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Abstract—Exploiting multiple representations, or views, for
the same set of instances within a clustering framework is a
popular practice for boosting clustering accuracy. However,
some of the available sources may be misleading (due to noise,
errors in measurement etc.) in revealing the true structure of
the data, thus, their inclusion in the clustering process may
have negative influence. This aspect seems to be overlooked in
the multi-view literature where all representations are equally
considered. In this work, views are expressed in terms of given
kernel matrices and a weighted combination of the kernels
is learned in parallel to the partitioning. Weights assigned to
kernels are indicative of the quality of the corresponding views’
information. Additionally, the combination scheme incorpo-
rates a parameter that controls the admissible sparsity of the
weights to avoid extremes and tailor them to the data. Two effi-
cient iterative algorithms are proposed that alternate between
updating the view weights and recomputing the clusters to
optimize the intra-cluster variance from different perspectives.
The conducted experiments reveal the effectiveness of our
methodology compared to other multi-view methods.

Keywords-multi-view clustering; multiple kernel learning;
kernel k-means

I. INTRODUCTION

Multi-modal datasets are very common in practice due
to the use of different measuring methods (e.g. infrared
and visual cameras), or of different media, like text, video
and audio. Each instance in these datasets has multiple
representations, called views, from various feature spaces.
Typical examples include web pages, represented by both
text and hyperlinks, and images, where color and texture
information can be utilized. The existence of such data has
raised interest in the so called multi-view learning, which
has been extensively studied under the semi-supervised
classification setting [1], [2], [3]. Our work focuses on multi-
view clustering [4], [5], where the absence of a ground-
truth to guide the learning process makes the underlining
task much harder. The main challenge that arises is to find
a suitable way of simultaneously exploiting the, possibly,
complementary information of all available views in order
to derive a robust partitioning, considering the diversity (e.g.
different statistical properties) and the disagreement (i.e.
different views produce different partitionings) of the views.

Surprisingly, most multi-view methods rely equally on ev-
ery view, something that may lead to performance degrada-
tion in the case of degenerate views (e.g. noisy or irrelevant

views). Identifying and appropriately handling such views is
difficult though. The proposed approach tackles this problem
from the kernel perspective, i.e. data points are mapped to a
nonlinear high-dimensional space through a kernel function
[6]. Each view is represented by a kernel matrix and views
are combined using a weighted sum of the kernel matrices,
accompanied by an appropriate constraint on the weights.
The weights express the quality (importance in clustering)
of the views and determine their degree of contribution to the
final solution accordingly. They are learned automatically,
together with the inference of the cluster labels, through
closed form expressions, by minimizing the typical intra-
cluster variance objective of k-means in the space induced by
combining the individual kernels. Two iterative optimization
strategies are developed, one based on kernel k-means [7],
[8] and the other on spectral techniques [9].

Our strategy of mixing the kernels is inspired by unsuper-
vised multiple kernel learning [10], [11], [12], [13], where
for a singly represented dataset a, usually linear, combination
of base kernels is sought together with the partitioning, to
solve the kernel selection problem. In our case those kernels
are derived from the views. Thus a connection between these
popular machine learning problems emerges. There appears
to be some dispute over the sparsity1 of the combination
weights, with some authors favoring high sparsity [12] and
others a more uniform solution [10]. We believe that a good
choice lies somewhere between the two ends, such that an
algorithm is flexible enough to allow the data to harness
the kernel weights, without being too prone to either end.
For this reason, the proposed methodology incorporates a
parameter controlling this flexibility that must be specified
prior to execution. Experiments on synthetic and real world
datasets support the above claim and indicate that view
weighting under our framework is successful in reflecting
the underlying properties of the studied data. The main
contributions of this work can be summarized in:

1) The estimation of view weights, a subject generally
overlooked in multi-view clustering.

2) The inclusion of a parameter that controls the sparsity
of the weights.

1Sparsity is defined relative to the number of kernels in the solution that
carry significant weights.
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3) The use of kernels to represent the views and the
way they are combined, which connects multi-view
clustering to multiple kernel learning.

The rest of this paper is organized as follows. The next
section reviews related work, while Section III presents the
foundations of our multi-view method which is detailed in
Section IV. The experiments follow in Section V, before the
concluding remarks of Section VI.

II. RELATED WORK

Most of the existing work in multi-view clustering extends
well-known algorithms to the multi-view setting by explic-
itly or implicitly exploiting the “minimizing-disagreement”
idea [4]. Bickel and Scheffer [4] developed a two-view
EM and a two-view k-means algorithm. They also studied
the problem of mixture model estimation with more than
two views [14]. De Sa [15] proposed a two-view spectral
clustering technique that creates a bipartite graph of the
views. A framework that generalizes the normalized cut to
the multi-view case was introduced by Zhou and Burges
[16]. This model contains a parameter that determines the
relative importance of each view, but, unlike ours, it is not
learned during training and must be fixed a priori. The top
directions obtained by canonical correlation analysis across
the views are utilized in [17], [18] to first project the data
and then cluster the projections. Our previous work [19]
models each view through a convex mixture distribution and
a weighted combination that reflects the views’ importance
is automatically learned through EM. In [20] the spectral
embedding from one view is used to bootstrap the clustering
of the other view, by modifying its similarity matrix in a co-
training [3] like fashion. A drawback of the co-training idea
is that convergence is not guaranteed.

