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Abstract
In the recent years research on dynamic social network has increased, which is also due to the
availability of data sets from streaming media. Modeling a network’s dynamic behaviour can be
performed at the level of communities, which represent their mesoscale structure. Communities
arise as a result of user to user interaction. In the current work we aim to predict the evolution of
communities, i.e. to predict their future form. While this problem has been studied in the past as
a supervised learning problem with a variety of classifiers, the problem is that the “knowledge” of
a classifier is opaque and consequently incomprehensible to a human. Thus we have employed first
order logic, and in particular the event calculus to represent the communities and their evolution.
We addressed the problem of predicting the evolution as an online Inductive Logic Programming
problem (ILP), where the issue is to learn first order logical clauses that associate evolutionary
events, and particular Growth, Shrinkage, Continuation and Dissolution to lower level events.
The lower level events are features that represent the structural and temporal characteristics of
communities. Experiments have been performed on a real life data set form the Mathematics
StackExchange forum, with the OLED framework for ILP. In doing so we have produced clauses
that model both short term and long term correlations.
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1 Introduction

A social network is a structure which contains individuals, who are linked to other individuals.
The link among them states an interaction which has one or more types of interdependency
such as friendship, kinship, common interest, financial exchange. Social networks are often
represented as graphs, with nodes representing users and edge representing interactions.
Usually a social network changes over time because new individuals join the network, new
interactions are developed, or some individuals cease to be active for a short or a long period.
This is actually the predominant behaviour especially in streaming social media, such as
forums.

The social networks are often studied at the level of communities, which represent their
meso-scale structure. A group of nodes forms a community if it is densely connected, and
sparsely connected to other communities. The said communities are not explicitly formed
but rather implicitly as a result of the actions of individual users, that are not random but
tend to follow a certain pattern that is related to their similarity to other users. There are
many algorithms that have been developed for the detection of communities in networks that
are static [6].

In dynamic networks, the communities are influenced over the time by their users’
interaction. This influence causes changes in the structure of the communities. Many
researchers, consider that the structure of a community contains important information for
network evolution as a whole. Thus, it is highly imperative to model the dynamic behavior
in social networks and try to predict their evolution.

In this paper we study the problem of community evolution prediction in dynamic social
networks. We address this problem as a supervised learning task where we predict four types
of community evolutionary events, growth, shrinkage, continuation and dissolution. Various
features were investigated in order to understand how they influence the results. Among
them, are the structural and temporal characteristics of communities. What is unique in
the current approach is that we use a first order logic formalism to represent the correlation
between evolutionary events and the input features. Moreover Inductive Logic Programming
(ILP) us used to learn event calculus clauses. Event calculus was chosen because it is human
understandable, it can be used to model effect of actions in time, and the variation we have
adopted can perform ILP in an online fashion which is especially useful in streaming media.

The rest of the paper is organised as follows. In Section 2 we refer to past work on
community evolution prediction, in Section 3 we refer to the Event Calculus as a logic
formalism but also to Inductive Logic Programming as a way of learning clauses, then in
Section 4 we refer to the methodology we followed for community evolution prediction, in
Section 5 we present experimental results, conclusions are drawn in Section 6. In appendix A
we present samples of Event Calculus clauses, and an additional experiment with pruning.

2 Related Work

The literature in community evolution prediction is quite extensive in terms of features,
classifier types and events predicted.

Patil et al. [14] predicted whether a community will disappear or will survive. They
observed that both the level of member diversity and social activities are critical in maintaining
the stability of communities. They also found that certain prolific members play an important
role in maintaining the community’s stability. Goldberg et al. [8] correlated the lifespan
of a community with the structural parameters of its early stages. Brodka et al. [2],[7]
tried to predict 6 evolutionary events of communities, i.e. growth, shrinkage, continuation,
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dissolution, merging and split. They used as features the history of the events of a community
in the three preceding timeframes, and the community size in these timeframes. They
found that the prediction based on simple input features may be very accurate, while some
classifiers are more precise than the others. Kairam et al. [11] tried to understand the factors
contributing to the growth and longevity in a social network. They investigated the role
that two types of growth (diffusion and non-diffusion) play during a community’s formative
stages. Diffusion growth is when a community attracts new members through ties to existing
members. Non-diffusion growth occurs with individuals with no prior ties to the network.
Diakidis et al. [4] studied on-line social networks as a supervised learning task with sequential
and non-sequential classifiers. Structural, content and contextual features as well as the
previous states of a community are considered as the features that are involved in the task of
community evolution. The evolution phenomena they tried to predict are the continuation,
shrinking, growth and dissolution.

Takaffoli et al. [16] quantified the events that may occur in a community as follows:
survive:{true, false}, merge:{true, false}, split:{true, false}, size:{expand, shrink}, and
cohesion:{cohesive, loose}. First they tried to predict whether a community will survive,
followed by a separate predictor for each of the events.

Ilhan et al. [10] proposed a regression ARIMA model to predict values of community
features based on the values of the past community instances. Then the predicted community
features are used to train a classifier to predict the evolutionary events.

The classifiers proposed are quite opaque in terms of the model that is learnt. Our
approach differs in trying build classifiers based on first order logic, and thus they can be
inspected by humans.

3 Background: Event Calculus and Inductive logic programming

The Event Calculus (EC) is a temporal logic formalism for reasoning about actions and
changes [13]. EC, that has been used as a basis in event recognition applications, provides
among others, direct connections to machine learning, via Inductive Logic Programming
(ILP) [3]. Its ontology comprises time points, represented by integers; time varying properties
known as fluents; and actions known as events. The events occur in time and may affect the
fluents by altering their value. The axioms of the EC incorporate the law of inertia, according
to which fluents persist over time, unless they are affected by an event. Thus, if an event
is initiated at time T , it will persist until another event will fire a termination rule. Also,
if an event is terminated at time T , it will remain terminated until another event fires an
initiation rule. The basic predicates are presented in Table 1, while the domain-independent
axioms are in Table 2. Axiom (1) states that a high level event, represented as fluent F for
convenience, is happening at time T if it has been initiated at the previous time point. While
Axiom (2) states that F continues to happen unless it is terminated.

