The Global Kernel k-Means Clustering Algorithm

Grigorios Tzortzis and Aristidis Likas

Department of Computer Science University of Ioannina, Greece

Clustering

• Partition of a dataset into homogeneous groups

Given a dataset $X = \{x_1, x_2, ..., x_N\}$ of objects we aim to partition this dataset into M disjoint clusters $C_1, C_2, ..., C_M$

• When the objects are data vectors, the most wellknown algorithm for the above task is *k*-Means

k-Means

- Each cluster C_k is represented by its center m_k (mean of the cluster elements)
- Finds local minima w.r.t. the clustering error

$$E(m_1, ..., m_M) = \sum_{i=1}^N \sum_{k=1}^M I(x_i \in C_k) ||x_i - m_k||^2$$

(sum of cluster variances)

• Drawbacks

Highly dependent on the initial positions of the centersIdentifies only linearly separable clusters

• Improvements

√ Multiple restarts, Global *k*-Means (Likas et al. [2003]) √ Kernel *k*-Means

Global k-Means

- An incremental, deterministic clustering algorithm that runs *k*-Means several times
- Finds near-optimal solutions wrt clustering error
- <u>Idea</u>: a near-optimal solution for k clusters can be obtained by <u>running k-means</u> from an <u>initial state</u>

 $(m_1, m_2, ..., m_{k-1}, x_n)$

- the k-1 centers are initialized from a near-optimal solution of the (k-1)-clustering problem $(m_1, m_2, ..., m_{k-1})$
- the k-th center is initialized at some data point \mathbf{x}_n (which?)
- Consider <u>all possible</u> initializations (one for each \mathbf{x}_n)

Orange circles: optimal initial position of the cluster center to be added

Global k-Means - Algorithm

In order to solve the *M*-clustering problem:

- 1. Solve the 1-clustering problem (trivial)
- 2. Solve the *k*-clustering problem using the solution of the (k-1)clustering problem $(m_1, m_2, ..., m_{k-1})$
 - a) Execute *k*-Means *N* times, initialized as $(m_1, m_2, ..., m_{k-1}, x_n)$ at the *n*-th run (n=1,...,N).
 - b) Keep the solution corresponding to the run with the lowest clustering error as the solution with *k* clusters $(m_1, m_2, ..., m_k)$
- 3. k:=k+1, Repeat step 2 until k=M.

 \checkmark Avoids the initialization problem of *k*-Means

✓ Locates near optimal partitions w.r.t. clustering error

✓ All intermediate solutions for k=1, ..., M-1 are also found: useful when searching for the number of clusters

•Requires *MN* runs of *k*-Means to find *M* clusters

Kernel k-Means

 Data points are mapped from input space to a higher dimensional feature space through a transformation φ

Kernel *k*-Means \equiv *k*-Means in feature space

- √ Identifies non-linearly separable clusters in input space
- Minimizes the <u>clustering error in feature space</u>

$$E(\boldsymbol{m}_{1}, \dots, \boldsymbol{m}_{M}) = \sum_{i=1}^{N} \sum_{k=1}^{M} I(\boldsymbol{x}_{i} \in C_{k}) \|\phi(\boldsymbol{x}_{i}) - \boldsymbol{m}_{k}\|^{2} \text{ where } \boldsymbol{m}_{k} = \frac{\sum_{i=1}^{N} I(\boldsymbol{x}_{i} \in C_{k})\phi(\boldsymbol{x}_{i})}{\sum_{i=1}^{N} I(\boldsymbol{x}_{i} \in C_{k})}$$

Kernel k-Means

- Kernel trick
 - A kernel function corresponds to the inner products in feature space i.e. $K_{ij} = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j), \|\phi(\mathbf{x}_i) \phi(\mathbf{x}_j)\|^2 = K_{ii} + K_{jj} 2K_{ij}$
 - Computation of distances from centers in feature space:

$$\|\phi(\mathbf{x}_{i}) - \mathbf{m}_{k}\|^{2} = K_{ii} - \frac{2\sum_{j=1}^{N} I(\mathbf{x}_{j} \in C_{k})K_{ij}}{\sum_{j=1}^{N} I(\mathbf{x}_{j} \in C_{k})} + \frac{\sum_{j=1}^{N} \sum_{l=1}^{N} I(\mathbf{x}_{j} \in C_{k})I(\mathbf{x}_{l} \in C_{k})K_{jl}}{\sum_{j=1}^{N} \sum_{l=1}^{N} I(\mathbf{x}_{j} \in C_{k})I(\mathbf{x}_{l} \in C_{k})}$$

- No need to explicitly define transformation ϕ
- Difference from k-means
 - The cluster centers are not explicitly defined
 - Each cluster C_k is described by its training data
- Finds local minima Strong dependence on initialization