According to the model of Long et al. [5] the views are
independently clustered and a final partitioning of the data is
derived by minimizing an objective function that measures
how close the final split, based on all views, is to the split
of each single view with the help of a mapping function.
In a similar fashion, a matrix factorization approach was
adopted in [21] to reconcile the groups arising from the
individual views. Overall, despite the wide variety of multi-
view clustering methods, most of them treat equally all
views, regardless of the conveyed information (except [16],
[19]). The proposed method explores this neglected aspect
by introducing weights to the views which are learned
automatically.

From the viewpoint of how the view kernels are combined
under our framework, unsupervised multiple kernel learning
can also be considered as related work. In most cases a
linear weighting is applied in conjunction with a constraint
on the weight values that also acts as a sparsity manipulator.
This constraint is usually either the �1-norm regularizer [11],
[12], which promotes a very sparse solution, or the �2-
norm regularizer [13], which favors less sparse ones. Lange

and Buhmann [10] learned a linear mixture of similarity
matrices using an entropy criterion to control sparsity. In the
supervised scenario the more general �p-norm regularizer,
p ≥ 1, was introduced [22] with higher p values producing
a more uniform weighting. In our method, a parameter that
is set beforehand, allows for a similar kind of influence on
the weights as the �p-norm regularizer. Finally, a nonlinear
kernel combination is proposed in [23] and is applied to
regression problems.

III. KERNEL-BASED CLUSTERING

Two kernel-oriented methods for optimizing the intra-
cluster variance are described in this section, which are both
considered under our framework.

A. Kernel k-means

Kernel k-means [7] is a generalization of the standard k-
means algorithm where the dataset X = {xi}

N

i=1, xi ∈ �
d

is mapped from input space to a higher dimensional repro-
ducing kernel Hilbert space H, a.k.a. feature space, via a
nonlinear transformation φ : X → H.

To partition dataset X into M disjoint clusters, {Ck}
M

k=1,
the intra-cluster variance in feature space (1) is minimized
over clusters {Ck}

M

k=1, where mk is the k-th cluster center
and δik is an indicator variable with δik = 1 if xi ∈ Ck and
0 otherwise.

EH =
N∑

i=1

M∑
k=1

δik‖φ(xi)−mk‖
2 ,mk =

∑N

i=1 δikφ(xi)∑N

i=1 δik

(1)

Usually a kernel function K : X × X → � [6] is applied
to directly provide the inner products in feature space with-
out explicitly defining transformation φ (for certain kernel
functions the corresponding transformation is intractable).
This gives rise to the kernel matrix K ∈ �N×N , Kij =
K(xi,xj) = φ(xi)

�φ(xj), which is the most common way
of representing data in feature space. The squared Euclidean
distances in (1) can now be computed using solely the
kernel matrix entries (2) (centers mk cannot be analytically
calculated).

‖φ(xi)−mk‖
2 =Kii −

2
∑N

j=1 δjkKij∑N

j=1 δjk

+

∑N

j=1

∑N

l=1 δjkδlkKjl∑N

j=1

∑N

l=1 δjkδlk

(2)

By iteratively updating the partitioning through assignments
of the instances to their closest center in feature space, ker-
nel k-means monotonically converges to a local minimum,
which heavily depends on the initial cluster assignments.
To avoid poor minima, multiple restarts or, even better,
deterministic-incremental approaches such as the global ker-
nel k-means algorithm [8] could be applied.
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B. Spectral Clustering

According to [9], the intra-cluster variance (1) can be
equivalently posed as a trace difference:

EH = tr(K)− tr(Y �KY ) , (3)

where Y ∈ �N×M , Yik =
δik√∑N

j=1 δjk

.

The first term on the above equation is a constant, therefore
the minimization of (3) is equivalent to the maximization of
tr(Y �KY ) w.r.t. the indicator matrix Y . Due to the discrete
nature of Y this becomes a hard optimization problem, but
if Y is relaxed to be an arbitrary orthonormal matrix (i.e.
Y �Y = I), a standard result in linear algebra states that
the optimal Y is composed of the top M eigenvectors of
the kernel matrix K. Therefore, spectral methods which
calculate the top eigenvectors of an appropriate matrix and
then perform post-processing on these eigenvectors to re-
cover a partitioning can substitute kernel k-means. A popular
spectral technique is that of [24].