Let us examine how the evolution of a community could be represented in terms of EC;
an evolutionary phenomenon such as the growth will be represented as a fluent, whereas the
factors that contribute to the growth will be represented as events. For example in Table 3, it
means that community X0 will grow in time T provided its size was 3 and its density was 4.
Likewise, rules can be formed for the rest of the evolutionary phenomena as combinations of
features (or events). The rules are also known as clauses, whereas the predicates happensAt
are also known as literals. In addition, a rule B is a specialisation of rule A if the instances
that satisfy rule B are a subset of the instances that satisfy rule A.

TIME 2018
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Table 1 The basic predicates of the EC.

Predicate Meaning

happensAt(E,T) Event E occurs at time T
initiatedAt(F,T) At time T fluent F is initiated
terminatedAt(F,T) At time T fluent F is terminated
holdsAt(F,T) Fluent F holds at time T

Table 2 The domain-independent
axioms.

Axioms

holdsAt(F,T +1) ← (1)
initiatedAt(F,T).

holdsAt(F, T+1) ← (2)
holdsAt(F,T),
not terminatedAt(F,T).

Table 3 Theory Learnt by OLED.

initiatedAt(growth(X0),T) ←
happensAt(size(X0,3),T),
happensAt(density(X0,4),T).

The problem that we try to address is to learn such rules (or clauses) from data, rather
than hand encode them; for that we can use inductive logic programming (ILP). In ILP, first
order rules are learnt from relational data under a supervised learning scheme. Thus we have
input data and class labels. The input data are often named the narrative, and the class
label is known as the annotation.

Given an encoding of the known background knowledge and a set of examples represented
as a logical database of facts, an ILP system will derive a hypothesised logic program which
entails all the positive and none of the negative examples. ILP provides various techniques
for learning logical theories from examples. In Learning from Interpretations (LfI) [1] setting
each training example is an interpretation, i.e. a set of narrative and annotation atoms (see
Table 4). Given a set of training interpretations I and some background theory B, which
consists of the domain-independent axioms of the EC, the goal in LfI is to find a theory.

In this paper, OLED (Online Learning of Event Definitions) [12] was used for learning rules
that perform community evolution prediction. OLED is an online ILP system for learning
logical theories from data streams. It has been designed having in mind the construction of
knowledge bases for event recognition applications. These applications [5] process sequences
of simple events, such as sensor data, and recognize complex events of interest, i.e. events
that satisfy some pattern. Logic-based event recognition typically uses a knowledge base of
first-order rules to represent complex event patterns and a reasoning engine to detect such
patterns in the incoming data. In OLED this knowledge base is in the form of domain-specific
axioms in the Event Calculus, i.e. rules that specify the conditions under which simple,
low-level events initiate or terminate complex events.

OLED is using an online (single-pass) learning strategy. Online machine learning is a
method of machine learning in which data becomes available in a sequential order and is
used to update our best predictor for future data at each step, as opposed to batch learning
techniques which generate the best predictor by learning on the entire training data set
at once. To manage it, the Hoeffding bound [9] for evaluating clauses on a subset of the
input stream, is used. With this approach, significant speed-ups are obtained in training
time. Table 4 presents an example of input data that is provided to OLED. It consists of a
narrative and an annotation list. Narratives are the simple (or low level) events in terms of
happensAt/2, expressing the values of communities’ features. i.e. happensAt(size(c1,3),1).
denotes that community c1 has size 3 in time 1. Annotations are the complex (or high level
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Table 4 Input of OLED.

Timeframe 1 Timeframe 2

Narrative Narrative
happensAt(size(c1,3),1). happensAt(size(c1,5),2).
happensAt(density(c1,4),1). happensAt(density(c1,5),2).
Annotation Annotation

holdsAt(growth(c1),2).

events) events in terms of holdsAt/2, expressing the ground truth for our training set. i.e.
holdsAt(growth(c1),2). denotes that community c1 grew in time 2. The non-existence of
c1’s annotation in time 1 states that growth event is terminated in time 1. Table 3 shows
an example of the theory OLED learnt after training. It represents we will begin to have
a growth event in time T+1 for any community, which has size 3 and density 4 in time T.
This rule extracted because with these community features in time 1, we had a growth event
in time 2 (Table 4).

Learning. OLED learns a clause in a top-down fashion, by gradually adding literals to its
body. Instead of evaluating each candidate specialization on the entire input, it accumulates
training data from the stream, until the Hoeffding bound allows to select the best specializa-
tion. The instances used to make this decision are not stored or reprocessed but discarded
as soon as OLED extracts from them the necessary statistics for clause evaluation.

OLED relaxes the LfI requirement that a hypothesis H covers every training interpretation,
and thus seeks a theory with a good fit in the training data. Let B consist of the domain-
independent EC axioms, r be a clause and I an interpretation. We denote by narrative(I)
and annotation(I) the narrative and the annotation part of I respectively (Table 4). We
denote by Mrr

I an answer set of B ∪ narrative(I) ∪ r. Given an annotation atom α we say
that:

α is a true positive (TP) atom clause r, iff α ∈ annotation(I) ∩Mrr
I .

α is a false positive (FP) atom clause r, iff α ∈Mrr
I but α 6∈ annotation(I).

α is a false negative (FN) atom clause r, iff α ∈ annotation(I) but α 6∈Mrr
I .

We define a heuristic clause evaluation function G as follows:

G(r) =
{

T Pr

T Pr+F Pr
, if r is an initiatedAt clause

T Pr

T Pr+F Nr
, if r is a terminatedAt clause

where TPr, FPr and FNr are the accumulated TP, FP and FN counts of clause r over the
input stream and G ∈ [0, 1].

