
TimeRank: a Random Walk approach for
Community Discovery in Dynamic Networks

Ilias Sarantopoulos1,2 Dimitrios Papatheodorou2,4 Dimitrios Vogiatzis1,3

Grigorios Tzortzis1 Georgios Paliouras1

1National Centre for Scientific Research (NCSR) “Demokritos”, Athens, Greece,

2Athens University of Economics and Business, Athens, Greece

3The American College of Greece, Athens, Greece,

4Aalto University, Espoo, Finland

Table of contents

1. Introduction

2. Background

3. TimeRank

4. Datasets & Experiments

5. Future Work

1

Introduction

The setting

• An undirected graph which represents a (social) network

• Graph topology changes over time
• We use several discrete snapshots of the network and refer to
them as timeframes

Figure 1: An example of a dynamic network consisting of five timeframes as
shown in [1]

2

The setting

• An undirected graph which represents a (social) network
• Graph topology changes over time

• We use several discrete snapshots of the network and refer to
them as timeframes

Figure 1: An example of a dynamic network consisting of five timeframes as
shown in [1]

2

The setting

• An undirected graph which represents a (social) network
• Graph topology changes over time
• We use several discrete snapshots of the network and refer to
them as timeframes

Figure 1: An example of a dynamic network consisting of five timeframes as
shown in [1]

2

Dynamic Community Finding

• The communities (i.e. Clusters) in each timeframe (Detection)
• Track the communities across time (Tracking)

Figure 2: An example of a dynamic network consisting of five timeframes as
shown in [1]

3

Common approaches

Two Step methods

1. 1st Step: Detect
communities in each
Timeframe graph (louvain,
spectral etc.)

2. 2nd Step: Match
communities between
timeframes based on
some similarity measure

One Step methods
Perform detection and tracking
in one step (e.g. using
Non-Negative Tensor
Factorisation)

4

Background

MutuRank - Purpose

Figure 3: A multi relational network as described in [5]

• Perform Random walk on edges and relations
• Rank nodes and relations
• Transform Multi-relational network to Single relational
• Detect communities

5

MutuRank Algorithm

pti = α

n∑
j=1

m∑
d=1

pt−1j · oi,j,d · Probt−1[d|j] + (1− α)p∗i , (1)

qtd = β

n∑
i=1

n∑
j=1

pt−1j · ri,j,d · Probt−1[i|j] + (1− β)q∗d (2)

Figure 4: Depiction of the normalisation of tensors O and R in MutuRank
and TimeRank (source [5]).

6

Transformation

Relations and nodes yield mutual influence.
Use q to transform to Single Relational Network (SRN)

wi,j =
m∑
d=1

qd · ai,j,d, (3)

Then, detect communities using any algorithm

7

TimeRank

Adapting Muturank for community tracking

• Although communities evolve, they tend to have common
structure.

• Nodes and Communities in different timeframes are
disconnected

• Most Community detection algorithms rely on close connectivity

8

Adapting Muturank for community tracking

• Although communities evolve, they tend to have common
structure.

• Nodes and Communities in different timeframes are
disconnected

• Most Community detection algorithms rely on close connectivity

8

Adapting Muturank for community tracking

• Although communities evolve, they tend to have common
structure.

• Nodes and Communities in different timeframes are
disconnected

• Most Community detection algorithms rely on close connectivity

8

Adapting Muturank for community tracking

N = # of Nodes
T = # of Timeframes

• Relations (Muturank) = Timeframes (Timerank)
• Adapt muturank representation to include time-varying nodes:
(N× T)× (N× T)× T

• Add intra-timeframe edges (network edges)
• Add inter-timeframe edges: connect the same node with its
image between timeframes.

• Apply muturank →temporal network with N× T nodes
• Perform clustering on this network and extract dynamic
communities

9

Timerank - One to All Connection (AOC)

• ’One to All Connection’ connects each node it with all its
occurrences in other timeframes

• for each node it add the following pairs of edges in the network

{(i1, it), . . . , (it−1, it), (it+1, it), . . . , (iT, it)}

Figure 5: Sample dynamic network with 3 timeframes demonstrating AOC
connections

10

Timerank - Next Occurrence Connection (NOC)

• ’Next Occurrence Connection’ connects each node it with its
images in the previous and next timeframes in which this node
exists

• for each node it add the following pairs of edges in the network

{(it−1, it), (it+1, it)}

Figure 6: Sample dynamic network with 3 timeframes demonstrating NOC
connections

11

TimeRank Algorithm

Algorithm 1 TimeRank Algorithm

1: Create (N× T) adjacency matrices for each timeframe
2: Add inter-time edges
3: Compose tensor A ∈ R(N×T)×(N×T)×(T)

4: Apply MutuRank algorithm on A and get ranking of timeframes
5: Create time-weighted network with (N× T) nodes
6: Perform clustering on this network and extract dynamic commu-
nities

12

Datasets & Experiments

Datasets

Synthetic Datasets using Dynamic Benchmark Network Generator [3],
which is based on [4].

Expand/Contract events

1. 1000 nodes / 5 timeframes
2. 32 communities
3. 10 expand, 10 contract
4. 25% expansion/contraction rate

Hide/Appear events

1. 1000 nodes / 5 timeframes
2. 32 communities
3. 10% of communities hide

13

Compared Methods (1/2)

Two step approach : Group Evolution Discovery (GED), Piotr Bródka,
Stanislaw Saganowski, and Przemyslaw Kazienko

1. Run community detection algorithm on each timeframe (e.g.
Louvain)

2. Match communities between sequential timeframes using a
similarity measure

14

Compared Methods (2/2)

One step approach : Non-Negative Tensor Factorisation, Laetitia
Gauvin, André Panisson, and Ciro Cattuto

Perform PARAFAC decomposition on 3-way tensor T ∈ RN×N×S, where
N is the number of nodes of the network and S the number of
network snapshots.