IV. MULTI-VIEW KERNEL k-MEANS AND MULTI-VIEW

SPECTRAL CLUSTERING

Motivated by the absence of multi-view clustering meth-
ods that differentiate the contribution of the views according
to the conveyed information, we present a simple and ef-
fective kernel-based scheme which embeds in the clustering
process an automatic “ranking” of the views. This “ranking”
should wipe out a completely uninformative view, but also
allow a less informative one to contribute, with a smaller
degree, to the clustering solution.

A. Model Description

Consider a dataset X with N instances and V views:

X = {xi}
N

i=1, where xi =
{
x

(v)
i

}V

v=1
and x

(v)
i ∈ �d(v)

are the view vectors for instance xi. As already discussed in
Section III, to apply kernel methods, the dataset is implicitly
mapped to a feature space and is represented through a
kernel matrix. Here it is assumed that V kernel matrices are
available,

{
K(v)

}V

v=1
, to which (unknown) transformations{

φ(v)
}V

v=1
and feature spaces

{
H(v)

}V

v=1
correspond. To

take advantage of all views, we propose the following kernel
combination, where wv are the view weights and p is an
exponent:

K̃ =
V∑

v=1

wp
vK(v) , wv ≥ 0 ,

V∑
v=1

wv = 1 , p ≥ 1 . (4)

It is easy to verify that the composite matrix K̃ is a
valid kernel matrix, i.e. a positive semidefinite matrix,
to which a transformation φ̃(xi) =

[√
wp

1φ(1)(x
(1)
i )�,

, . . . ,
√

wp
V φ(V )(x

(V )
i )�

]�
corresponds, i.e. K̃ij =

φ̃(xi)
�φ̃(xj), that maps the instances to feature space

H̃ = H(1) × . . . × H(V ). The weight values, wv , of the
combination (the wp

v values to be precise) represent the
relevance of each kernel (view) to the clustering task.

This technique of kernel mixing is widespread in multiple
kernel learning, where usually the �p-norm regularizer is
applied, i.e. K̃ =

∑V

v=1 wvK(v), wv ≥ 0,
∑V

v=1 wp
v ≤

1, p ≥ 1. Different norms allow for different levels of
sparsity on the weights, with the �1-norm [11], [12], [22]
favoring very sparse weights and the �∞-norm [22] reducing
to the unweighted case, i.e. K̃ =

∑V

v=1 K(v). Norms for
p > 1 provide a tradeoff between these two extremes [13],
[22]. We shall shortly discuss how the exponent p in the
above kernel mixture (4) affects sparsity likewise. However,
it must be clarified that this work does not focus, by any
means, on kernel learning, but exploits kernels as a tool for
representing and combining views in multi-view learning.

In order to partition the dataset into M disjoint clusters,
{Ck}

M

k=1, and simultaneously exploit all views by learning a
suitable kernel K̃ of the form (4), the intra-cluster variance
in space H̃ (5) is minimized over the clusters and the
weights, w.r.t. the constraints in (6). Note that we do not
optimize w.r.t. p, which must be fixed a priori.

E
H̃

=

N∑
i=1

M∑
k=1

δik‖φ̃(xi)− m̃k‖
2 , m̃k =

∑N

i=1 δikφ̃(xi)∑N

i=1 δik

(5)

min
{Ck}

M
k=1 ,{wv}

V
v=1

E
H̃

, s.t. wv ≥ 0 ,

V∑
v=1

wv = 1 , p ≥ 1 (6)

Using (2) and (4) the objective is rewritten as:

E
H̃

=

N∑
i=1

M∑
k=1

δik

(
K̃ii −

2
∑N

j=1 δjkK̃ij∑N

j=1 δjk

+

∑N

j=1

∑N

l=1 δjkδlkK̃jl∑N

j=1

∑N

l=1 δjkδlk

)
⇒

E
H̃

=
V∑

v=1

wp
v

N∑
i=1

M∑
k=1

δik

(
K

(v)
ii −

2
∑N

j=1 δjkK
(v)
ij∑N

j=1 δjk

+

∑N

j=1

∑N

l=1 δjkδlkK
(v)
jl∑N

j=1

∑N

l=1 δjkδlk

)
⇒

E
H̃

=

V∑
v=1

wp
v

N∑
i=1

M∑
k=1

δik‖φ
(v)(x

(v)
i )−m

(v)
k ‖2 , (7)

where m
(v)
k =

∑N

i=1 δikφ(v)(x
(v)
i )∑N

i=1 δik

.
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Under the spectral perspective, (5) can also be stated in
terms of matrix traces, where Y is defined as in (3):

E
H̃

= tr(K̃)− tr(Y �K̃Y )

=
V∑

v=1

wp
v

(
tr(K(v))− tr(Y �K(v)Y )

)
. (8)

From (7) and (8) it is obvious that the intra-cluster
variance in feature space H̃ is the weighted sum of the intra-
cluster variances of the individual views’ feature spaces,
H(v), under a common clustering. Minimizing the view
disagreement is the basic principle over which multi-view
approaches are built [4].

