
TimeRank: A Random Walk Approach
for Community Discovery in Dynamic

Networks

Ilias Sarantopoulos1,2(B), Dimitrios Papatheodorou2,4, Dimitrios Vogiatzis1,3,
Grigorios Tzortzis1, and Georgios Paliouras1

1 National Centre for Scientific Research (NCSR) “Demokritos”, Athens, Greece
isaranto@aueb.gr, dimitrv@iit.demokritos.gr, gtzortzi@iit.demokritos.gr,

paliourg@iit.demokritos.gr
2 Athens University of Economics and Business, Athens, Greece

dimitrispapatheodorou95@gmail.com
3 The American College of Greece, Athens, Greece

4 Aalto University, Espoo, Finland

Abstract. In this work we consider the problem of discovering com-
munities in time evolving social networks. We propose TimeRank, an
algorithm for dynamic networks, which uses random walks on a ten-
sor representation to detect time-evolving communities. The proposed
algorithm is based on an earlier work on community detection in multi-
relational networks. Detection of dynamic communities can be be done
in two steps (segmentation of the network into time frames, detection
of communities per time frame and tracking of communities across time
frames). Alternatively it can be done in one step. TimeRank is a one
step approach. We compared TimeRank with Non-Negative Tensor Fac-
torisation and Group Evolution Discovery method on synthetic and real
world data sets from Reddit.

1 Introduction

Community detection in networks represented as static graphs, is a well-studied
problem [7], but real world networks demonstrate temporal activity incurring
changes in their structure over time. Along with the network, the structure
and the composition of the communities also change, i.e. they evolve. Given a
network that is observed over a time period, it can be divided into equal T time
intervals or timeframes, then the social network can be represented as a sequence
of graphs {G1, G2, . . . , Gt}, where each graph includes the interactions between
the nodes observed in the corresponding timeframe. A dynamic community is
made of a chain of corresponding static communities along the time frames of
the network. Some of the issues that are related to the problem of dynamic
community detection, is the static community detection per time frame, the
tracking of static communities along time frames, as well as the granularity of
the segmentation.
c© Springer Nature Switzerland AG 2019
L. M. Aiello et al. (Eds.): COMPLEX NETWORKS 2018, SCI 812, pp. 338–350, 2019.
https://doi.org/10.1007/978-3-030-05411-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05411-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-05411-3_28

TimeRank: Community Discovery in Dynamic Networks 339

The motivating idea in the current work is to map a temporal network to a
weighted static network, where the weights capture temporal relations. Subse-
quently any existing algorithm for community detection can be applied on the
static network, and finally the communities of the static network can be mapped
back to the original temporal network.

The main contributions of this paper are:

– TimeRank, a random walk algorithm for dynamic community detection that
is based on an earlier algorithm for community detection on multi-relational
networks.

– Experimental investigation of the merits of TimeRank on synthetic and real
world data sets and comparison with two other methods.

The rest of the paper is organised as follows; Sect. 2 describes the related
work; Sect. 3 introduces the background method MutuRank, an algorithm for
community discovery in multi-relational networks; Sect. 4 describes the proposed
method TimeRank; experimental results are presented in Sect. 5; finally, conclu-
sions are drawn in Sect. 6.

2 Related Work

Dynamic community discovery is represented by two main approaches: two step
and one step methods. Two step methods tend to see community detection and
tracking as two discrete procedures. During the first step, time is divided into
possibly overlapping frames and a community detection method is applied to the
static graph of each frame (usually the Louvain method is chosen [5]). During the
second step, communities between neighbouring time-frames are compared and
matched using a similarity measure and depending on the degree of similarity an
event is assigned on each evolution between two consecutive time-frames (form,
dissolve, merge, split, grow, shrink, continue). Mostly the Jaccard similarity is
being used. These two-step approaches do not tend to focus on the first step
(community detection) but rather on modelling the tracking of the evolution of
the detected communities. Such methods are described in [6,9–11,20,21]. One
step approaches do not separate community detection from tracking of their
evolution but perform both in one step [8,23]. An interesting instance of one
step methods, performs both community tracking and community prediction in
a parameter free way and it is based on tensor decomposition and the minimum
description length principle [3]. Also approaches for detection and prediction
have been proposed that are based on link and content analysis [2].
The Group Evolution Discovery (GED) method is a two step method

(i.e. community tracking) [6]. For the second step a new measure is introduced
called inclusion, which measures both the quality and quantity of the inclusion of
one group in another. I(G1, G2) = |G1∩G2|

|G1| ·
∑

x∈(G1∩G2) SPG1 (x)∑
x∈(G1) SPG1 (x)

, where the first

fraction measures the group quantity and the second the quality, and SPG1(x)
is the value of social position of x in group G1. Social position is a centrality
measure.

340 I. Sarantopoulos et al.

For each of the matched communities we want to discover its evolution. Group
evolution is a sequence of changes succeeding each other that happen in sequen-
tial timeframes. In [6] the authors extended the events proposed in [4,19]. They
identified seven type of rule-based events that describe the change in the state of
a group or groups between two timeframes (Ti and Ti+1): continuing, shrinking,
growing, splitting, merging, dissolving, forming.