On the arrival of new interpretations, OLED either expands H, by generating a new
clause, or tries to expand (specialize) an existing clause. Clauses of low quality are pruned,
after they have been evaluated on a sufficient number of examples. Below there is an example
of OLED execution. Initially, processes Linit and Lterm start with two empty hypotheses,
Hinit and Hterm. Assume that the annotation in one of the incoming interpretations dictates
that the growth complex event holds at time 10, while it does not hold at time 9. Since
no clause in Hinit yet exists to initiate growth at time 9, Linit detects the growth instance
at time 10 as a FN and proceeds to theory expansion, generating an initiation clause for
growth. Lterm is not concerned with initiation conditions, so it will take no actions in this
case. Then, a new interpretation arrives, where the annotation dictates that growth holds
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at time 20 but does not hold at time 21. In this case, since no clause yet exists in Hterm
to terminate growth at time 20, Lterm will detect an FP instance at time 21. It will then
proceed to theory expansion, generating a new termination condition for growth. At the same
time, assume that the initiation clause in Hinit is over-general and erroneously re-initiates
growth at time 20, generating an FP instance for the Linit process at time 21. In response to
that, Linit will proceed to clause expansion, penalizing the over-general initiation clause by
increasing its FP count, thus contributing towards its potential replacement by one of its
specializations.

In EC the initiation/termination of complex events depends only on the simple events
and contextual information of the previous time-point, therefore each interpretation is an
independent training instance. This guarantees the independence of observations that is
necessary for using the Hoeffding bound. The Hoeffding bound is a statistical tool that is
used as a probabilistic estimator of the generalization error of a model (true expected error
on the entire input), given its empirical error (observed error on a training subset). Given
a random variable X ∈ [0, 1] and an observed mean X of its values after n independent
observations, the Hoeffding Bound states that, with probability 1− δ, the true mean X̂ of

the variable lies in an interval (X − ε,X + ε), where ε =
√
ln(1/δ)

2n . In other words, the
true average can be approximated by the observed one with probability 1− δ, given an error
margin ε that decreases with the number of observations n.

Let r be a clause and G a clause evaluation function. Assume also that after n training
instances, r1 is r’s specialization with the highest observed mean G-score G and r2 is the
second best one, i.e. ∆G = G(r1) − G(r2) > 0. Then by the Hoeffding bound we have
that for the true mean of the scores’ difference ∆Ĝ it holds ∆Ĝ > ∆G− ε, with probability
1 − δ. Hence, if ∆G > ε then ∆Ĝ > 0, implying that r1 is indeed the best specialization
to select at this point, with probability 1 − δ. In order to decide which specialization to
select, it thus suffices to accumulate observations from the input stream until ∆G > ε. Also,
because OLED allows to build decision models using only a small subset of the data, by
relating the size of this subset to a user-defined confidence level on the error margin of not
making a (globally) optimal decision, manages to consume small amounts of memory and
time resources.

4 Proposed Methodology

A dynamic social network is time-stamped, and to be analysed it is segmented into time
frames, with an overlap between them to allow for a smooth transition. The problem we are
addressing is to predict the form of a community in the next frame, given some features of
the existing form of a community. The model that perform the prediction is learnt through
ILP and represented as clauses of Event Calculus.

4.1 Community Features
Pavlopoulou et al. [15] designed two types of features, the structural and the temporal ones.
Structural features represented the physical characteristics of a community such as size,
density etc. The temporal features included structural features and evolutionary events
that were derived from the past instances of a community, and from relations between past
instances of a community. In this work, we use the same features which describe below but
first let us introduce some notation: Ct is the set of communities at time frame Ft; Ck

t is the
community k of set Ct; n(Ft) = |Vt| is the size of set Vt; m(Ft) = |Et| is the size of set Et;
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Vt and Et are the sets of vertices and edges, respectively, at time frame Ft; mout(Ck
t ) is the

number of edges from community Ck
t to any other community in the same timeframe; and

C
kj

tj
is the ancestor of Cki

ti
, where j < i.

The ancestors of a community do not necessarily belong to consecutive time frames. In
the current experiments, each community is tracked in each timeframe until its dissolution,
thus there are situations in which a community disappears at timeframe ti but it reappears at
timeframe tj , where j − i > 1. Thus, the i-th ancestor of a community is the i-th appearance
of the community in the past, counting from the present. Next are the features we used in
detail:

Structural Features.
Size is the normalized value for the size of a community Ck

t in time frame Ft:

Size(Ck
t ) = n(Ck

t )
n(Ft)

Density is the number of Ck
t edges to the maximum number of edges the community could

have:

Density(Ck
t ) = m(Ck

t )
n(Ck

t )(n(Ck
t )− 1)/2

Cohesion is defined as:

Cohesion(Ck
t ) = 2m(Ck

t )(n(Ft)− n(Ck
t ))

mout(Ck
t )(n(Ck

t )− 1)

Normalised Association is defined as:

NormalizedAssociation(Ck
t ) = 2m(Ck

t )
2m(Ck

t ) +mout(Ck
t )

Ratio Association is the average internal degree of a community’s members:

RatioAssociation(Ck
t ) = 2m(Ck

t )
n(Ck

t )

Ratio Cut is the average external degree of a community’s members:

RatioCut(Ck
t ) = mout(Ck

t )
n(Ck

t )

Normalized Edges Number is defined as:

NormalizedEdgesNumber(Ck
t ) = m(Ck

t )
m(Ft)

Average Path Length shows how close on average two random nodes are:

AveragePathLength(Ck
t ) =

∑
v,u∈V k

t ,v 6=u dist(v, u)
n(Ck

t )(n(Ck
t )− 1)

where dist(v, u) indicates the shortest distance between nodes v and u.
Diameter is the maximum shortest path between all pairs of nodes in community Ck

t :

Diameter(Ck
t ) = max

u,v∈V k
t ,u6=v

dist(u, v)

TIME 2018



4:8 Predicting the Evolution of Communities with Online Inductive Logic Programming

Clustering Coefficient We set as clustering coefficient of a community the average of the
local clustering coefficient of each node. The local clustering coefficient for a vertex v in
a community Ck

t is defined as,

ClusteringCoefficient(v) = 2neigh(v)
neigh(v)(neigh(v)− 1)

where neigh(v) = |{u : (u, v) ∈ Ek
t }| is the number of neighbours of vertex v and

neighE(v) = |{(u,w) ∈ Ek
t : (u, v) ∈ Ek

t , (w, v) ∈ Ek
t }| is the number of edges among the

neighbours of vertex v.The clustering coefficient of a community Ck
t is the average over

all its members:
Centrality measures how central each node of a community Ck

t is. We used three centrality
measures as features, namely closeness, betweenness and eigenvector centrality [17].