B. Model Training

Two iterative algorithms that in each iteration alternate
between updating the clusters and reestimating the weights
are proposed. One follows the distance-based formulation
of E

H̃
(5) and the other the trace-based spectral formulation

(8). They are called multi-view kernel k-means (MVKKM)
and multi-view spectral clustering (MVSpec) respectively.

1) Updating the clusters for given weights - MVKKM
algorithm: When the weights wv are known, the cluster
assignments that minimize the intra-cluster variance can
be found in the same way as when only a single kernel
is available. The composite kernel, K̃ =

∑V

v=1 wp
vK(v),

is first calculated and then kernel k-means is applied in
space H̃. Note that kernel k-means requires an initial set of
clusters as input. The partitioning returned by the previous
MVKKM iteration is used for initializing kernel k-means for
the current iteration.

2) Updating the clusters for given weights - MVSpec
algorithm: Like MVKKM, the composite kernel is first
calculated and then the relaxed version of (8) (i.e. Y is
allowed to be an arbitrary orthonormal matrix) is considered
to compute Y . The optimal solution is composed of the M
largest eigenvectors of K̃, according to the discussion in
Section III-B. Note that Y should not be discretized during
the iterative process. Otherwise, the monotonic convergence
of MVSpec cannot be guaranteed.

3) Updating the weights for given clusters - MVKKM al-
gorithm: For ease of computation, the form of the objective
described in (7) is considered together with the constraints
from (6). It is easy to verify that the constrained objective
is convex w.r.t. the weights when p > 1, hence their optimal
values that minimize E

H̃
for the current partitioning can be

determined. After some manipulation the following closed
form solution emerges (the analytical proof is provided in
the appendix):

wv = 1/

V∑
v′=1

(
Dv

Dv′

) 1
p−1

if p > 1 , (9)

where Dv =

N∑
i=1

M∑
k=1

δik‖φ
(v)(x

(v)
i )−m

(v)
k ‖2 .

For p = 1 the optimization problem (6) becomes a linear
program. Its solutions lie on the corners of the simplex in
the positive orthant spanned by the constraints, which results
in a completely sparse outcome:

wv =

{
1 , v = argminv′ Dv′

0 , otherwise
if p = 1 . (10)

4) Updating the weights for given clusters - MVSpec
algorithm: We follow an analogous procedure to that of
MVKKM with the only difference being that the relaxed
formulation of (8) is used instead of (7). All the above
remarks regarding the convexity of the objective and the
optimality of the weights carry over to MVSpec. Thus, if
p > 1 the weights are updated through (9), while if p = 1
through (10), where now Dv = tr(K(v))− tr(Y �K(v)Y ).

5) Initialization and post-processing: In order to apply
both algorithms, initial values for the view weights are
required. A uniform weighting (wv = 1/V ) of the kernels
can be used, which is a reasonable choice, unless prior
knowledge regarding the quality of the views is available.
Additionally, MVKKM requires an initial set of clusters.
To locate a meaningful initial partitioning before executing
MVKKM, which is very important in avoiding poor minima
during the subsequent iterations, the global kernel k-means
algorithm [8] is applied that yields near-optimal solutions in
a deterministic-incremental fashion. Finally, in the MVSpec
method, the eigenvectors are discretized after convergence,
using k-means as in [24], to get the disjoint clusters.

C. Discussion

In this section, some aspects of the proposed methods are
analyzed, starting with the effect of the p exponent. As can
be seen from (9), the less the intra-cluster variance Dv of
a view the larger its weight. For p = 1 a completely sparse
solution emerges (10), regardless of the relative differences
in Dv among the views. Hence, p = 1 may discard useful
views and thus is effective when a single view is of good
quality. For p > 1 it is easy to see (9) that the greater
(smaller) the p value the less (more) sparse the weights
wv become, i.e. the relative differences in Dv among the
views are suppressed (enhanced). Therefore, a very large p
value is useful when kernels of similar quality are available.
In practice, intermediate p values are a more reasonable
choice, since the most common scenario is that views with
complementary information and also degenerate ones exist
for the same problem. The above remarks also hold for the
wp

v values, which are the actual coefficients used to combine
the kernels (4). Hence, as p increases the wp

v values become
more uniform.

