004.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

[7] 1. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors: A multilevel approach,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 11, pp. 1944-1957, Nov. 2007.

[8] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A survey of
kernel and spectral methods for clustering,” Pattern Recognit., vol. 41,
no. 1, pp. 176-190, Jan. 2008.

[9] G. Tzortzis and A. Likas, “The global kernel k-means clustering al-
gorithm,” in Proc. IEEE Int. Joint Conf. Neural Netw., Jun. 2008, pp.
1977-1984.

[10] A. M. Bagirov, “Modified global k-means algorithm for sum-of-
squares clustering problems,” Pattern Recognit., vol. 41, no. 10, pp.
3192-3199, Oct. 2008.

[11] J.Li, D. Tao, W. Hu, and X. Li, “Kernel principle component analysis
in pixels clustering,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell.,
Sep. 2005, pp. 786-789.

[12] R. Zhang and A. I. Rudnicky, “A large scale clustering scheme for
kernel k-means,” in Proc. 16th Int. Conf. Pattern Recognit., 2002, pp.
289-292.

[13] B.J.Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, pp. 972-976, 2007.

[14] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
Bregman divergences,” J. Mach. Learn. Res., vol. 6, pp. 1705-1749,
2005.

[15] 1. Csiszar and P. C. Shields, “Information theory and statistics: A tuto-
rial,” Commun. Inf. Theory, vol. 1, no. 4, pp. 417-528, 2004.

[16] A.Y.Ng,M.I Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” Adv. Neural Inf. Process. Syst., vol. 14, pp. 849-856,
2002.

[17] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon, “Spectral
relaxation for k-means clustering,” Adv. Neural Inf. Process. Syst., vol.
14, pp. 1057-1064, 2002.

[18] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug.
2000.

[19] S. X. Yu and J. Shi, “Multiclass spectral clustering,” in Proc. 9th IEEE
Int. Conf. Comput. Vis., 2003, pp. 313-319.

[20] M. Gong, L. Jiao, L. Bo, L. Wang, and X. Zhang, “Image texture
classification using a manifold distance based evolutionary clustering
method,” Opt. Eng., vol. 47, no. 7, p. 077201, Jul. 2008.

[21] A. Asuncion and D. Newman, UCI Machine Learning Repository,
Univ. California at Irvine, Irvine, CA, 2007 [Online]. Available:
http://www.ics.uci.edu/~mlearn/MLRepository.html

[22] Olivetti and Oracle Research Laboratory, The Olivetti & Oracle Re-
search Laboratory Database of Faces, Cambridge, U.K., 1994 [Online].
Available: http://mambo.ucse.edu/psl/olivetti.html

[23] D. Dueck and B. Frey, “Non-metric affinity propagation for unsuper-
vised image categorization,” in Proc. 11th IEEE Int. Conf. Comput.
Vis., Oct. 2007, pp. 1-8.

[24] C.Walshaw, The Graph Partitioning Archive, 2007 [Online]. Available:
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

[25] T.M. Cover andJ. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

Grigorios F. Tzortzis received the B.Sc. and M.Sc.
degrees in computer science from the University of
Toannina, Ioannina, Greece, in 2006 and 2008, re-
spectively, where he is currently working towards the
Ph.D. degree at the Department of Computer Science.

His research interests include machine learning,
neural networks, multiview learning, and data
mining.

Aristidis C. Likas (SM’03) received the Diploma
degree in electrical engineering and the Ph.D. degree
in electrical and computer engineering from the
National Technical University of Athens, Athens,
Greece, in 1990 and 1994, respectively.

Since 1996, he has been with the Department of
Computer Science, University of Ioannina, Ioannina,
Greece, where he is currently an Associate Professor.
His research interests include neural networks, ma-
chine learning, statistical signal processing, and
bioinformatics.