Temporal features.
Structural features and Evolutionary events of N ancestors: One group of temporal fea-

tures is all the structural features, as described above, as well as the evolutionary events
for the first n immediate ancestors of community Ckp

tp
.

Another group of temporal features concerns pairs of communities and depict how a
community has evolved compared to its previous instance in time. Using these pairs of
communities for a given number of ancestors n to use, we compute the following temporal
features:
Similarity of consecutive communities is the fraction between the nodes/edges that are

common in both instances of the community and total nodes/edges of two instances.

JaccNodes(Cki
ti
, C

ki−1
ti−1

) =
|V ki

ti
∩ V ki−1

ti−1
|

|V ki
ti
∪ V ki−1

ti−1
|
, JaccEdges(Cki

ti
, C

ki−1
ti−1

) =
|Eki

ti
∩ Eki−1

ti−1
|

|Eki
ti
∪ Eki−1

ti−1
|
,

JaccNodes&Edges(Cki
ti
, C

ki−1
ti−1

) =
|V ki

ti
∩ V ki−1

ti−1
|+ |Eki

ti
∩ Eki−1

ti−1
|

|V ki
ti
∪ V ki−1

ti−1
|+ |Eki

ti
∪ Eki−1

ti−1
|

where Eki
ti

is the set of edges and V ki
ti

the set of nodes of community Cki
ti
.

Join nodes ratio is the percentage of nodes joining the dynamic community as it evolves.

JoinNodesRatio(Cki
ti
, C

ki−1
ti−1

) =
|V ki

ti
\V ki−1

ti−1
|

|V ki
ti
|

Left nodes ratio is the percentage of nodes leaving the dynamic community as it evolves.

LeftNodesRatio(Cki
ti
, C

ki−1
ti−1

) =
|V ki−1

ti−1
\V ki

ti
|

|V ki−1
ti−1
|

Activeness is the ratio of the number of edges in current community Cki
ti

which also existed
in its ancestor community Cki−1

ti−1
, to the number of nodes in current community Cki

ti
.

Activeness(Cki
ti
, C

ki−1
ti−1

) =
|Eki

ti
∩ Eki−1

ti−1
|

|V ki
ti
|

The last two temporal features are computed for individual communities instead of pairs.
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Lifespan Given a community Ckw
tw

which is part of dynamic community M and belongs to
time frame tw, the lifeSpan is defined as,

LifeSpan(Ckw
tw

) =
|{Ckp

tp
∈M : p < w}|
tw − 1

which is the ratio of the number of time frames between the current community Ckw
tw

and
the very first instance of the same dynamic community (total number of ancestors of
Ckw

tw
), to the maximum number of ancestors Ckw

tw
could have. The maximum number of

ancestors Ckw
tw

could have is equal to tw − 1 , where tw is the number of the time frame
where Ckw

tw
belongs to. In that case there would be an instance of dynamic community

M in every time frame from the very first one until time frame tw − 1.
Aging of a community Ckw

tw
, which is part of the dynamic community M is the average age

of the community members. The age of a member is increased by 1 every time it is found
to be also a member of an ancestor community of Ckw

tw
in the corresponding dynamic

community. Aging is normalized by dividing with the maximum possible age of members,
which equals w.

Aging(Ckw
tw

) =

∑
v∈V kw

tw

|{Ckp

tp
∈M : p ≤ w, v ∈ V kp

tp
}|

(|{Ckp

tp
∈M : p < w}|+ 1)n(Ckw

tw
)

Feature Quantization. In OLED the values of variables are discrete thus we implemented
two methods to quantize variables. Let qvalue be the number of quantized values, fv be
the set with values of feature f . In first method, for each feature we split values’ total
range to qvalue intervals and the width of each is max{fv}−min{fv}

qvalue
. Thus the first interval is

(min{fv},min{fv}+ qvalue), the second is (min{fv}+ qvalue + 1,min{fv}+ 2qvalue) and so
on. The quantized value of each feature is the index of the interval it belongs to. The second
method sorts feature’s values in a list and creates qvalue sets. Taking one by one the values
from sorted list, we begin to fill the qvalue sets with consecutive values until each set has
|fv|

qvalue
feature’s values. Finally, if at least one feature or tag of community Ck is missing we

delete the Ck.

4.2 Community Evolution Prediction
OLED was used to predict four evolutionary events: growth, shrinkage, continuation, dissolu-
tion. Note that OLED handles two-class problems, so it predicts if a community will sustain
or will stop sustaining an evolutionary event. In Figure 1 we present the architecture of the
prediction system.

The performance of an ILP system may degrade if the background knowledge provided
contains large amounts of irrelevant information so experts are required to set the background
knowledge they believe to be useful. Table 5 presents an example of background knowledge,
where the following types of rules can be defined: Rules for community entity recognition;
rules for time entity recognition; facts for features’ quantized values recognition; rules for
values of ground truth recognition; and rules which represent the inertia of Event Calculus.
OLED can produce predicates of many forms. For example, an argument of a predicate can
be considered as input or as output. Modes declaration is a language that limits the forms a
predicate can have. Table 7 presents an example of modes.

The form of rules that OLED learns is presented in Table 6. In the head of the rule,
predicted_event is one of labels we try to predict (growth, shrinkage, continuation, dissolu-
tion). Notice that the communityi and timej indices are the same in the body and head.

TIME 2018
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Figure 1 Learning Architecture.

Table 5 Example of A OLED’s Background Knowledge File.