Figure 7: Schematic representation of the factorisation result for an
undirected temporal network from [2].

15

Experimental Setting

1. GED
• Ground truth communities as input

2. NNTF
• Random restarts for initialisation of factors A, B and C.

3. TimeRank
• AOC connection - uniform distribution for q
• NOC connection - uniform distribution for q
• AOC connection - run Muturank
• NOC connection - run Muturank

16

Evaluation Metrics

• NMI for overlapping clusters
• Omega index (rand index expansion for overlapping clusters)
• BCubed

17

Results

Expand/Contract Hide/Appear
Method NMI Omega Prec Rec F1 NMI Omega Prec Rec F1

TR-AOC-U 0.866 0.874 0.905 0.882 0.893 1.000 1.000 1.000 1.000 1.000
TR-NOC-U 0.908 0.919 0.944 0.921 0.933 0.880 0.890 0.912 0.963 0.937
TR-AOC 0.849 0.864 0.890 0.883 0.886 1.000 1.000 1.000 1.0000 1.000
TR-NOC 0.923 0.954 0.964 0.944 0.953 0.910 0.918 0.935 0.963 0.949
NNTF 0.805 0.8445 0.842 0.864 0.853 1.000 1.000 1.000 1.000 1.000
GED 0.464 0.659 0.924 0.572 0.707 0.531 0.700 0.901 0.662 0.763

Table 1: Tables for Expand/Contract and Hide/Appear Datasets

Expand/Contract Hide/Appear
Method t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

TR-AOC 0.212 0.196 0.198 0.196 0.199 0.214 0.189 0.199 0.191 0.207
TR-NOC 0.217 0.189 0.191 0.196 0.207 0.218 0.183 0.193 0.193 0.213

Table 2: Values for q distribution for the Expand/Contract and Hide/Appear
datasets

18

Reddit

• Dynamic community : subreddit
• Timeframe: week
• Nodes: users
• Edges: replies

19

Reddit Experiment 1

4 Timeframes 8 Timeframes
Method NMI Omega Prec Rec F1 NMI Omega Prec Rec F1

TR-AOC-U 0.385 0.316 0.557 0.56 0.558 0.319 0.243 0.547 0.543 0.545
TR-NOC-U 0.480 0.428 0.639 0.619 0.629 0.377 0.455 0.612 0.580 0.596
TR-AOC 0.390 0.373 0.576 0.605 0.591 0.295 0.217 0.531 0.521 0.526
TR-NOC 0.457 0.473 0.633 0.623 0.628 0.435 0.537 0.610 0.654 0.631
NNTF 0.447 0.496 0.627 0.642 0.634 0.395 0.480 0.590 0.650 0.619
GED-T 0.584 0.776 1.000 0.625 0.769 0.323 0.432 1.000 0.377 0.548

Table 3: Experiment 1 results for 4 and 8 timeframes

20

Reddit Experiment 2

4 Timeframes 8 Timeframes
Method NMI Omega Prec Rec F1 NMI Omega Prec Rec F1

TR-AOC-U 0.050 0.068 0.480 0.544 0.510 0.028 -0.007 0.438 0.438 0.438
TR-NOC-U 0.380 0.487 0.692 0.905 0.784 0.032 0.032 0.435 0.536 0.480
TR-AOC 0.038 0.032 0.471 0.542 0.500 0.028 -0.007 0.438 0.439 0.439
TR-NOC 0.456 0.604 0.741 0.951 0.833 0.031 0.030 0.435 0.536 0.480
NNTF 0.276 0.389 0.723 0.652 0.686 0.637 0.772 0.849 0.933 0.890
GED-T 0.210 0.280 1.000 0.269 0.424 0.099 0.147 1.000 0.132 0.233

Table 4: Experiment 2 results for 4 and 8 timeframes

21

Future Work

Future Work

• Experiments on DBLP Data
• Mix Benchmark Data
• Use Multirank instead of Muturank
• Add Weights in inter-timeframe edges
• Scaling through parallelization

22

Questions?

22

Evaluation measures

BCubed

Precision(u, v) = Min(|T(u) ∩ T(v)|, |C(u) ∩ C(v)|)
|C(u) ∩ C(v)|

Recall(u, v) = Min(|T(u) ∩ T(v)|, |C(u) ∩ C(v)|)
|T(u) ∩ T(v)|

F1 = 2 · BCubedPrecision · BCubedRecallBCubedPrecision + BCubedRecall

References i

P. Bródka, S. Saganowski, and P. Kazienko.
Ged: the method for group evolution discovery in social
networks.
Social Network Analysis and Mining, 3(1):1–14, 2013.

L. Gauvin, A. Panisson, and C. Cattuto.
Detecting the community structure and activity patterns of
temporal networks: a non-negative tensor factorization
approach.
PloS one, 9(1):e86028, 2014.

References ii

D. Greene, D. Doyle, and P. Cunningham.
Tracking the evolution of communities in dynamic social
networks.
In Advances in social networks analysis and mining (ASONAM),
2010 international conference on, pages 176–183. IEEE, 2010.

A. Lancichinetti, S. Fortunato, and F. Radicchi.
Benchmark graphs for testing community detection algorithms.
Physical review E, 78(4):046110, 2008.

Z. Wu, J. Cao, G. Zhu, W. Yin, A. Cuzzocrea, and J. Shi.
Detecting overlapping communities in poly-relational
networks.
World Wide Web, 18(5):1373–1390, 2015.

	Introduction
	Background
	TimeRank
	Datasets & Experiments
	Future Work
	Appendix

