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Multiple Kernel Learning

Many popular machine learning algorithms utilize the kernel trick and
perform learning in feature space

m SVM, kernel k-means, kernel PCA
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Multiple Kernel Learning

Many popular machine learning algorithms utilize the kernel trick and
perform learning in feature space

m SVM, kernel k-means, kernel PCA

Kernel Trick

m To exploit nonlinearities in the data, very often:

m Instances are mapped from input space to a higher dimensional feature
space H via a nonlinear transformation ¢

m Learning is executed in feature space instead of input space
m A kernel K is employed to get the inner products in feature space

without explicitly defining transformation ¢
m The transformation is intractable for certain kernels

m Examples of kernels
m RBF kernel: K(xi,x;) = exp (—||x; — x;||*/20?)
= Polynomial kernel: K(xi,x;) = (x/ x; +7)°
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Multiple Kernel Learning

The efficacy of kernel-based methods is dependent on the choice of an
appropriate kernel for the underlying problem

m An unsuitable kernel can significantly degrade results

m The best kernel is not known in advance

Multiple kernel learning (MKL) tackles the kernel selection problem and
aims at inferring a kernel that suits the data

m A parametric form for the kernel is assumed

m Appropriate values for the parameters are estimated during training
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Multiple Kernel Learning

m The kernel, IE is parametrized as a combination of some predefined,
called basis, kernels (V)
m Usually a linear mixture is employed I%(x,-,xj) = Z\\//:l 0, KM (x;, x;)
m More rarely, a nonlinear combination is employed

m Basis kernels are obtained by:

m Applying different types of kernels on the same instances
m Using the different views of the instances for multi-view data

m Most existing MKL studies tackle supervised problems

m Our focus is to perform MKL in the clustering domain, where existing
literature is very limited
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Supervised MKL

m MKL has been mainly studied under the SVM paradigm

m Locate the hyperplane with the largest margin and also learn an
appropriate kernel

= Given a two-class labeled dataset X = {(x;,yi)}",, x; € R? and
yi € {£1}

m Assume a kernel K parametrized by a vector 6 of parameters, to
which transformation ¢ and feature space H correspond
m A linear combination of basis kernels lz(x;,xj) = Z\\//:1 0,KM (x;, x;)
m Alternatively, a nonlinear combination
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Supervised MKL

Most MKL methods derive from the following margin-based optimization
problem:

G’W’ )

N
1
mll?ﬁ EHWH + C;{;,
st 0,>0, [6]5<1, y (wTa(x,-) n b) >1-¢, &3>0

m w, b are the coefficients of the SVM hyperplane
m ||w|| is the reciprocal of the margin
m £ is the vector of slack variables capturing the misclassification error

m C > 0 is a regularization constant

The norm constraint on 6 is employed to avoid overfitting
m The 1-norm promotes a sparse kernel combination

m Higher p-norms often lead to better results
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Unsupervised MKL
Maximum Margin Clustering (MMC)

m MMC! extends the large margin principle of SVM to clustering
m Goal: Find a labeling (clustering) y of dataset X' = {x,—}fvzl, x; € R

that results in the largest margin

N
R
min min 5 w]* + C;&-,

N
st. — (< Zy,' <t ye{E1}Y, yi(wio(x)+b) >1-¢, & >0
i=1
m Limited to two-cluster problems

m A cluster balance constraint is required to avoid trivial solutions

1L Xuet al., Maximum margin clustering, NIPS, 2004
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Unsupervised MKL
Maximum Margin Clustering (MMC)

m MMC! extends the large margin principle of SVM to clustering

m Goal: Find a labeling (clustering) y of dataset X' = {x,—}fvzl, x; € R
that results in the largest margin

N
R
min min 5 w]* + C;&,

N
st. — (< Zy,' <t ye{E1}Y, yi(wio(x)+b) >1-¢, & >0
i=1
m Limited to two-cluster problems

m A cluster balance constraint is required to avoid trivial solutions

Most unsupervised MKL methods extend the MMC framework to learn a
parametric kernel K along with the clusters, similar to supervised MKL

1L Xuet al., Maximum margin clustering, NIPS, 2004
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Maximum Margin Clustering Example

Figure: MMC prefers H3 as it exhibits the largest margin
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Scaling Problem

Definition
The margin-based objective (2 lwl|? + Czl,l &;) can become arbltrarlly
small by simply scaling the kernel by a positive scalar (K — akC, a > 0)!

v

Implication
The margin-based objective does not suffice to accurately assess the
quality of the learned kernel

1K. Gai et al., Learning kernels with radiuses of minimum enclosing balls, NIPS, 2010 )
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Contribution

We consider multiple kernel clustering and propose an approach that:
m Learns a suitable kernel along with the cluster assignments
m Considers both the separation and the compactness of the clusters

m Is invariant to scalings of the learned kernel

m Is invariant to the type of p-norm constraint on the kernel parameters

Motivation

m Most MKL approaches optimize the margin alone (a separation
measure)

m The margin suffers from the scaling problem

m Most MKL methods focus on supervised learning
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Ratio-based Multiple Kernel Clustering (RMKC)
Formulation