Background Knowledge File

holdsAt(F ,Te) :- holdsAt(F ,Te) :-
fluent(F ), fluent(F ),
holdsAt(F ,Ts), initiatedAt(F ,Ts),
not terminatedAt(F ,Ts), Te = Ts + 1,
Te = Ts + 1, time(Ts),time(Te).
time(Ts),time(Te). Inertia of Event Calculus

fluent(growth(X)) :- community(X). Ground truth recognition
community(X) :- happensAt(size(X,_),_).
community(X) :- happensAt(density(X,_),_). Community entity recognition
time(X) :- happensAt(size(_,_),X).
time(X) :- happensAt(density(_,_),X). Time entity recognition
value(1..5). Features’ quantized values recognition

Table 6 Rules That OLED Learns.

Rules

initiatedAt/terminatedAt(< predicted_event >(< communityi >),< timej >) :-
happensAt(< feature1 >(< communityi >,< value1 >),< timej >)),
. . .
happensAt(< featuren >(< communityi >,< valuen >),< timej >)). (1)/(2)

Table 7 Example of A OLED’s Mode Declarations File.

Mode Declarations File

modeh(initiatedAt(growth(+community),+time))
modeh(terminatedAt(growth(+community),+time)) The form of the rule’s head
modeb(happensAt(size(+community,#value),+time))
modeb(happensAt(density(+community,#value),+time)) The form of the rule’s body
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Rules can be interpreted as if feature1 of community communityi has value1 at timej

and the same is true for the rest of features then the initiation of event predicted_event is
fired. This means that the predicted_event will start to occur at timej+1. The happensAt
predicates that are required will be discovered by OLED. Likewise, if the body of rule (2) is
true then the termination of event predicted_event is fired, thus the predicted_event will
stop to occur at time timej+1.

Training and Testing. As shown in Figure 1, the dataset was split into training and testing
sets according to the Time Series Cross Validation, because it takes into account the temporal
relationship between the training and testing sets. Each training comprises only observations
that occurred prior to the observation.

Fold 1: Training set includes low events of communities from timeframes F1, F2 and
high events of communities in timeframe F2. Testing set includes low events
of communities from timeframe F2 and high events of communities from
timeframes F2, F3.

Fold 2: Training set includes low events of communities from timeframes F1, F2, F3

and high events of communities from timeframe F2, F3. Testing set includes
low events of communities from timeframe F3 and high events of communities
from timeframes F3, F4.

... ...
Fold T-2: Training set includes low events of communities from timeframes F1, F2, ...,

FT −1 and high events of communities from timeframe F2, F3, ..., FT −1. Testing
set includes low events of communities from timeframe FT −1 and high events
of communities from timeframes FT −1, FT .

T is total number of timeframes in the dataset. Note that the first timeframe has no
evolutionary events (high events) since there is no previous timeframe in order to track
the communities’ evolution of the first timeframe. Respectively, the last timeframe has
not features (low events) because there is no next timeframe to predict evolution of its
communities. Also, in the training set we comprise the low level events of the timeframe
that we are going to predict so that OLED extracts the time variable for high level events.
Finally, notice that in the testing set we also comprise the high level events of the previous
timeframe than that we are going to predict. This is required by OLED to initiate the inertia
of every community’s event.

OLED as an online learner splits its input into chunks. In our experiments, we choose
chunks of size 2. Thus, the imported timeframes for the training procedure are split into
chunks two by two. We changed the functionality of OLED so that it creates rolling chunks.
It means that first chunk contains the timeframes 1,2; the second one the timeframes 2,3;
the third the timeframes 3,4 and so on. This is necessary because, for example, timeframe 2
has to be in the first and second chunk. In the first chunk, we need the high level events of
timeframe 2 for getting the ground truth. While in the second chunk we use the low level
events of timeframe 2 as features for our supervised learning classification.

The outline of training process is the following: Initially there is an empty theory. Each
time OLED receives a chunk of training examples and transforms the existing theory to
satisfy as close as possible the right prediction of the current examples. When the training
process is completed, a logical theory is derived as the learnt model. Its form is illustrated in
Table 6. Using this theory we predict the evolutionary events of communities which are in
testing set.
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Table 8 Survival Experiment.

Survival Structural Survival Temporal
Micro/Macro Precision 0.9737/0.8125 0.9882/0.9941

Micro/Macro Recall 0.9949/0.6289 1.0000/0.6765
Micro/Macro Fscore 0.9842/0.7090 0.9941/0.8051

5 Experiments

Dataset description. The data were collected from the Mathematics Stack Exchange forum1,
which is a question and answer site for mathematics. All questions are tagged with their
subject areas. The dataset comprises 376,030 posts, 261,600 answers and comments, between
28-09-2009 and 31-05-2013. Each user is represented by a node in a graph and there is an
edge between two user nodes if one of them posts an answer or a comment on the other
user’s post. The dataset was split into 10 equally sized, with respect to the number of posts
(questions, answers or comments), timeframes with 60% overlap between them.

Building the ground truth means obtaining community labels per time frame, and then
obtaining the evolution of each community across time frames. We considered that a group
of users belongs in the same community if they post (questions, answers or comments) about
the same topic. In particular, we used tags to determine the communities and since on each
post there are multiple tags, thus each user will be assigned to multiple communities. Answer
and comment posts inherit the tag of the question they correspond to. Also communities
with no more than 3 members were removed. The evolutionary events of each community
(Growth, Shrinkage, Continuation, Dissolution) were obtained by thresholding. In particular
if the size of the community in the next time frame is more (less) than 30 nodes compared to
the size in the current frame then the community grows (shrinks).

There are communities which do not appear in each timeframe, although they may not
have been dissolved yet. It happens because communities with few members in a timeframe
are pruned from dataset. So, we are looking for the evolution of a community in every
timeframe of the dataset and consider a community as dissolved only after its last appearance.
The evolutionary events of dataset are imbalanced. In particular, the percentage of each
class is: Growth: 0.5%, Shrinkage: 0.2%, Continuation: 90% and Dissolution: 0.3%.

