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Multiple Kernel Learning

Many popular machine learning algorithms utilize the kernel trick and
perform learning in feature space

SVM, kernel k-means, kernel PCA
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Multiple Kernel Learning

Many popular machine learning algorithms utilize the kernel trick and
perform learning in feature space

SVM, kernel k-means, kernel PCA

Kernel Trick

To exploit nonlinearities in the data, very often:

Instances are mapped from input space to a higher dimensional feature
space H via a nonlinear transformation φ
Learning is executed in feature space instead of input space

A kernel K is employed to get the inner products in feature space
without explicitly defining transformation φ

The transformation is intractable for certain kernels

Examples of kernels

RBF kernel: K(xi , xj) = exp
(
−‖xi − xj‖

2/2σ2
)

Polynomial kernel: K(xi , xj) =
(
x⊤i xj + γ

)δ
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Multiple Kernel Learning

The efficacy of kernel-based methods is dependent on the choice of an
appropriate kernel for the underlying problem

An unsuitable kernel can significantly degrade results

The best kernel is not known in advance

Multiple kernel learning (MKL) tackles the kernel selection problem and
aims at inferring a kernel that suits the data

A parametric form for the kernel is assumed

Appropriate values for the parameters are estimated during training
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Multiple Kernel Learning

The kernel, K̃, is parametrized as a combination of some predefined,
called basis, kernels K(v)

Usually a linear mixture is employed K̃(xi , xj) =
∑V

v=1 θvK
(v)(xi , xj)

More rarely, a nonlinear combination is employed

Basis kernels are obtained by:

Applying different types of kernels on the same instances
Using the different views of the instances for multi-view data

Most existing MKL studies tackle supervised problems

Our focus is to perform MKL in the clustering domain, where existing
literature is very limited
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Supervised MKL

MKL has been mainly studied under the SVM paradigm

Locate the hyperplane with the largest margin and also learn an
appropriate kernel

Given a two-class labeled dataset X = {(xi , yi )}
N
i=1, xi ∈ ℜd and

yi ∈ {±1}

Assume a kernel K̃ parametrized by a vector θ of parameters, to

which transformation φ̃ and feature space H̃ correspond

A linear combination of basis kernels K̃(xi , xj) =
∑V

v=1 θvK
(v)(xi , xj)

Alternatively, a nonlinear combination
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Supervised MKL

Most MKL methods derive from the following margin-based optimization
problem:

min
θ,w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi ,

s.t. θv ≥ 0, ‖θ‖p
p ≤ 1, yi

(
w⊤φ̃(xi ) + b

)
≥ 1 − ξi , ξi ≥ 0

w, b are the coefficients of the SVM hyperplane

‖w‖ is the reciprocal of the margin

ξ is the vector of slack variables capturing the misclassification error

C > 0 is a regularization constant

The norm constraint on θ is employed to avoid overfitting

The 1-norm promotes a sparse kernel combination

Higher p-norms often lead to better results
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Unsupervised MKL

Maximum Margin Clustering (MMC)

MMC1 extends the large margin principle of SVM to clustering

Goal: Find a labeling (clustering) y of dataset X = {xi}
N
i=1, xi ∈ ℜd

that results in the largest margin

min
y

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi ,

s.t. − ℓ ≤
N∑

i=1

yi ≤ ℓ, y ∈ {±1}N , yi

(
w⊤φ(xi ) + b

)
≥ 1 − ξi , ξi ≥ 0

Limited to two-cluster problems

A cluster balance constraint is required to avoid trivial solutions

1 L. Xu et al., Maximum margin clustering, NIPS, 2004
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Unsupervised MKL

Maximum Margin Clustering (MMC)

MMC1 extends the large margin principle of SVM to clustering

Goal: Find a labeling (clustering) y of dataset X = {xi}
N
i=1, xi ∈ ℜd

that results in the largest margin

min
y

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi ,

s.t. − ℓ ≤
N∑

i=1

yi ≤ ℓ, y ∈ {±1}N , yi

(
w⊤φ(xi ) + b

)
≥ 1 − ξi , ξi ≥ 0

Limited to two-cluster problems

A cluster balance constraint is required to avoid trivial solutions

Most unsupervised MKL methods extend the MMC framework to learn a
parametric kernel K̃ along with the clusters, similar to supervised MKL