To demonstrate the above a bit more formally, the ratio
between any two weights, wv/wv′ , can be considered as
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an indicator for the sparsity of the solution. The more
this ratio tends to 1 the less sparse the outcome. Assume
a fixed clustering, i.e. a fixed Dv and Dv′ . From (9),
wv

wv′
=
(
Dv′

Dv

) 1
p−1

and wp
v

w
p

v′

=
(
Dv′

Dv

) p

p−1

, p > 1. As p

increases, the exponents 1/(p− 1) and p/(p− 1) decrease,
therefore both ratios get closer to 1. Hence, the distribution
of the wv and wp

v values becomes less sparse as p increases.
Finally, note that 0 < p < 1 is not permitted, as in this
case the constrained optimized objectives (7), (8) become
concave w.r.t. the weights, thus the updates, which take the
same form as in (9), will increase E

H̃
.

Regarding the computational complexity, during each of
the τ ′ iterations two main operations take place; the estima-
tion of the view weights and the cluster updates. These op-
erations require O(N2V ) and O(N2τ) scalar computations,
respectively, for MVKKM (τ are the kernel k-means itera-
tions). For MVSpec the corresponding cost is O(N2MV )
and O(N2M) (top M eigenvectors of K̃) respectively. For
both methods an additional O(N2V ) operations are neces-
sary per iteration, to calculate the composite kernel. Thus,
the overall cost for MVKKM is O(N2(V + τ)τ ′), while for
MVSpec is O(N2MV τ ′). Note that MVKKM additionally
requires a cluster initialization step, while MVSpec an
eigenvector discretization step.

It is known that kernel k-means monotonically decreases
the intra-cluster variance. The update on the weights further
reduces the objective value. Hence, the distance-based iter-
ative scheme is guaranteed to monotonically converge to a
local minimum of E

H̃
. Moreover, we anticipate this to be

a good local mode, since the iterative process starts with a
high quality set of clusters, due to the global kernel k-means
initialization, which is refined after estimating new values for
the weights. As previously mentioned, the spectral approach
provides a matrix Y that is optimal for the current weights
w.r.t. a relaxed version of the considered problem (8), where
Y is allowed to be an arbitrary orthonormal matrix. The sub-
sequent update on the weights further reduces the objective,
leading to a monotonic convergence to a local minimum as
well. Note that a discrete partitioning is obtained only after
the MVSpec method has converged. Therefore, it remains to
be seen if the decision to relax Y and thus locate the optimal
Y in each iteration is effective, compared to MVKKM which
at each iteration operates with discrete cluster assignments.

We decided to apply the intra-cluster variance function
for multi-view clustering as this is one of the most pop-
ular clustering criteria and is well posed for kernel-based
learning. Moreover, it fits well to the task of automatically
constructing a “ranking” of the views, through the kernel
combination of (4), and it gives rise to two iterative schemes
where the update of the weights and the corresponding parti-
tioning are calculated very easily. In contrast, the maximum
margin criterion, which is the most studied for multiple
kernel learning [11], [13], [22], [25], results in cumbersome

−0.2 0.3 0.8 1.3 1.8
−2.3

−1.8

−1.3

−0.8

−0.3

(a) View 1

−0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

(b) View 2 - Noisy

Figure 1. The two synthetic views. Different symbols represent the three
sought clusters.

computations even in the supervised case [22], [25]. Iterative
frameworks are constantly gaining ground in multiple kernel
learning [12], [23], [25], and are proving to be quite efficient.

Finally, it is crucial for the application of both methods
that views have comparable intra-cluster variances in feature
space. Hence, views must be normalized, for example, as
in the experiments, by dividing each view’s kernel entries
K

(v)
ij by the average of the pairwise square distances of

the view’s instances in feature space:
∑N

i=1

∑N

j=1(K
(v)
ii −

2K
(v)
ij + K

(v)
jj )/N2.

V. EMPIRICAL EVALUATION

The performance of MVKKM and MVSpec2 is studied on
synthetic data as well as on a collection of images and a set
of handwritten digits, where multiple views occur naturally.
The aim of the experimental evaluation is twofold. First to
investigate the p parameters’s impact on the returned clusters
and the kernel combination coefficients wp

v , and second to
inspect how effective view weighting under our framework
is, compared to other multi-view algorithms.

To achieve these goals the two proposed algorithms are
executed for various p values, p > 1. Moreover, two trivial
kernel combinations, p = 1 and uniform, are considered.
p = 1 corresponds to selecting the best kernel, through
the weight update process, and splitting the dataset using
the information of this kernel only, i.e. it is the best single
view case. The uniform combination evenly considers all
kernels to obtain a split of the data, i.e. we fix wv = 1/V
in our algorithms and no weight updates are performed
(the uniform combination does not depend on the p value).
In addition, they are compared to correlational spectral
clustering (CSC) [17] and our previous work [19], namely
weighted multi-view convex mixture models (MVCMM).

