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Clustering

- Partition of a dataset into homogeneous groups

- When the objects are data vectors, the most well-
known algorithm for the above task is k-Means



k-Means

- Each cluster C, is represented by its center m,
(mean of the cluster elements)

- Finds local minima w.r.t. the clustering error

N M
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> (sum of cluster variances)

« Drawbacks
X Highly dependent on the initial positions of the centers
X Identifies only linearly separable clusters

« Improvements
v Multiple restarts, Global k-Means (Likas et al. [2003])
v/ Kernel k-Means



|
Global k-Means

- An incremental, deterministic clustering
algorithm that runs k-Means several times

- Finds near-optimal solutions wrt clustering error

- Idea: a near-optimal solution for k clusters can be
obtained by running k-means from an initial state

(Mg, My My, X))
the k-1 centers are initialized from a near-optimal solution
of the (k-1)-clustering problem (m;,m,,...m, )
the k-th center is initialized at some data point x_ (which?)
- Consider all possible initializations (one for each x,)
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Global k-Means - Algorithm

In order to solve the M-clustering problem:
1. Solve the 1-clustering problem (trivial)

2. Solve the k-clustering problem using the solution of the (k-1)-
clustering problem (m;,m,,....m,_;)
a) Execute k-Means N times, initialized as  (m;,m,,....,m_,,x ) atthe
n-th run (n=1,...,N).
b) Keep the solution corresponding to the run with the lowest clustering
error as the solution with k clusters (m,,m,,...,m,)

3. k:=k+1, Repeat step 2 until k=M.

v'Avoids the initialization problem of k-Means

v'Locates near optimal partitions w.r.t. clustering error
v'All intermediate solutions for k=1, ..., M-1 are also found: useful
when searching for the number of clusters

»Requires MN runs of k-Means to find M clusters



Kernel k-Means

- Data points are mapped from input space to a higher
dimensional feature space through a transformation ¢

Kernel k-Means = k-Means in feature space

v/ Identifies non-linearly separable clusters in input
space

Minimizes the clustering error in feature space

E(my,..,my) = Z

N
i=1
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Kernel k-Means

» Kernel trick
= A kernel function corresponds to the inner products in feature

space 1.e.
P Ky =47 (<)), 1906) = p(x;) IP= K, + K 2K,
- Computation of distances from centers in feature space:

2¥N I(x € Gk Xi XN I(x; € C)I(x; € CK;
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lp(x;) — my||? = K;; —

= No need to explicitly define transformation ¢

- Difference from k-means
- The cluster centers are not explicitly defined
- Each cluster C, is described by its training data

- Finds local minima - Strong dependence on initialization



Global Kernel k-Means

Based on the ideas of the Global k-Means and Kernel k-Means

algorithms we propose the Global Kernel k-Means algorithm

- An incremental deterministic algorithm that employs
Kernel k-Means as a local search procedure

- At each stage of the algorithm a new cluster is added as in
Global k-Means
- Main idea

- Given a near-optimal solution (C,,C,,...,C, ;) with k-1 clusters:

A near-optimal solution with k clusters can be obtained by running
kernel k-means from an initial state

C,...C, =C, -{x,},....C,,,C, ={x.}) x, €C,

= Which x_? Check all possible initializations (one for each x_)
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Global Kernel k-Means - Algorithm

In order to solve the M-clustering problem:

1. Solve the 1-clustering problem with Kernel k-Means (trivial
solution)

2. Solve the k-clustering problem using the solution to the (k-1)-
clustering problem

a) Let (C,C,,...,C ) denotethe solution to the (k-1)-clustering
problem

b) Execute Kernel k-Means N times, initialized during the n-th run as
(C,....C, =C, -{x,},....C, ;,C, ={X,}) X, €C,
c) Keep the run with the lowest clustering error as the solution with k

clusters (C;,C,,...,C,)
d) k:=k+1

3. Repeat step 2 until k=M.



Global Kernel k-Means

- Advantages
v/ Initialization independent

v Finds near optimal solutions w.r.t the clustering error in feature
space.

v/ Identifies non-linear separable clusters in input space

» When solving the M-clustering problem the solutions with 1, ..., M
clusters are also found

« Increased Complexity
= To solve for M clusters we must run Kernel k-Means MN times



Fast Global Kernel k-Means

Global Kernel k-Means complexity is high for large datasets ) we

propose a speeding up scheme: Fast Global Kernel k-Means

- How is the complexity reduced?
> To add a new cluster k given the solution for the (k-1)-
clustering problem, instead of executing Kernel k-
Means N times, it is executed only once from state
(Cys G =C —{x . }....C, ;,C, ={x.}) x.¢eC,
= X. provides the greatest reduction in clustering error
in the first iteration of kernel k-means