1 L. Xu et al., Maximum margin clustering, NIPS, 2004
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Maximum Margin Clustering Example

Figure: MMC prefers H3 as it exhibits the largest margin
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Scaling Problem

Definition

The margin-based objective (1
2‖w‖2 + C

∑N
i=1 ξi ) can become arbitrarily

small by simply scaling the kernel by a positive scalar (K̃ → αK̃, α > 0)1

Implication

The margin-based objective does not suffice to accurately assess the
quality of the learned kernel

1K. Gai et al., Learning kernels with radiuses of minimum enclosing balls, NIPS, 2010
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Contribution

We consider multiple kernel clustering and propose an approach that:

Learns a suitable kernel along with the cluster assignments

Considers both the separation and the compactness of the clusters

Is invariant to scalings of the learned kernel

Is invariant to the type of p-norm constraint on the kernel parameters

Motivation

Most MKL approaches optimize the margin alone (a separation
measure)

The margin suffers from the scaling problem

Most MKL methods focus on supervised learning

G. Tzortzis & A. Likas Ratio-based Multiple Kernel Clustering 12/ 32



Outline

1 Introduction

2 The RMKC Algorithm

3 Experimental Evaluation

4 Summary

G. Tzortzis & A. Likas Ratio-based Multiple Kernel Clustering 13/ 32



Ratio-based Multiple Kernel Clustering (RMKC)
Formulation

Given a dataset X = {xi}
N
i=1, xi ∈ ℜd

Assume a kernel K̃ parametrized by a vector θ of parameters, to
which transformation φ̃ and feature space H̃ correspond

We utilize the separation and the compactness of the clusters to perform
multiple kernel clustering and:

Infer the cluster labels

Learn appropriate values for the kernel K̃ parameters
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RMKC Formulation

Objective

Minimize the ratio between the margin (MMC objective) and the

intra-cluster variance in feature space H̃ (kernel k-means objective):

min
θ,y

J (θ, y), s.t. θv ≥ 0, ‖θ‖p
p = 1, −ℓ ≤

N∑

i=1

yi ≤ ℓ, y ∈ {±1}N

J (θ, y) = min
w,b,ξ

1

2
E(θ, y)‖w‖2 + C

N∑

i=1

ξi , s.t. yi

(
w⊤φ̃(xi ) + b

)
≥ 1 − ξi , ξi ≥ 0

E(θ, y) = 1
N

∑N

i=1

∑2
k=1 δik‖φ̃(xi ) − m̃k‖

2 is the intra-cluster variance

δik = 1 if yi = 2k − 3 and δik = 0 otherwise, m̃k =
∑N

i=1 δik φ̃(xi )∑
N
i=1 δik

A cluster balance constraint is required to avoid trivial solutions

The norm constraint on θ is employed to avoid overfitting
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RMKC Objective Analysis

min
θ,y

J (θ, y), s.t. θv ≥ 0, ‖θ‖p
p = 1, −ℓ ≤

N∑

i=1

yi ≤ ℓ, y ∈ {±1}N

J (θ, y) = min
w,b,ξ

1

2
E(θ, y)‖w‖2 + C

N∑

i=1

ξi , s.t. yi

(
w⊤φ̃(xi ) + b

)
≥ 1 − ξi , ξi ≥ 0

Search for a pair of {θ, y} values that yields a small variance to margin
ratio (E(θ, y)‖w‖2)

Both the separation (margin) and the compactness (intra-cluster
variance) are considered

Better partitionings can be possibly obtained compared to approaches
that rely on either of the two

Limited to two-cluster problems
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RMKC Properties

Scale Invariance

The RMKC objective is invariant to scalings of the kernel K̃

It can accurately capture the quality of the learned kernel
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RMKC Properties

Scale Invariance

The RMKC objective is invariant to scalings of the kernel K̃

It can accurately capture the quality of the learned kernel

Norm Invariance

The RMKC formulation is invariant to the type of p-norm constraint
on the kernel parameters θ

This only holds for the global optimum solution
This only holds when considering linear combinations of basis kernels