CSC projects the views, which are all thought of as being
of the same quality (i.e. no view weights are available),
through kernel canonical correlation analysis (KCCA) and
then clusters these projections with k-means. As in [17],
the number of projection axes is set equal to the number of
clusters, the KCCA regularization parameters are determined

2Matlab code is available at: http://www.cs.uoi.gr/∼gtzortzi.
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Table I
NMI SCORE AND KERNEL COEFFICIENTS DISTRIBUTION

(wp
v/
∑V

v′=1
wp

v′
) OF MVKKM AND MVSPEC ON THE SYNTHETIC

DATASET, FOR SEVERAL p VALUES AND FOR THE UNIFORM CASE

MVKKM MVSpec

NMI Coefficients NMI Coefficients
View 1 View 2 View 1 View 2

p = 1 1 1 0 0.681 1 0
p = 1.3 1 0.85 0.15 0.671 0.84 0.16
p = 1.5 1 0.77 0.23 0.663 0.74 0.26
p = 2 0.769 0.64 0.36 0.632 0.66 0.34
p = 4 0.749 0.58 0.42 0.593 0.62 0.38
p = 6 0.747 0.56 0.44 0.593 0.62 0.38
Unif. 0.701 0.5 0.5 0.552 0.5 0.5

using grid search and k-means is restarted 30 times with
random initializations and the run with the smallest k-means
objective is kept.

In MVCMM each view is modeled by a convex mixture
model (CMM) [26] and an automatically tuned weight is
associated with each view. The only parameter that must be
determined in advance is a β parameter which controls the
sharpness of the components of the CMMs. To locate a good
β value, we calculate a reference value β0, according to the
empirical rule presented in [19], [26], and search around it.
In particular, β values in the range [0.5, 1, 1.5, . . . , 7]β0 are
tried and the best MVCMM run is reported.

For all datasets the ground-truth labels are given and are
only used to assess the quality of the returned solution with
the NMI criterion [8]. Higher NMI values indicate a better
match between cluster labels and class labels. The number of
clusters is set equal to the true number of classes and linear
kernels are employed for MVKKM, MVSpec and CSC to
represent the views, unless stated otherwise. For MVCMM,
Gaussian convex mixture models are used (see [19]). Note
that the global kernel k-means algorithm (Section IV-B) is
utilized to locate initial clusters for MVKKM, thus avoiding
the need for multiple restarts. We do not apply a similar
procedure to initialize the k-means step in CSC, since we
adopt the experimental protocol of the CSC paper [17].

A. Synthetic Data

To outline the basic properties of the proposed algorithms,
a three cluster toy example was created, consisting of two
views where the second view is a noisy version of the
first (Figure 1). Due to the nonlinearly separable nature
of the dataset, an rbf kernel is adopted for each view and
its parameter is determined through exhaustive search (here
σ = 0.2 for both views).

From Table I it is evident that as p increases the coeffi-
cients wp

v become more uniform and clustering degrades.
This is anticipated since the first view contains all the
necessary information to correctly split the data, while the
second mixes the clusters. Thus, as the contribution of the
second “noisy” view increases, it becomes less probable

Figure 2. Examples of handwritten digits contained in the multiple features
dataset.
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Figure 3. MVKKM (yellow) and MVSpec (black) kernel coefficients
distribution (wp

v/
∑V

v′=1
wp

v′
) on the multiple features dataset, for several

p values and for the uniform case.

to recover the true assignments. For small p values, which
admit sparser outcomes, the weighting is consistent with the
noise level present on the views and MVKKM manages to
correctly cluster the data points. Note that even the noisy
view contains structural information, hence it is expected
to receive nonzero weight even for small p (p = 1.3, 1.5).
MVSpec, although its coefficients match those of MVKKM,
achieves low NMI. We observed that spectral clustering on
the first view alone fails to recover the clusters (we executed
the popular normalized cut method of [24] for several σ
values), giving similar results to MVSpec for p = 1 and
explaining the deficit of MVSpec.

B. Multiple Features Dataset

Multiple features is a database of handwritten digits (0-
9)3. The digits (200 per class) are represented by several
attribute sets (i.e. views), namely Fourier coefficients, profile
correlations, Karhunen-Love coefficients, pixel averages and
Zernike moments (note that this is the order of the views in
Figure 3). From the original dataset several four class subsets
were created and the most representative ones are presented
here. As attributes within the same view exhibit significantly
different scales, all views’ attributes were normalized to
unit variance. Moreover, kernel entries were divided by the
average pairwise square distance of the corresponding view,
as discussed in Section IV-C. This preprocessing was also

3http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Figure 4. NMI score of the compared methods on the multiple features dataset, for several p values and for the uniform case.

