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Clustering
• Partition of a dataset into homogeneous groups

• When the objects are data vectors, the most well-
known algorithm for the above task is k-Means

Given a dataset                                              of objects

we aim to partition this dataset into M disjoint clusters                    
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k-Means
• Each cluster Ck is represented by its center mk

(mean of the cluster elements)

• Finds local minima w.r.t. the clustering  error

▫ (sum of cluster variances)

• Drawbacks
Highly dependent on the initial positions of the centers
Identifies only linearly separable clusters

• Improvements
√Multiple restarts, Global k-Means (Likas et al. [2003])
√Kernel k-Means



Global k-Means

• An incremental, deterministic clustering 
algorithm that runs k-Means several times

• Finds near-optimal solutions wrt clustering error

• Idea: a near-optimal solution for k clusters can be 
obtained by running k-means from an initial state

▫ the k-1 centers are initialized from a near-optimal solution 
of the (k-1)-clustering problem 

▫ the k-th center is initialized at some data point xn (which?)
• Consider all possible initializations (0ne for each xn)
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Orange circles: optimal initial position of the cluster center to be added



Global k-Means - Algorithm

In order to solve the M-clustering problem:
1. Solve the 1-clustering problem (trivial)
2. Solve the k-clustering problem using the solution of the (k-1)-

clustering problem 
a) Execute k-Means N times, initialized as                                          at the 

n-th run (n=1,…,N).
b) Keep the solution corresponding to the run with the lowest clustering 

error as the solution with k clusters 

3. k:=k+1, Repeat step 2 until k=M. 

Avoids the initialization problem of k-Means
Locates near optimal partitions w.r.t. clustering error

All intermediate solutions for k=1, …, M-1 are also found: useful 
when searching for the number of clusters

Requires MN runs of k-Means to find M clusters
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Kernel k-Means
▫ Data points are mapped from input space to a higher 

dimensional feature space through a transformation

√ Identifies non-linearly separable clusters in input 
space

• Minimizes the clustering error in feature space

Kernel k-Means ≡ k-Means in feature spaceKernel k-Means ≡ k-Means in feature space



Kernel k-Means
• Kernel trick
▫ A kernel function corresponds to  the inner products in feature 

space i.e. 

▫ Computation of distances from centers in feature space:

▫ No need to explicitly define transformation

• Difference from k-means
▫ The cluster centers are not explicitly defined
▫ Each cluster Ck is described by its training data

• Finds local minima - Strong dependence on initialization
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Global Kernel k-Means

• An incremental deterministic algorithm that employs 
Kernel k-Means as a local search procedure
▫ At each stage of the algorithm a new cluster is added as in 
Global k-Means

• Main idea
▫ Given a near-optimal solution                                with k-1 clusters:

A near-optimal solution with k clusters can be obtained by running 
kernel k-means from an initial state

▫ Which xn? Check all possible initializations (one for each xn)

Based on the ideas of the Global k-Means and Kernel k-Means 
algorithms we propose the Global Kernel k-Means algorithm

Based on the ideas of the Global k-Means and Kernel k-Means 
algorithms we propose the Global Kernel k-Means algorithm
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Best Initial C3

Best Initial C4

Orange circles: optimal initialization of the cluster to be added

Best Initial C2



Global Kernel k-Means - Algorithm
In order to solve the M-clustering problem:

1. Solve the 1-clustering problem with Kernel k-Means (trivial 
solution)

2. Solve the k-clustering problem using the solution to the (k-1)-
clustering problem

a) Let                                      denote the solution to the (k-1)-clustering 
problem

b) Execute Kernel k-Means N times, initialized during the n-th run as

c) Keep the run with the lowest clustering error as the solution with k
clusters 

d) k := k+1

3. Repeat step 2 until k=M.
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Global Kernel k-Means

• Advantages
√ Initialization independent
√ Finds near optimal solutions w.r.t the clustering error in feature 

space.
√ Identifies non-linear separable clusters in input space

• When solving the M-clustering problem the solutions with 1, …, M
clusters are also found

• Increased Complexity
▫ To solve for M clusters we must run Kernel k-Means MN times



Fast Global Kernel k-Means

• How is the complexity reduced?
▫ To add a new cluster k given the solution for the (k-1)-

clustering problem, instead of executing Kernel k-
Means N times, it is executed only once from state