The features were quantized into 5 levels, and represented as low level events. The high
level events are the evolutionary events. Experiments were executed with both structural
and temporal features, where the number of ancestors was set to 4. At the end, the dataset
was split in training and testing sets using Time Series Cross Validation method. Because
the data are highly imbalanced apart from Micro Average measures, we also used Macro
Averages.

Survival Experiment. First, we conducted an experiment with an event, named survival
that incorporated all the growth, shrinkage and continuation events. We used both structural
and temporal features. In Table 8 we present the results. The micro measures are very high
because the survival events are 97% of the total data. As OLED initialized the inertia of the
survival event, it did not find enough negatives examples (dissolution events) to fail in its
prediction. Thus the Macro values are much lower.

1 https://archive.org/download/stackexchange
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Table 9 All events Structural features.

Growth Shrinkage Continuation Dissolution
Micro/Macro Precision 0.2358/0.6037 0.1884/0.5832 0.9293/0.8066 0.6512/0.8125

Micro/Macro Recall 0.3027/0.6316 0.1512/0.5671 0.9760/0.6939 0.2629/0.6289
Micro/Macro Fscore 0.2651/0.6174 0.1677/0.5750 0.9521/0.7460 0.3746/0.7090

Table 10 All events Temporal features.

Growth Shrinkage Continuation
Micro/Macro Precision 0.1828/0.5730 0.1882/0.5743 0.9182/0.9222

Micro/Macro Recall 0.1828/0.5730 0.1633/0.5649 0.9955/0.6932
Micro/Macro Fscore 0.1828/0.5730 0.1749/0.5696 0.9553/0.7915

Experiment with all events. The results on all events with structural features appear in
Table 9. The macro precision is highest in the dissolution. The dataset with the temporal
features contains the features of the previous 4 instances of a community, the first timeframe
for this dataset is at time 5 (see Table 10). The theory which was derived for the dissolution
event was empty. The predictor could not evaluate any rule with high score because there
were not many available examples, since the number of timeframes (6, from F5 to F10 )
and the number of communities is small. Thus, the dissolution event is not included in the
experiments with temporal features. The growth and shrinkage events with temporal features
have lower performance than the best corresponding events with structural features. But for
the continuation event, the reverse is true for both micro and macro values.

Experiment with long range rules. We changed the way rules are formed so that they
contain features of any of a community’s ancestors. This is similar to the temporal features,
but we do not have their values as different features but as the same features at different time
steps. In order to change the form of the derived rules we changed the modes declaration
so that the new form of rules captures long range relationships (see also Section 4.2). The
form of the new rules is shown in Table 11, which is the same as in Table 6 except of the
<time> value in the head can be different from that in the body and the geqn/3 predicate,
which denotes that timek is num1 units after timel. Also because now OLED could include
more than two timeframes we had to increase the chunk size. If the chunk size equals to
N + 2, then the derived rules can contain up to N ancestors’ features. However, a big chunk
size entails greater CPU and memory requirements. In the experiments we selected a chunk
of size 3, so we obtained rules that contained features of the first ancestor. The results are
presented in Table 12.

Experiment with weighted TPs, FPs, FNs. Neither the previous method increased the
performance significantly. A problem is that the learnt theories contain more termination
than initiation rules, thus the initiation of some events does not happen. It means OLED
predicts a negative event (i.e. event that does not occur) for a community at next timeframe
but in reality it is a positive event (i.e. the event occurs). In this case the FNs frequency
of OLED is increased. The numbers of initiation and termination rules are not balanced
because OLED evaluates its rules based on TPs, FPs and FNs values. Using these values, it
computes a score which evaluates the accuracy of a rule. To control score’s value we can add
weights on TPs, FPs, FNs values during the training. For example, if the FNs weight is set
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Table 11 New Rules That OLED Learns With Long Range Relationships.

Rules

initiatedAt/terminatedAt(< predicted_event >(< communityi >),< timej >) :-
happensAt(< feature1 >(< communityi >,< value1 >),< time1 >)),
...,
happensAt(< featuren >(< communityi >, < valuen >), < timen >)),
geqn(timek, timel, num1),
...
geqn(timem, timen, num1).

Table 12 Long Range Relationships Experiment.

Growth Shrinkage
Micro/Macro Precision 0.2446/0.6090 0.2016/0.5898

Micro/Macro Recall 0.3487/0.6527 0.1512/0.5678
Micro/Macro Fscore 0.2875/0.6300 0.1728/0.5786

to 10, it means that the FNs will be considered as ten times more than it really is, in other
words the termination rules will overestimate the termination condition. Thus the score of
termination rules is getting decreased. With this way we focus more in quality than quantity
of termination rules. In Table 13, we present the best weights for each class in a experiment
with structural and temporal features. The results are presented in Table 14 and Table 15
for the experiment with structural features and with the temporal features respectively.
While we were trying various values to weights, we noticed in the results that:

If TPs’s weight is increased then TPs is increased, FPs is increased and FNs is decreased
because the number of initiations rules is increased.
If FPs’s weight is increased then TPs is decreased, FPs is decreased and FNs is increased
because the number of initiations rules is decreased.
If FNs’s weight is increased then TPs is increased, FPs is increased and FNs is decreased
because the number of termination rules is decreased.

We tried to increase the low TPs number by setting appropriate weights, but FPs also
increased. OLED overestimated the initiation condition because its initiation rules are not
specialised enough to detect correctly in which communities an event will occur. This is a
strong indication that with the current features OLED performance could not improve. In
Appendix A, we present some of the clauses that derived by above experiments.

6 Conclusions

We tried to predict the evolution of communities in a dynamic social network. The evolution of
a community is described as the occurrence of growth, shrinkage, continuation and dissolution
events. We carried out the prediction using OLED, an Inductive Logic Programming
system for learning logical theories from data streams. Initially, we tracked the evolution
of communities over the time and obtained the ground truth of evolutionary events. As
features we used structural characteristics of communities. Moreover, we also tried temporal
features where a preset number of previous instances of each communities were used as well
as features that capture change between consecutive instances of a community. Subsequently,
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Table 13 Best weights for each class with structural/temporal features.