Figure 5. Examples of images contained in the corel collection.

applied to CSC and MVCMM4.
The comparison of the four algorithms is provided in

Figure 4, where the subsets are named according to the
included numerals. Note that CSC and MVCMM do not
depend on p. MVKKM is superior to MVSpec for almost
all p values, indicating that the distance-based formulation of
the objective is more appropriate. MVCMM, despite using
weights, always yields the least NMI, thus highlighting the
potential of our clustering technique. CSC is quite com-
petitive, being slightly (except for MF0169 and MF4689)
inferior to MVKKM and MVSpec for the best p. Moreover,
the single view case (p = 1) proves to be the worst,
while the uniform (Unif.) is close in accuracy to that for
the best p. This fact together with i) the effectiveness of
the unweighted CSC method for most subsets and ii) the
minor, only, drop in NMI as p increases (for MVSpec even
an increase is observed for MF1367 and MF4689), hence
the kernel coefficients, wp

v , distribution evolves towards
uniformity (Figure 3), lead us to conclude that all views
contribute significantly in the multiple features dataset. Still
though, a p value that admits some sparsity on the solution
can enhance performance, particularly for MVKKM where

4MVCMM is not kernel-based, therefore the distances in the Gaussian
components were instead normalized.

Table II
CATEGORIES CONTAINED IN THE TESTED COREL SUBSETS

Subset Categories
Corel1 owls wildlife trains cargo ships
Corel2 buses leopards trains cargo ships
Corel3 buses leopards cars passenger ships
Corel4 owls wildlife hawks roses
Corel5 eagles elephants trains passenger ships

p = 1.5 or p = 2 is always the best choice.

C. Corel Images Dataset

A part of the popular corel collection consisting of 34
categories, each with 100 images, serves as our second
real multi-modal paradigm. Images consist of a salient
foreground object, but within each class there is great
variance in terms of distance and angle of the object, color,
lighting, and background composition, making this dataset
difficult for unsupervised learning. Attribute vectors that
represent the images in terms of seven views, three color-
related views (color histogram, moment and coherence) and
four texture-related views (coarseness and directionality of
tamura texture, wavelet and mrsar texture) are available for
this collection5 (note that this is the order of the views in

5http://www.cs.virginia.edu/∼xj3a/research/CBIR/Download.htm
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Figure 6. NMI score of the compared methods on the corel dataset, for several p values and for the uniform case.
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Figure 7. MVKKM (yellow) and MVSpec (black) kernel coefficients
distribution (wp

v/
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v′=1
wp

v′
) on the corel dataset, for several p values

and for the uniform case.

Figure 7). Many four class subsets were extracted and the
most representative ones are included in the paper (Table II).
The kernels were normalized as for multiple features.

Results are depicted in Figure 6. MVKKM for p = 2
considerably outperforms the other three algorithms and
its kernel coefficients, wp

v , distribution (Figure 7) indicates
that a nonuniform mixture is suited to this dataset, thus
explaining the deficit of larger p values and CSC. Moreover,
its advantage over MVSpec, for which the NMI increases
as p increases and a uniform solution is preferable, is
significant for all p values. The difference between the

two clustering schemes can be explained from Figure 7,
where a disagreement is observed regarding which view
should acquire the highest weight (except for corel1) and a
more peaked coefficient distribution for MVSpec. It seems
that MVSpec selects inappropriate views, indicating that the
relaxed problem becomes detached from the actual objective
(8) during the iterative process (it even yields worse results
than CSC). It is worth noting that both MVKKM and
MVSpec underperform for very small p (p = 1, p = 1.5),
i.e. for very sparse combinations, thus exploiting information
from all views is necessary for the tested real data. Finally
note that MVCMM is not performing well on this or the pre-
vious dataset, despite automatically estimating view weights.
This emanates from the very sparse solution recovered by
the method, that assigns zero weights to most views.

D. Discussion

The empirical evaluation has shown that the distance-
based formulation of the objective provides better results
than the spectral. There is dual reason for this behavior. First,
MVSpec provides at each iteration a continuous solution Y
which at the end is discretized to obtain the final partitioning.
The continuous solution runs the risk of deviating from
the original non-relaxed objective, especially in iterative
algorithms, such as MVSpec, where the weights get updated
based on the relaxed objective. On the contrary, MVKKM
provides a discrete partition in every iteration, thus following
“closely” the intra-cluster variance objective. Hence, the
relaxation can lead to the selection of suboptimal views,
whose influence is enhanced for sparser solutions (i.e. for
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smaller p). This case arose for the corel dataset (Figure 7)
and explains why MVSpec usually attains its highest NMI
for the uniform case.

Second, for the initialization of MVKKM the global
kernel k-means procedure was employed, which is deter-
ministic and very effective [8]. As the experiments with the
synthetic and multiple features datasets indicate, a properly
initialized kernel k-means can locate better clusters than
spectral techniques, since MVKKM outperforms MVSpec
despite both techniques resulting in similar wp

v values. These
two reasons also elucidate why CSC performs better than
MVSpec for most p values on the real data.