Global Kernel k-Means

Based on the ideas of the Global *k*-Means and Kernel *k*-Means algorithms we propose the Global Kernel *k*-Means algorithm

- An incremental deterministic algorithm that employs Kernel *k*-Means as a local search procedure
 - At each stage of the algorithm a new cluster is added as in Global *k*-Means
- Main idea
 - Given a near-optimal solution $(C_1, C_2, ..., C_{k-1})$ with k-1 clusters:
 - A near-optimal solution with *k* clusters can be obtained by running kernel k-means from an <u>initial state</u>

$$(C_1,...,C_l := C_l - \{\mathbf{x}_n\},...,C_{k-1},C_k = \{\mathbf{x}_n\}) \quad \mathbf{x}_n \in C_l$$

• Which \mathbf{x}_n ? Check all possible initializations (one for each \mathbf{x}_n)

Orange circles: optimal initialization of the cluster to be added

Global Kernel k-Means - Algorithm

In order to solve the *M*-clustering problem:

- 1. Solve the 1-clustering problem with Kernel *k*-Means (trivial solution)
- 2. Solve the *k*-clustering problem using the solution to the (k-1)-clustering problem
 - a) Let $(C_1, C_2, ..., C_{k-1})$ denote the solution to the (*k*-1)-clustering problem
 - b) Execute Kernel *k*-Means *N* times, initialized during the *n*-th run as

$$(C_1, ..., C_l := C_l - \{\mathbf{x}_n\}, ..., C_{k-1}, C_k = \{\mathbf{x}_n\}) \quad \mathbf{x}_n \in C_l$$

- c) Keep the run with the lowest clustering error as the solution with k clusters $(C_1, C_2, ..., C_k)$
- **d**) k := k+1
- 3. Repeat step 2 until k=M.

Global Kernel k-Means

- Advantages
 - \checkmark Initialization independent
 - ✓ Finds near optimal solutions w.r.t the clustering error in feature space.
 - \checkmark Identifies non-linear separable clusters in input space
- When solving the *M*-clustering problem the solutions with 1, ..., *M* clusters are also found
- Increased Complexity
 - To solve for *M* clusters we must run Kernel *k*-Means *MN* times

Fast Global Kernel k-Means

Global Kernel *k*-Means complexity is high for large datasets \longrightarrow we propose a speeding up scheme: <u>Fast Global Kernel *k*-Means</u>

- How is the complexity reduced?
 - To add a new cluster k given the solution for the (k-1)clustering problem, instead of executing Kernel k-Means N times, it is executed only once from state

 $(C_1,...,C_l \coloneqq C_l - \{\mathbf{x}_{n^*}\},...,C_{k-1},C_k = \{\mathbf{x}_{n^*}\}) \quad \mathbf{x}_{n^*} \in C_l$

• \mathbf{x}_{n^*} provides the greatest reduction in clustering error in the first iteration of kernel k-means

Fast Global Kernel k-Means - Details

•
$$C_k = \{\mathbf{x}_n\}, \ \mathbf{m}_k = \phi(\mathbf{x}_n)$$

- C_k allocates all points \mathbf{x}_i that are closer (in feature space) to \mathbf{x}_n than to their cluster center (in the solution with (*k*-1) clusters): $|| \phi(\mathbf{x}_i) - \phi(\mathbf{x}_n) ||^2 < d_i$
- *d_i* is the distance in feature space between **x**_i and its cluster center in the (*k*-1)-clustering solution
- The reduction in clustering error due to the reallocation is

$$b_n = \sum_{i=1}^N \max(d_i - || \phi(\mathbf{x}_n) - \phi(\mathbf{x}_i) ||^2, 0)$$
$$n^* = \arg\max b_n$$

- Run Kernel *k*-Means <u>once</u> from initial partition

$$(C_1, ..., C_l := C_l - \{\mathbf{x}_{n^*}\}, ..., C_{k-1}, C_k = \{\mathbf{x}_{n^*}\}) \quad \mathbf{x}_{n^*} \in C_l$$

Experimental Evaluation

- We compared <u>Global Kernel *k*-Means</u>, <u>Fast Global Kernel</u> <u>*k*-Means</u> and <u>Kernel *k*-Means with multiple restarts</u>
 - On artificial data
 - On MRI segmentation

- Global Kernel *k*-Means and the fast version were run <u>once</u>
- Kernel *k*-Means was <u>restarted 100 times</u>
- We compared the algorithms in terms of clustering error

Artificial Datasets

- We created three datasets
 - i) Two rings dataset (2 clusters), ii) five copies of two rings (10 clusters), iii) 'IJCNN 2008' logo (9 clusters)

• In all the experiments we used a Gaussian kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / (2\sigma^2)\right)$$