TPs-weight FPs-weight FNs-weight
Growth 1/1 1/5 15/1

Shrinkage 20/1 1/1 15/1
Continuation 1/1 1/1 1/15
Dissolution 1 1 15

Table 14 Weights on TPs,FPs,FNs - Experiment With Structural Features.

Growth Shrinkage Continuation Dissolution
Micro/Macro Precision 0.2376/0.6055 0.1127/0.5533 0.9247/0.9623 0.8036/0.8878

Micro/Macro Recall 0.3487/0.6519 0.8023/0.8187 0.9845/0.6772 0.2113/0.6047
Micro/Macro Fscore 0.2826/0.6278 0.1977/0.6603 0.9537/0.7950 0.3346/0.7194

Table 15 Weights on TPs,FPs,FNs - Experiment With Temporal Features.

Growth Shrinkage Continuation
Micro/Macro Precision 0.2184/0.5913 0.2459/0.6032 0.9182/0.9222

Micro/Macro Recall 0.2043/0.5857 0.1531/0.5654 0.9955/0.6933
Micro/Macro Fscore 0.2111/0.5885 0.1887/0.5837 0.9553/0.7915

the features were quantized. The dataset was obtained from the Mathematics Stack Exchange
forum. We presented the micro and macro averages, because the classes (Growth, Shrinkage,
Continuation and Dissolution) were unbalanced.

We also investigated the best pruning values for the theory in OLED, which did not
improve the results. Overall, the experiments with the temporal features had a worse
performance than the experiment with the structural features, probably because there were
not many timeframes. Then, we execute experiments where OLED learnt rules that represent
long range relationships between an evolutionary event and features.

Subsequently, weights were applied to TPs, FPs and FNs values to change rules’ scores.
This was the experiment with the best results. Finally, we presented the features that were
the most influential for each evolutionary event.

Future work could be directed to a range of different fields. Others classifiers can be
used to predict the evolution of communities (e.g. SVM, Random Forest) and compare them
to our results. Additional, evolutionary events can be added such as merge or split. Other
types of features (i.e. topics or context of discussions in social networks ) could be studied as
well as features that capture the dynamics of communities, such as the rate of change of an
existing feature. Also, another quantization algorithm, which will adapt better the quantized
values to the distribution of the values of the features might help. Because OLED is an
online system, it needs many data to decide if a rule is trusted. However, in our dataset we
had only 10 frames. Thus, datasets with more timeframes could be examined. Moreover, a
different segmentation of the data stream could be tried, to study its effect on the prediction.
Finally, it would be very interesting to test the learnt rules in other datasets to notice how
relevant they are at the problem of community evolution prediction.
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Table 16 Rules learnt in the best experiment: Growth and Shrinkage.

initiatedAt(growth(X0),T 1) :-
happensAt(density(X0,1),T 1),
happensAt(diameter(X0,2),T 1).

terminatedAt(growth(X0),T 1) :-
happensAt(ratio_cut(X0,3),T 1),
happensAt(average_path_length(X0,3),T 1),
happensAt(normalized_edges_number(X0,5),T 1).

terminatedAt(growth(X0),T 1) :-
happensAt(ratio_cut(X0,3),T 1),
happensAt(closeness_centrality(X0,3),T 1),
happensAt(normalized_edges_number(X0,5),T 1).

terminatedAt(growth(X0),T 1) :-
happensAt(cohesion(X0,2),T 1),
happensAt(average_path_length(X0,3),T 1),
happensAt(diameter(X0,2),T 1).

terminatedAt(shrinkage(X0),T 1) :-
happensAt(ratio_association(X0,3),T 1).

terminatedAt(shrinkage(X0),T 1) :-
happensAt(average_path_length(X0,2),T 1).

terminatedAt(shrinkage(X0),T 1) :-
happensAt(closeness_centrality(X0,2),T 1),
happensAt(ratio_cut(X0,1),T 1).

initiatedAt(shrinkage(X0),T 1) :-
happensAt(eigenvector_centrality(X0,1),T 1),
happensAt(ratio_association(X0,5),T 1).

A Appendix

An advantage of OLED is that the predictive model (Theory) it derives is human-readable.
Thus the rules can be read, analyzed and interesting results can be derived from them. Some
of the best performing rules are shown in Tables 16 and 17. Transferability to new datasets
is also an interesting possibility.

Some features appeared more often in rules of specific evolutionary events than others;
while some never appeared. In Tables 18 and 19 we present for each evolutionary event
(growth, shrinkage, continuation, dissolution), the frequency of the structural features the
bodies of rules.

In Table 18 it can be noticed that features like diameter, cohesion, ratio_cut and aver-
age_path_length affect the prediction of the growth event since they represent 54.14% of total
features which appeared in the rules. On the contrary features like betweenness_centrality
and normalized_association did not appear at all. For the shrinkage event the most used
features are ratio_association, ratio_cut, cohesion and clustering_coefficient, while the
normalized_association feature does not appear. In Table 19 the features of the continuation
and the dissolution events are presented. The continuation event seems to be affected
mostly from ratio_cut, ratio_association and the clustering_coefficient and not by the
cohesion. While for the dissolution event, every feature is used in prediction, and especially
the clustering_coefficient, cohesion and the betweenness_centrality.
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Table 17 Rules learnt: Survival.

terminatedAt(survival(X0),T 1) :-
happensAt(ratio_association(X0,4),T 1),
happensAt(density(X0,2),T 1).

terminatedAt(survival(X0),T 1) :-
happensAt(ratio_association(X0,3),T 1),
happensAt(clustering_coefficient(X0,4),T 1).

terminatedAt(survival(X0),T 1) :-
happensAt(diameter(X0,3),T 1),
happensAt(ratio_cut(X0,3),T 1),
happensAt(ratio_association(X0,2),T 1).