= Given a dataset X = {x;} 1, x; € R¢

m Assume a kernel K parametrized by a vector 6 of parameters, to
which transformation ¢ and feature space H correspond

We utilize the separation and the compactness of the clusters to perform
multiple kernel clustering and:

m Infer the cluster labels

m Learn appropriate values for the kernel K parameters
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RMKC Formulation

Objective

Minimize the ratio between the margin (MMC objective) and the
intra-cluster variance in feature space H (kernel k-means objective):
N

min 7(0,y), s.t. 6, >0, |05 =1, £ <> y <t ye {+1}"
6.y

i=1

J(6,y) = min e

in 5£(6. y)||wH2+CZ§,, sty (w ¢(x)+b) >1-¢, &>0

i=1

£(0.y) = %301 iy dullo(xi) —

N s F(x.
m 5 =1if y; =2k — 3 and Jjx = 0 otherwise, my = —‘—l—zilf'k?ix')
i=1 "1
m A cluster balance constraint is required to avoid trivial solutions

my||? is the intra-cluster variance

m The norm constraint on 8 is employed to avoid overfitting
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RMKC Objective Analysis

N
i t 0, > P_1 —4< < N
min J(0,y), sit. 6, >0, |85 =1, — < ;y </, ye{£1}

1 N -
J(0.y) = min JE@.ywlP +CY & st yi (wdlk) +b) =16 >0

i=1

Search for a pair of {6,y} values that yields a small variance to margin
ratio (£(8,y)|lw]?)

m Both the separation (margin) and the compactness (intra-cluster
variance) are considered

m Better partitionings can be possibly obtained compared to approaches
that rely on either of the two

m Limited to two-cluster problems
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RMKC Properties

Scale Invariance

m The RMKC objective is invariant to scalings of the kernel K

m It can accurately capture the quality of the learned kernel
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RMKC Properties

Scale Invariance

m The RMKC objective is invariant to scalings of the kernel K

m It can accurately capture the quality of the learned kernel

Norm Invariance

m The RMKC formulation is invariant to the type of p-norm constraint
on the kernel parameters 6
m This only holds for the global optimum solution
m This only holds when considering linear combinations of basis kernels

m The choice of p-norm becomes less crucial

m Different p-norms may still produce different local optimum solutions,
but the global optimum is the same

m The norm constraint can be even dropped without affecting the global
optimum solution
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RMKC Training

Iteratively update the clusters and the kernel parameters to locate a local
optimum that depends on the initialization of {0,y}

Evaluating the Objective Function
Use the dual to compute the [7(6,y) value for some fixed {0,y}:

N N
max Za, ZZ QiaGyiy; ,J,st 0<a;<C, Za,y,—O
i=1 j=1

i=1

m The optimal solution a* of the dual can be found by employing a
standard SVM solver

m Strong duality holds:
J(0,y) = im0f — m Doic1 Dje1 aF o yiyiKij
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RMKC Training - Updating the Kernel Parameters

m The cluster labels y are kept fixed and the parameters 8 are updated
using gradient descent

m The gradient is calculated based on the dual:

27(6,y) _ g, £(0.) K
a0, 220‘ YK =g = = 5% ZO’ y’yfae

ij=1 IJ].

To update the kernel parameters:
m Solve the dual for the current {6, y} values to get the gradient
m Take a step along the gradient
m Project the parameters back to their feasible set (6, > 0,]/6||5 = 1)
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RMKC Training - Updating the Clusters

m The kernel parameters 6 are kept fixed and the cluster labels y are
updated using a practical search framework

m A sequence of L candidate cluster label vectors y(l), . 7y(L), (Lis
user-defined) is constructed, where instances are moved from one
cluster to the other

m Starting from the current labels, y(©), this sequence is incrementally
built

m Compared to the previous candidate label vector in the sequence, the
next contains one more instance whose cluster label has been changed

m Compared to y(©, y() contains / instances whose label has changed

m y is updated by selecting the label vector y('") attaining the smallest
objective value (/* = argming<;<; J(6,y"))
m Eventually, /* instances swap clusters
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RMKC Training - Updating the Clusters

m Given y{), how y(*+1) is constructed?
m Find the hyperplane corresponding to y(/) by solving the dual
m Select as the (/ 4 1)-th instance to change clusters the one we are the
less confident about its labeling, according to the hyperplane
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Kernel Parametrization

The RMKC formulation can handle both the popular linear combination of
basis kernels

K(xi, ;) ZG KW (x;, ;)

and more general forms of parametric kernels, such as nonlinear mixtures
of basis kernels

m Existing MKL approaches are usually limited to a specific form for the
parametric kernel

Prerequisite

The gradient of the RMKC objective must exist for the selected
parametrization of kernel IC
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Evaluation

m We compare RMKC with the linear combination of basis kernels to:

Kernel k-means

IterSVRY, a margin-based MMC approach

Multi-view kernel k-means (MVKKM)?, a variance-based MKL
approach

Multi-view spectral clustering (MVSpec)?, a variance-based MKL
approach

m We consider both single view and multi-view datasets

m For multi-view datasets a linear basis kernel is employed for each view

m For single view datasets 10 RBF basis kernels with varying o are
constructed

m Kernel k-means and iterSVR do not perform kernel learning
m We report the performance of the best basis kernel

m For iterSVR we also report the average performance over all basis
kernels

k. Zhang et al., Maximum margin clustering made practical, ICML, 2007
2G. Tzortzis, A. Likas, Kernel-based weighted multi-view clustering, ICDM, 2012
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Evaluation

m For all datasets we extract several two-class subsets and search for
two clusters

m Performance is measured in terms of clustering accuracy
m Higher accuracy values indicate a better match between cluster and
class labels
m RMKGC, iterSVR and kernel k-means are restarted 30 times and their
average accuracy is reported

m Parameter Configuration
m RMKC — L =30, £ =0.5N, grid search for C ({1072,107%,...,10%})
m |terSVR — ¢ = 0.03N (for unbalanced datasets £ = 0.3N), grid search
for C ({1072,101,...,10?})
m MVKKM & MVSpec — grid search for the sparsity controlling
parameter p ({1,1.5,...,5})
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Datasets

Multiple Features/Optdigits — Collections of handwritten digits

m Five views / A single view

m Ten classes for both

Coil-20 - |mage collection Object4  Object 11~ Object 15 Object 18 Object 19
m A single view ﬂ :
m 20 classes gj

Corel — Image collection

m Seven views (color and texture related views)

m 34 classes
Cat. 700 Cat. 770 Cat. 840 Cat. 1340 Cat. 1350 Cat. 4990
hawks mammals with horns roses leopards eagles trains
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Norm Invariance in Practice

The RMKC formulation is norm invariant on its global optimum solution.
What about the local optimum solutions obtained during training?

Table: RMKC results for different p-norm constraints

Dataset No-norm 1-norm 2-norm
COIL-20 08.75+2.60 98.61 +2.65 08.43+2.73
Corel 9455 4+1.62 94.644+1.58 94.69 4 1.62
Multiple features 99.58 =0.22 99.53+0.37 99.59 +0.23
Optdigits 97.77 £2.45 97.65+271 97.75+2.50

m The solutions obtained for the different p-norms are very similar

m Local optima are not significantly influenced by the choice of p-norm

in practice
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Comparative Results on the Image Collections

Table: Image clustering results

RMKC IterSVR IterSVR
Dataset (1-norm) MVKKM MVSpec (best) (average)

COIL-20
4-11 100.00 = 0.00 77.78 100.00 98.47 +8.37 98.34 +-8.34
15-18  100.00 =0.00 90.28 05.83 99.7240.35 99.214+0.21
15-19 9444 +1059 68.06 86.11 93.43 +14.30 91.86 = 14.52
Corel
700-4990 97.62 = 0.65 95.00 95.00 96.43+0.25 83.19+1.85
770-840 97.55+0.91 94.50 90.00 94.20+3.04 87.85+0.58
1340-1350 95.50 = 0.00 95.00 95.00 92.50+0.00 83.71+0.00

m Kernel k-means attains the least accuracy in general (not shown here)
m RMKC outperforms the compared methods

m lterSVR is its closest competitor for COIL-20 and MVKKM for Corel
|

IterSVR is competitive provided the optimal basis kernel is used,
which is, however, not a priori known in practice
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Comparative Results on the Handwritten Digits

Table: Handwritten digits clustering results

RMKC IterSVR IterSVR
Dataset (1I-norm) MVKKM MVSpec (best) (average)

Mult. feat.
1-7 09.62 +£0.78  98.75 98.75 99.75+0.00 96.85+0.00
2-3 99.70 +0.23  99.25 99.00 99.50+0.00 94.13+7.16
6-8 99.15+0.33 97.25 08.50 99.00 +£0.00 94.94 +6.47
Optdigits
1-7 99.56 +1.41 100.00 100.00 96.93 +9.83 94.26 +13.14
2-3 96.29 +5.44  90.56 88.89 96.50+0.82 9559 +2.70
6-8 99.89 +0.14 99.15 08.87  99.72 4+ 0.00 99.45 + 0.06

m Kernel k-means attains the least accuracy in general (not shown here)
m The best performance is shared between RMKC and iterSVR

m lterSVR is competitive provided the optimal basis kernel is used,
which is, however, not a priori known in practice
m IterSVR results degrade if an inappropriate basis kernel is chosen
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Summary

m We proposed RMKC, an unsupervised MKL method that:

m Assigns instances to clusters
m Learns an appropriate kernel for the data

m Both the separation and the compactness of the clusters are
considered during training

m RMKC is invariant to:

m Scalings of the learned kernel
m The type of p-norm constraint on the kernel parameters

m RMKC can handle various forms of parametric kernels

m Linear combinations of basis kernels
m Nonlinear combinations of basis kernels
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