Artificial Datasets - Results

Method/D:	ataset	Two Rings $\sigma = 1$	Ten Rings $\sigma = 1.8$	'IJCNN 2008' $\sigma = 0.7$
Global kernel k-means		320.17	966.87	27.97
Fast global kernel <i>k-</i> means		320.17	1073.18	27.97
	Mean	334.4	1107.97	37.72
Kernel <i>k</i> -	Std	6.4	177.24	6.16
means (100 runs)	Min	320.17	981.53	27.97
	Max	351.05	1765.29	63.03

2.5	_	'IJONN 2008' dataset-9 clusters						
2	-	ممم	0000	00		*** *** *** *	*** *** *** *	
1.5	-	۵۵ ۵۵ ۵۵ ۵۵	00 00 00 00 00 00 000			× ×× × × ×× × × ××× × ×× × ×× × ××	**** **** * *** * ** * **	
1	-							
0.5 0	-		000 0000 00 00 0000 0000	000 00 00 00 00 00 00 00 00 00 00	*** ** ** ** ** ** ** ** ** ** **	*** * ** * ** *** *** * ** *	* * *	
-0.5 -0.	5	0	0.5	1	1.5	2	2.5 3	

Global Kernel *k*-Means Fast Global Kernel *k*-Means Kernel *k*-Means (12/100 runs)

Global Kernel *k*-Means Fast Global Kernel *k*-Means Kernel *k*-Means (5/100 runs)

Artificial Datasets - Conclusions

- Global Kernel *k*-Means in all cases finds the solution with the lowest clustering error and identifies the structures present in the dataset
 - This algorithm identifies near optimal solutions
- Performance of fast Global Kernel *k*-Means is very close to the original algorithm except for the second dataset
- Kernel *k*-Means is very sensitive to initializations
 - For the second dataset it never solves the 10 rings
 - During the restarts near optimal but also very bad solutions are found
 - <u>Number of restarts? We are never sure if they suffice</u>

MRI Segmentation

- We used MRI images downloaded from the BrainWeb site (<u>www.bic.mni.mcgill.ca/brainweb/</u>)
 - We segmented slices of a 3-d brain image
 - In those slices <u>seven classes</u> prevail: background, CSF, grey matter, white matter, muscle/skin, skin and skull
 - We performed <u>clustering into 7 clusters</u>
 - The ground truth is also available (class for each pixel)
 - Large datasets: 181 x 217 = 39277 pixels

MRI Segmentation - Kernel Definition

- Typical approaches cluster each pixel based on its intensity
- The use of kernel k-means enables the use of additional information: pixel intensity + local histogram
- We used a composite kernel for MRI segmentation:

-Global Kernel *k*-Means is slow (large dataset)

-We compare Fast Global Kernel *k*-Means to Kernel *k*-Means (<u>100</u> <u>random restarts</u>)

MRI Segmentation - Results

Method/Slice		Slice 60		Slice 80		Slice 100	
$\sigma = 0.7 \text{ Win}=31 \text{x} 31$ Bins=70		CE	ME	CE	ME	CE	ME
Fast global kernel <i>k</i> -means		5208.32	19.89%	5064.99	14.1%	5010.15	15.82%
Kernel <i>k</i> - means (100 runs)	Mean	5286.95	19.89%	5244.39	14.01%	5094.85	15.97%
	Std	66.29		127.63		141.7	
	Min	5207.65		5064.27		5009.75	
	Max	5364.68		5477.84		5808.77	

- Kernel k-means <u>best</u>: 3, 12, 28 out of 100 runs
- Fast Global Kernel k-Means equals the best of Kernel k-Means
 - This solution is much better than the average clustering error achieved by Kernel *k*-Means
 - The <u>100 restarts are 20 times slower</u> than Fast Global Kernel *k*-Means (16 hours vs. 45 minutes)

MRI Segmentation - Examples

CSF Skull

Slice 60

Slice 80

Slice 100

Original MRI

Ground Truth

White Grey

White Grey CS

Muscle/Skin-

irey CSF Skull

Background Skin

White Grey CSF Skin

Skull Muscle/Skin

Background

Fast Global kernel *k*-Means

Conclusions

- We have proposed the <u>Global Kernel k-means</u>:
 - an <u>incremental deterministic</u> approach for clustering in feature space
 - effectively <u>solves the initialization problem</u> of kernel k-means
 - provides <u>near-optimal solutions</u> in terms of the clustering error in feature space
 - Solves all intermediate k-clustering problems for k=1,...,M
- Several techniques can be used to improve computational time
 - <u>fast global kernel k-means</u>
 - Use only <u>a subset</u> with L<<N training data as candidates for the initialization of the new cluster center
 - This subset can be selected through <u>preprocessing</u> using <u>exemplar-based</u> clustering methods (e.g. L-medoids, affinity propagation, <u>convex mixture models</u>).