The choice of p-norm becomes less crucial

Different p-norms may still produce different local optimum solutions,
but the global optimum is the same
The norm constraint can be even dropped without affecting the global
optimum solution
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RMKC Training

Iteratively update the clusters and the kernel parameters to locate a local
optimum that depends on the initialization of {θ, y}

Evaluating the Objective Function

Use the dual to compute the J (θ, y) value for some fixed {θ, y}:

max
α

N∑

i=1

αi −
1

2E(θ, y)

N∑

i=1

N∑

j=1

αiαjyiyj K̃ij , s.t. 0 ≤ αi ≤ C ,
N∑

i=1

αiyi = 0

The optimal solution α∗ of the dual can be found by employing a
standard SVM solver

Strong duality holds:
J (θ, y) =

∑N
i=1 α∗

i −
1

2E(θ,y)

∑N
i=1

∑N
j=1 α∗

i α
∗
j yiyj K̃ij
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RMKC Training - Updating the Kernel Parameters

The cluster labels y are kept fixed and the parameters θ are updated
using gradient descent

The gradient is calculated based on the dual:

∂J (θ, y)

∂θv

=
1

2E(θ, y)2

N∑

i,j=1

α∗

i α
∗

j yiyj K̃ij

∂E(θ, y)

∂θv

−
1

2E(θ, y)

N∑

i,j=1

α∗

i α
∗

j yiyj

∂K̃ij

∂θv

To update the kernel parameters:

Solve the dual for the current {θ, y} values to get the gradient

Take a step along the gradient

Project the parameters back to their feasible set (θv ≥ 0, ‖θ‖p
p = 1)
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RMKC Training - Updating the Clusters

The kernel parameters θ are kept fixed and the cluster labels y are
updated using a practical search framework

A sequence of L candidate cluster label vectors y(1), . . . , y(L), (L is
user-defined) is constructed, where instances are moved from one
cluster to the other

Starting from the current labels, y(0), this sequence is incrementally
built
Compared to the previous candidate label vector in the sequence, the
next contains one more instance whose cluster label has been changed
Compared to y(0), y(l) contains l instances whose label has changed

y is updated by selecting the label vector y(l∗) attaining the smallest
objective value (l∗ = argmin0≤l≤L J (θ, y(l)))

Eventually, l∗ instances swap clusters
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RMKC Training - Updating the Clusters

Given y(l), how y(l+1) is constructed?

Find the hyperplane corresponding to y(l) by solving the dual
Select as the (l + 1)-th instance to change clusters the one we are the
less confident about its labeling, according to the hyperplane
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Kernel Parametrization

The RMKC formulation can handle both the popular linear combination of
basis kernels

K̃(xi , xj) =

V∑

v=1

θvK
(v)(xi , xj)

and more general forms of parametric kernels, such as nonlinear mixtures
of basis kernels

Existing MKL approaches are usually limited to a specific form for the
parametric kernel

Prerequisite

The gradient of the RMKC objective must exist for the selected
parametrization of kernel K̃
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Evaluation
We compare RMKC with the linear combination of basis kernels to:

1 Kernel k-means
2 IterSVR1, a margin-based MMC approach
3 Multi-view kernel k-means (MVKKM)2, a variance-based MKL

approach
4 Multi-view spectral clustering (MVSpec)2, a variance-based MKL

approach

We consider both single view and multi-view datasets
For multi-view datasets a linear basis kernel is employed for each view
For single view datasets 10 RBF basis kernels with varying σ are
constructed

Kernel k-means and iterSVR do not perform kernel learning
We report the performance of the best basis kernel
For iterSVR we also report the average performance over all basis
kernels

1 K. Zhang et al., Maximum margin clustering made practical, ICML, 2007
2 G. Tzortzis, A. Likas, Kernel-based weighted multi-view clustering, ICDM, 2012
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Evaluation

For all datasets we extract several two-class subsets and search for
two clusters

Performance is measured in terms of clustering accuracy

Higher accuracy values indicate a better match between cluster and
class labels
RMKC, iterSVR and kernel k-means are restarted 30 times and their
average accuracy is reported