Further ground for the above remarks was provided when
we executed for the corel subsets i) a run of kernel k-
means using the MVSpec-derived composite kernel and
ii) spectral analysis over the MVKKM-derived composite
kernel. The results were always inferior to those reported for
MVKKM in Section V-C, demonstrating that the distance-
based formulation infers both better cluster structures and
view weights.

Furthermore, for MVKKM, which is always the best
of the tested methods, selecting either the best view or
equally all views proves to be inadequate, highlighting the
importance of allowing the clustering algorithm to mix views
more robustly and finding a balance between sparsity and
uniformity. This is also reported in many multi-view and
multiple kernel learning studies [4], [10], [16], [19], [22].
The appropriate p value is, of course, dataset dependent.

Finally, a word on the computational complexity of the
proposed methods and specifically on the number of weight
and cluster updates performed. For the multiple features
dataset, MVKKM and MVSpec need between 3-5 and 4-
10 iterations to converge, respectively, while for the corel
dataset they need between 4-11 and 5-15 iterations respec-
tively, depending on the p value and the dataset subset. It
is evident that both algorithms quickly converge and, in
general, the more the final weights deviate from their initial,
uniform, values (as is the case for smaller p values, or the
corel dataset) the more iterations are necessary.

VI. CONCLUSIONS

We have proposed two multi-modal approaches that rep-
resent modalities through kernel matrices and optimize the
intra-cluster variance function. A weighted combination of
the kernels that resembles the �p-norm regularizer [22]
and reflects the views’ relevance to the clustering task
is automatically learned using closed form updates. The
new methods, particularly MVKKM, compare favorable to
existing ones, underlying the strength of our framework and
that view weighting can boost the quality of the partitioning,
if the sparsity of the weights is appropriately moderated.

In future work we plan to explore possible ways of
determining p automatically. Moreover, investigating the
connections between multi-view clustering and multiple

kernel learning could provide interesting directions in de-
veloping and improving multi-modal algorithms. Also, the
ideas of view weighting could be adapted to kernel-based
unsupervised attribute weighting.
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APPENDIX A.
PROOF OF THE WEIGHT UPDATE FORMULA FOR

MVKKM

For convenience, let us rewrite the optimization problem
for given clusters, using the form of the objective in (7):

min
{wv}

V
v=1

V∑
v=1

wp
v

N∑
i=1

M∑
k=1

δik‖φ
(v)(x

(v)
i )−m

(v)
k ‖2 ,

s.t. wv ≥ 0 ,

V∑
v=1

wv = 1 . (11)

Consider the case for p > 1 and denote by Dv the intra-
cluster variance of the v-th view feature space H(v), i.e.

Dv =
∑N

i=1

∑M

k=1 δik‖φ
(v)(x

(v)
i ) − m

(v)
k ‖2. By incorpo-

rating into the objective the sum-to-unity constraint, the
Lagrangian becomes:

L =

V∑
v=1

wp
vDv + λ

(
V∑

v=1

wv − 1

)
. (12)

Setting the derivative of the Lagrangian to zero yields

∂L

∂wv

= 0 ⇒ pw(p−1)
v Dv + λ = 0⇒ wv =

(
−λ

pDv

) 1
p−1

.

(13)

By summing over all views, together with the constraint∑V

v=1 wv = 1, we get

V∑
v′=1

(
−λ

pDv′

) 1
p−1

= 1 ⇒ (−λ)
1

p−1 = 1/
V∑

v′=1

(
1

pDv′

) 1
p−1

.

(14)

Finally, substituting (14) into (13) completes the proof:

wv = 1/

V∑
v′=1

(
Dv

Dv′

) 1
p−1

if p > 1 . (15)

Note that the non-negativity of the weights was not enforced
into (12), since it is verified by the solution (15), as Dv ≥ 0.

For the p = 1 case, it easy to see that for any weight
values wv′ obeying the constraints of (11) and corresponding
Dv′ ≥ 0, the following holds:

Dv∗ ≤

V∑
v′=1

wv′Dv′ , v∗ = argmin
v′

Dv′ , (16)

from which directly follows that (11) is minimized for

wv =

{
1 , v = argminv Dv

0 , otherwise
if p = 1 . (17)

�

APPENDIX B.
PROOF OF THE WEIGHT UPDATE FORMULA FOR

MVSPEC

Using the form of the objective in (8), the optimization
problem for given clusters can be written as:

min
{wv}

V
v=1

V∑
v=1

wp
v

(
tr(K(v))− tr(Y �K(v)Y )

)
,

s.t. wv ≥ 0 ,

V∑
v=1

wv = 1 . (18)

The similarity to the MVKKM optimization problem is
evident, with the only difference being that Dv = tr(K(v))−
tr(Y �K(v)Y ). Since K(v) is a positive semidefinite matrix
and Y �Y = I , Y ∈ �N×M , by the Ky-Fan theorem [5] we
have Dv ≥ 0. Therefore, the derivations are analogous to
the MVKKM case. �
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