▫ provides the greatest reduction in clustering error
in the first iteration of kernel k-means

Global Kernel k-Means complexity is high for large datasets             we 
propose a speeding up scheme: Fast Global Kernel k-Means

Global Kernel k-Means complexity is high for large datasets             we 
propose a speeding up scheme: Fast Global Kernel k-Means
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Fast Global Kernel k-Means - Details
▫
▫ Ck allocates all points xi that are closer (in feature space) 

to xn than to their cluster center (in the solution with (k-1) 
clusters):

▫ is the distance in feature space between xi and its cluster center    
in the (k-1)-clustering solution

▫ The reduction in clustering error due to the reallocation is

▫
▫ Run Kernel k-Means once from initial partition
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Experimental Evaluation

• We compared Global Kernel k-Means, Fast Global Kernel 
k-Means and Kernel k-Means with multiple restarts
▫ On artificial data
▫ On MRI segmentation

• Global Kernel k-Means and the fast version were run once
• Kernel k-Means was restarted 100 times
• We compared the algorithms in terms of clustering 

error



Artificial Datasets
• We created three datasets
▫ i) Two rings dataset (2 clusters),  ii) five copies of two rings (10 

clusters), iii) ‘IJCNN 2008’ logo (9 clusters)

• In all the experiments we used a Gaussian kernel
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Artificial Datasets - Results
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Artificial Datasets - Conclusions
• Global Kernel k-Means in all cases finds the solution with the 

lowest clustering error and identifies the structures present in
the dataset
▫ This algorithm identifies near optimal solutions

• Performance of fast Global Kernel k-Means is very close to the 
original algorithm except for the second dataset

• Kernel k-Means is very sensitive to initializations
▫ For the second dataset it never solves the 10 rings
▫ During the restarts near optimal but also very bad solutions are found
▫ Number of restarts?  We are never sure if they suffice



MRI Segmentation

• We used MRI images downloaded from the BrainWeb
site (www.bic.mni.mcgill.ca/brainweb/)
▫ We segmented slices of a 3-d brain image
▫ In those slices seven classes prevail: background, CSF, grey 

matter, white matter, muscle/skin, skin and skull
▫ We performed clustering into 7 clusters
▫ The ground truth is also available (class for each pixel)
▫ Large datasets: 181 x 217 = 39277 pixels

BackgroundMuscle/Skin

White Grey CSF Skull

Skin

http://www.bic.mni.mcgill.ca/brainweb/


MRI Segmentation – Kernel Definition
▫ Typical approaches cluster each pixel based on its intensity
▫ The use of kernel k-means enables the use of additional 

information: pixel intensity + local histogram

• We used a composite kernel for MRI segmentation:

Intensity of  the i-th
pixel

Probability of the z-th
bin of pixel’s i 

histogram

-Global Kernel k-Means is slow ( large dataset)

-We compare Fast Global Kernel k-Means to Kernel k-Means  (100 
random restarts)



MRI Segmentation - Results

• Kernel k-means best: 3, 12, 28 out of 100 runs

• Fast Global Kernel k-Means equals the best of Kernel k-
Means
▫ This solution is much better than the average clustering error achieved 

by Kernel k-Means
▫ The 100 restarts are 20 times slower than Fast Global Kernel k-Means 

(16 hours vs. 45 minutes)



MRI Segmentation - Examples
Slice 60 Slice 80 Slice 100

Original MRI

Ground Truth

Fast Global 
kernel k-

Means

BackgroundMuscle/Skin

White Grey CSF Skull

Skin

White Grey CSF Skull

Muscle/Skin SkinBackground BackgroundMuscle/Skin

SkinWhite Grey CSF

Skull



Conclusions
• We have proposed the Global Kernel k-means:

▫ an incremental deterministic approach for clustering in feature 
space

▫ effectively solves the initialization problem of kernel k-means
▫ provides near-optimal solutions in terms of the clustering error in 

feature space
▫ Solves all intermediate k-clustering problems for k=1,…,M

• Several techniques can be used to improve computational 
time
▫ fast global kernel k-means
▫ Use only a subset with L<<N training data as candidates for 

the initialization of the new cluster center
▫ This subset can be selected through preprocessing using 

exemplar-based clustering methods (e.g. L-medoids, affinity 
propagation, convex mixture models).
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