Parameter Configuration

RMKC → L = 30, ℓ = 0.5N, grid search for C ({10−2, 10−1, . . . , 102})
IterSVR → ℓ = 0.03N (for unbalanced datasets ℓ = 0.3N), grid search
for C ({10−2, 10−1, . . . , 102})
MVKKM & MVSpec → grid search for the sparsity controlling
parameter p ({1, 1.5, . . . , 5})
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Datasets

Multiple Features/Optdigits – Collections of handwritten digits

Five views / A single view

Ten classes for both

Coil-20 – Image collection

A single view

20 classes

Object 4 Object 11 Object 15 Object 18 Object 19

Corel – Image collection

Seven views (color and texture related views)

34 classes

Cat. 700
hawks

Cat. 770
mammals with horns

Cat. 840
roses

Cat. 1340
leopards

Cat. 1350
eagles

Cat. 4990
trains
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Norm Invariance in Practice

The RMKC formulation is norm invariant on its global optimum solution.
What about the local optimum solutions obtained during training?

Table: RMKC results for different p-norm constraints

Dataset No-norm 1-norm 2-norm

COIL-20 98.75 ± 2.60 98.61 ± 2.65 98.43 ± 2.73

Corel 94.55 ± 1.62 94.64 ± 1.58 94.69 ± 1.62

Multiple features 99.58 ± 0.22 99.53 ± 0.37 99.59 ± 0.23

Optdigits 97.77 ± 2.45 97.65 ± 2.71 97.75 ± 2.50

The solutions obtained for the different p-norms are very similar

Local optima are not significantly influenced by the choice of p-norm
in practice
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Comparative Results on the Image Collections

Table: Image clustering results

RMKC IterSVR IterSVR
Dataset (1-norm) MVKKM MVSpec (best) (average)
COIL-20

4-11 100.00 ± 0.00 77.78 100.00 98.47 ± 8.37 98.34 ± 8.34
15-18 100.00 ± 0.00 90.28 95.83 99.72 ± 0.35 99.21 ± 0.21
15-19 94.44 ± 10.59 68.06 86.11 93.43 ± 14.30 91.86 ± 14.52
Corel

700-4990 97.62 ± 0.65 95.00 95.00 96.43 ± 0.25 83.19 ± 1.85
770-840 97.55 ± 0.91 94.50 90.00 94.20 ± 3.04 87.85 ± 0.58

1340-1350 95.50 ± 0.00 95.00 95.00 92.50 ± 0.00 83.71 ± 0.00

Kernel k-means attains the least accuracy in general (not shown here)

RMKC outperforms the compared methods

IterSVR is its closest competitor for COIL-20 and MVKKM for Corel

IterSVR is competitive provided the optimal basis kernel is used,
which is, however, not a priori known in practice
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Comparative Results on the Handwritten Digits

Table: Handwritten digits clustering results

RMKC IterSVR IterSVR
Dataset (1-norm) MVKKM MVSpec (best) (average)

Mult. feat.
1-7 99.62 ± 0.78 98.75 98.75 99.75 ± 0.00 96.85 ± 0.00
2-3 99.70 ± 0.23 99.25 99.00 99.50 ± 0.00 94.13 ± 7.16
6-8 99.15 ± 0.33 97.25 98.50 99.00 ± 0.00 94.94 ± 6.47

Optdigits
1-7 99.56 ± 1.41 100.00 100.00 96.93 ± 9.83 94.26 ± 13.14
2-3 96.29 ± 5.44 90.56 88.89 96.50 ± 0.82 95.59 ± 2.70
6-8 99.89 ± 0.14 99.15 98.87 99.72 ± 0.00 99.45 ± 0.06

Kernel k-means attains the least accuracy in general (not shown here)

The best performance is shared between RMKC and iterSVR

IterSVR is competitive provided the optimal basis kernel is used,
which is, however, not a priori known in practice

IterSVR results degrade if an inappropriate basis kernel is chosen
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Summary

We proposed RMKC, an unsupervised MKL method that:

Assigns instances to clusters
Learns an appropriate kernel for the data

Both the separation and the compactness of the clusters are
considered during training

RMKC is invariant to:

Scalings of the learned kernel
The type of p-norm constraint on the kernel parameters

RMKC can handle various forms of parametric kernels

Linear combinations of basis kernels
Nonlinear combinations of basis kernels
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Thank you!
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