terminatedAt(survival(X0),T 1) :-
happensAt(ratio_association(X0,3),T 1),
happensAt(closeness_centrality(X0,3),T 1).

terminatedAt(survival(X0),T 1) :-
happensAt(clustering_coefficient(X0,1),T 1),
happensAt(closeness_centrality(X0,5),T 1),
happensAt(cohesion(X0,4),T 1).

terminatedAt(survival(X0),T 1) :-
happensAt(normalized_edges_number(X0,2),T 1),
happensAt(cohesion(X0,2),T 1),
happensAt(average_path_length(X0,1),T 1).

terminatedAt(survival(X0),T 1) :-
happensAt(size(X0,1),T 1),
happensAt(betweenness_centrality(X0,1),T 1),
happensAt(cohesion(X0,3),T 1).

terminatedAt(survival(X0),T 1) :-
happensAt(normalized_edges_number(X0,1),T 1),
happensAt(cohesion(X0,3),T 1),
happensAt(average_path_length(X0,1),T 1).

In Tables 20 and 21 we present temporal features which appear in the rules of corresponding
experiments. For the growth event the temporal features: ancestor4_average_path_length, ac-
tiveness_ancestor_2_ancestor3, aging_ancestor0, ancestor1_diameter, ancestor3_closeness
_centrality and the rest that are presented in Table 20, are the equally important. Shrinkage
event prediction uses the values of ancestor1_event_is_shrinking, ancestor4_clustering_coe
fficient, cohesion, eigenvector_centrality, joinNodesRatio_currentCommunity_ancestor0,
ratio_cut. Many temporal features are missing from the bodies of rules for both growth and
shrinkage events. For the continuation event only cohesion and ratio_cut were used.

Experiment with pruning. A learnt theory can be pruned to remove clauses whose score
is smaller than a quality threshold Smin. In the previous experiments Smin was 0.9. Next
we tried for each event the values 0.5, 0.7, 0.3 as Smin and choose the ones with the best
performance. With the structural features, the best pruning value for the growth event is
0.7, for shrinkage 0.5, for continuation 0.9 and for dissolution 0.9 (see Table 22). In the
temporal features, the best pruning value for the growth event is 0.7, for shrinkage 0.7, and
for continuation 0.9 (see Table 23). Overall, pruning had a marginal improvement on the
results.
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Table 18 Structural features frequency: Growth and Shrinkage.

Growth Percentage Shrinkage Percentage
diameter 17.68% ratio_association 20%
cohesion 13.26% ratio_cut 13.55%
ratio_cut 11.60% cohesion 11.61%

average_path_length 11.60% clustering_coefficient 10.97%
density 8.29% eigenvector_centrality 9.03%

ratio_association 7.73% density 8.39%
clustering_coefficient 7.73% average_path_length 7.10%

size 6.63% closeness_centrality 6.45%
closeness_centrality 6.08% centrality 3.871%

eigenvector_centrality 3.87% diameter 3.87%
normalized_edges_number 2.76% betweenness_centrality 2.58%

centrality 2.76% size 1.29%
normalized_edges_number 1.29%

Table 19 Structural features frequency: Continuation and Dissolution.

Continuation Percentage Dissolution Percentage
ratio_cut 16.07% clustering_coefficient 25.93%

ratio_association 15% cohesion 15.74%
clustering_coefficient 10% betweenness_centrality 10.19%

density 9.64% diameter 9.26%
diameter 8.21% size 8.33%

closeness_centrality 8.21% normalized_edges_number 6.48%
eigenvector_centrality 7.14% ratio_association 5.56%

centrality 6.79% closeness_centrality 3.70%
betweenness_centrality 6.43% average_path_length 3.70%
normalized_association 4.64% ratio_cut 2.78%
average_path_length 4.64% normalized_association 2.78%

normalized_edges_number 2.5% centrality 2.78%
size 0.71% density 1.85%

eigenvector_centrality 0.93%

TIME 2018
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Table 20 Temporal features frequency: Growth.

Growth Percentage
ancestor4_average_path_length 12.5%
activeness_ancestor_2_ancestor3 6.25%

aging_ancestor0 6.25%
ancestor1_diameter 6.25%

ancestor3_closeness_centrality 6.25%
ancestor3_clustering_coefficient 6.25%

ancestor3_diameter 6.25%
ancestor4_centrality 6.25%

ancestor4_clustering_coefficient 6.25%
ancestor4_diameter 6.25%

jaccardCoefficient_ancestor_0_ancestor1 6.25%
jaccardCoefficient_ancestor_2_Ancestor3 6.25%
joinNodesRatio_ancestor_2_ancestor3 6.25%

joinNodesRatio_currentCommunity_ancestor0 6.25%
leftNodesRatio_ancestor_0_ancestor1 6.25%

Table 21 Temporal features frequency: Shrinkage and Continuation.

Shrinkage Percentage
ancestor1_event_is_shrinking 16.66%
ancestor4_clustering_coefficient 16.66%

cohesion 16.66%
eigenvector_centrality 16.66%

joinNodesRatio_currentCommunity_ancestor0 16.66%
ratio_cut 16.66%

Continuation Percentage
cohesion 50%
ratio_cut 50%

Table 22 Best Pruning Experiment with Structural Features.

Growth Shrinkage Continuation Dissolution
Micro/Macro Precision 0.2343/0.6035 0.2047/0.5913 0.9293/0.8066 0.6512/0.8125

Micro/Macro Recall 0.3295/0.6431 0.1512/0.5679 0.9760/0.6939 0.2629/0.6289
Micro/Macro Fscore 0.2739/0.6227 0.1739/0.5794 0.9521/0.7460 0.3746/0.7090

Table 23 Best Pruning Experiment with Temporal Features.

Growth Shrinkage Continuation
Micro/Macro Precision 0.1828/0.5730 0.1951/0.5778 0.9182/0.9222

Micro/Macro Recall 0.1828/0.5730 0.1633/0.5656 0.9955/0.6932
Micro/Macro Fscore 0.1828/0.5730 0.1778/0.5716 0.9553/0.7915
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