Non-Negative Tensor Factorisation (NNTF). The interaction among
users across time can be represented by a 3-dimensional tensor T ∈ R

N×N×S ,
where N is the number of nodes/users of the network and S the number of net-
work snapshots. Tensor factorisation techniques and PARAFAC in particular [12]
has been used in the detection of dynamic communities [8]. In tensor factori-
sation the following optimization problem is solved: minA,B,C ||T − A,B,C||2F ,
where matrices A and B are square of size N × k and associate a weight for the
membership of each node to each community structure, while C, which is of size
S × k, associates the communities with time intervals and k, which is provided
as input, is the number of latent factors or communities that are discovered. In
the case of undirected networks A = B. This way clustering and tracking is
performed in one step, with matrix A representing the clustering output and
matrix C the tracking output.

3 Background: MutuRank

We start by describing MutuRank, an algorithm for discovering community
structure in multi-relational networks, which we later transform to fit the prob-
lem of dynamic community finding.

A multi-relational network (MRN), is a network where there can be many
types of edges between any two nodes, for example in a social network an edge
between two users can have multiple meanings: follow, like, retweet etc. A well
known problem in MRNs is discovering community structure. The problem is
similar to discovering communities in single-relational networks (SRNs). Because
of the homogeneity of the nodes across the relations, we want to find a good k-way
partition P = {C1, . . . , Ck}, where Ck is the kth community and C1∪ . . .∪Ck ⊆
V and V is the set of nodes that exist in the network, by considering all relations.
The MRN is represented by a three dimensional n×n×m affinity tensor, where
n is the number of nodes and m is the number of relations. Let A = [ai,j,d]
be the affinity tensor and ai,j,d ∈ R denote the relation strength between nodes
i and j under the dth relation. Then ai,j,d = 1 if i and j share an edge in d,
otherwise ai,j,d = 0.

In this context, co-ranking frameworks such as MutuRank [22] simultaneously
rank the n nodes and the m relations in order to get a weighted importance pi
for each node i and qd relation d and thus produce an SRN calculated as follows:

wi,j =
m∑

d=1

qd · ai,j,d, (1)

TimeRank: Community Discovery in Dynamic Networks 341

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qm) are the weight/probability
distribution vectors of nodes and relations respectively. In SRNs obtaining the
distribution p which models node importance can be achieved with well known
algorithms like HITS [13] and Pagerank [18]. But in the case of MRNs nodes
and relations yield mutual influence, thus there is the need to co-rank nodes and
relations simultaneously, hence p is implicitly used in the calculation of q in
Eq. (3) (see below).

MutuRank uses the mutual influence in order to rank relations and eventually
transform the multi-relational network into a single-relational network (SRN),
where there exists only one type of interaction between nodes, and communities
can be detected using any community detection algorithm applicable to SRNs.

As we envision a random walk applied on a MRN, we need to construct
two probability tensors O = [oi,j,d] and R = [ri,j,d] with respect to nodes and
relations by normalizing the entries of A as follows oi,j,d = ai,j,d∑n

l=1 al,j,d
, ri,j,d =

ai,j,d∑m
e=1 ai,j,e

MutuRank also considers influence exerted by prior distributions of nodes and
relations. To conclude, we have the following iterative equations for computing
the ranking scores of nodes and relations simultaneously:

pti = α
n∑

j=1

m∑

d=1

pt−1
j · oi,j,d · Probt−1[d|j] + (1 − α)p∗

i , (2)

qtd = β
n∑

i=1

n∑

j=1

pt−1
j · ri,j,d · Probt−1[i|j] + (1 − β)q∗

d (3)

where p∗ = (p∗
1, p

∗
2, . . . , p

∗
n) and q∗ = (q∗

1 , q
∗
2 , . . . , q

∗
m) are the prior distributions

of nodes and relations respectively, and α, β are two parameters to balance the
knowledge coming from network structure and the prior knowledge and are also
called damping factors. Ideally prior distributions are obtained from a domain
expert who can provide us with prior knowledge which quantifies the importance
of nodes and relations. Such prior knowledge is very difficult to obtain so in
most cases we can simply set p∗

i = 1/n, 1 ≤ i ≤ n and q∗
d = 1/m, 1 ≤ d ≤ m.

Incorporating the prior knowledge is helpful to deal with dangling nodes (that
have zero out-degree) [18]. More precisely, given a dangling node i, ∀1 ≤ j ≤ n,
ai,j,d = 0 leads to Prob

[
i|j] = Prob

[
d|j] = 0. Therefore, the weight of the sink

node cannot be updated by the iterative process (Fig. 1).
In the case where we have one relation, so m = 1 and p∗

i = 0, 1 ≤ i ≤
n, Eq. (2) becomes pti =

∑n
j=1 pt−1

j · 1
kj

, where kj is the degree of node j.
In this case we have exactly the same computation as in Pagerank [18], thus
Pagerank can be regarded as a special case of MutuRank. Upon running the
above iterative process we can transform the MRN into a SRN with the help of
Eq. (1). Afterwards we can employ a clustering algorithm on the graph described
by two-dimensional matrix w to extract community structure.