Fast Global Kernel k-Means - Details

- G =1{x.}, m =4¢(x,)
= C, allocates all points x; that are closer (in feature space)
to X, than to their cluster center (in the solution with (k-1)
clusters): 16 (x;)—d(x,)]>< d,
d, isthe distance in feature space between x; and its cluster center
in the (k-1)-clustering solution

> The reduction in clustering error due to the reallocation is
N
b, = Zmax(di — |l 6(x,,) —(x;) I, 0)
i=1

n =argmaxh
= Run Kernel k-Means once from initial partition

(Cys G =C —{x . }....C, ;,C, ={x.}) x.€eC,



Experimental Evaluation

- We compared Global Kernel k-Means, Fast Global Kernel
k-Means and Kernel k-Means with multiple restarts

> On artificial data
> On MRI segmentation

» Global Kernel k-Means and the fast version were run once
» Kernel k-Means was restarted 100 times

- We compared the algorithms in terms of clustering
error




Artificial Datasets

« We created three datasets

- 1) Two rings dataset (2 clusters), ii) five copies of two rings (10
clusters), iii) TJCNN 2008’ logo (9 clusters)

Tenrings dataset-10 clusters
Global Kemel k-Means
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- In all the experiments we used a Gaussian kernel

K(x;,x;) =exp (1%, —x; | /(267))



Art|f|C|aI Datasets - Results

Two rings dataset- 2 clusters
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Artificial Datasets - Conclusions

- Global Kernel k-Means in all cases finds the solution with the
lowest clustering error and identifies the structures present in
the dataset

= This algorithm identifies near optimal solutions

- Performance of fast Global Kernel k-Means is very close to the
original algorithm except for the second dataset

- Kernel k-Means is very sensitive to initializations
= For the second dataset it never solves the 10 rings
- During the restarts near optimal but also very bad solutions are found
- Number of restarts? We are never sure if they suffice




MRI Segmentation

- We used MRI images downloaded from the BrainWeb
site (www.bic.mni.mcgill.ca/brainweb/)
- We segmented slices of a 3-d brain image

- In those slices seven classes prevail: background, CSF, grey
matter, white matter, muscle/skin, skin and skull

- We performed clustering into 7 clusters

- The ground truth is also available (class for each pixel)

- Large datasets: 181 x 217 = 39277 pixels
White Grey CSF Skull

Muscle/Skin Background  Skin


http://www.bic.mni.mcgill.ca/brainweb/

MRI Segmentation - Kernel Definition

= Typical approaches cluster each pixel based on its intensity

= The use of kernel k-means enables the use of additional
information: pixel intensity + local histogram

- We used a composite kernel for MRI segmentation:

Bins

K”:exp(—lll(i)z;;(i)llz) _Zl JP OP,()

Probability of the z-th

Intensity of the i-th
pixel

bin of pixel’s i
histogram

-Global Kernel k-Means is slow ( large dataset)

-We compare Fast Global Kernel k-Means to Kernel k-Means (100
random restarts)




MRI Segmentation - Results

Method/Slice Slice 60 Slice 80 Slice 100

g = 0.7 Win=31x31
N CE ME CE ME CE ME
Fast global kernel | 55,0 37 | 198904 | 5064.99 | 14.1% | 5010.15 | 15.82%
k-means
el g | Mean | 5286.95 524439 5094.85
¢rne -
Std | 66.29 [ 127.63 1417 |
| | 5.970
(131093:35) Min | 5207.65 | 1237 506427 | 14017 5009 75 | 12977
Max | 5364.68 5477.84 5808.77

« Kernel k-means best: 3, 12, 28 out of 100 runs

- Fast Global Kernel k-Means equals the best of Kernel k-
Means

- This solution is much better than the average clustering error achieved
by Kernel k-Means

= The 100 restarts are 20 times slower than Fast Global Kernel k-Means
(16 hours vs. 45 minutes)




MRI Segmentation - Examples

Slice 60 Slice 80 Slice 100

Original MRI

CsSF Skull White

Ground Truth

Muscle/Skin  Background  Skin

Fast Global
kernel k-
Means




Conclusions
- We have proposed the Global Kernel k-means:

an incremental deterministic approach for clustering in feature
space

effectively solves the initialization problem of kernel k-means
provides near-optimal solutions in terms of the clustering error in
feature space

Solves all intermediate k-clustering problems for k=1,...,M

- Several techniques can be used to improve computational
time
fast global kernel k-means

Use only a subset with L<<N training data as candidates for
the initialization of the new cluster center

This subset can be selected through preprocessing using
exemplar-based clustering methods (e.g. L-medoids, affinity
propagation, convex mixture models).
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