342 I. Sarantopoulos et al.

4 TimeRank

In this section we describe the proposed method, TimeRank, a random walk
algorithm for dynamic community detection that is based on MutuRank.

Our intention is to transform the problem of finding communities in MRNs
to that of dynamic community finding and employ a similar procedure to that of
MutuRank to get the dynamic communities. To do that we use a tensor repre-
sentation for our dynamic network. The first two dimensions refer to the nodes
and the third dimension to the timeframes, in essence treating the timeframes
as relations. A tensor “slice” for a particular timeframe represents the adjacency
matrix of the network at that timeframe. The difference in our representation is
that in each slice, node i is represented by a set of distinct nodes, one for each
timeframe which we call node images. Let N be the numbers of nodes, and T
the number of timeframes. Then node i will actually be a set of the different
images of the node, one for each timeframe, i = {i1, i2, . . . , iT }. This way the
number of distinct nodes in our representation is N × T . The dimensions of the
new tensor are (N × T) × (N × T) × (T).

A [:, :, t] =

⎛

⎜⎜⎜⎝

a11t a12t a13t . . . a1(N×T)t

a21t a22t a23t . . . a2(N×T)t

...
...

...
. . .

...
a(N×T)1t a(N×T)2t a(N×T)3t . . . a(N×T)(N×T)t

⎞

⎟⎟⎟⎠

Given the above representation the dynamic communities we want to discover
will include node images from separate timeframes.

Inter-Timeframe Edges Community detection algorithms analyse the struc-
ture of the network, attempting to produce communities, which are sets of

Fig. 1. Depiction of the normalisation of tensors O and R in MutuRank and TimeRank
(source [22]).

TimeRank: Community Discovery in Dynamic Networks 343

nodes that are more densely connected with each other than the other nodes
in the network. With the current representation it would not be possible for
clusters from different timeframes to be placed in the same dynamic commu-
nity, because neither the tensor “slices” for the timeframes nor the node images
in theses “slices” are connected between them in any way. In this context we
introduce inter-timeframe edges, which connect a node with its image in other
timeframes. Dynamic communities contain separate groups (timeframe clusters)
within them, which originate from different timeframes. These groups belong
to the same dynamic community because they share some common nodes. The
reasoning behind adding the inter-timeframe edges is that by connecting each
node with its image we bring these groups closer to each other, thus allowing
dynamic patterns to be more easily unveiled.

Given node i which exists in timeframe t1 of a dynamic network, we pro-
pose two ways of connecting the node with its occurring images in the other
timeframes {i2, . . . , iT }. If a node does not appear in a specific timeframe, it
will not be connected with its corresponding node images. Apart from the inter-
timeframe edges there are also the original edges that exist in the graphs. Since
each tensor slice represents a timeframe, it will comprise the edges that exist
in the corresponding timeframe as they appear on the initial graph as well as
the added inter-timeframe edges. The two variations of TimeRank rely on the
following two representations:

– One to All Connection (OAC) In “One to All Connection” we con-
nect each node it with all its occurrences in other timeframes. For
each node it we add the following pairs of edges in the network:
{(i1, it), . . . , (it−1, it), (it+1, it), . . . , (iT , it)}.

– Next Occurrence Connection (NOC) In “Next Occurrence Connection”
we connect each node it with its images in the previous and next timeframes
in which this node exists. For each node it we add the following pairs of edges
in the network: {(it−1, it), (it+1, it)}.

Algorithm 1 TimeRank Algorithm
1: Create (N × T) adjacency matrices for each timeframe
2: Add inter-time edges
3: Compose tensor A ∈ R

(N×T)×(N×T)×(T)

4: Apply MutuRank algorithm on A and get ranking of timeframes
5: Create time-weighted network with (N × T) nodes
6: Perform clustering on this network and extract dynamic communities

In our implementation of TimeRank, in the final step we create an N × T
matrix in the same fashion like MutuRank does, and we apply spectral clustering
on that matrix to obtain the k dynamic communities, where the number of
dynamic communities k is provided as input. In (1) Step 4 can be omitted, and

344 I. Sarantopoulos et al.

instead of running MutuRank we can use a uniform distribution for q during
step 5. In MutuRank [22] irreducibility is a widely-used assumption. We also
utilise irreducibility in TimeRank as an important assumption in order to derive
the existence of the two equilibrium distributions.

5 Experimentation

5.1 Data Description and Engineering

Synthetic Data We constructed two different networks with two different event
types, composed from 1000 nodes that span over 5 timeframes. We used the
Dynamic Benchmark Network Generator [11], which is based on [15]. We set the
seed to 10 in order for our dataset to be easily reconstructed. Nodes have a mean
degree of 20 and a maximum degree of 40. The networks begin at t = 1 with
approximately 32 communities, with each of the communities having a size in the
range [15, 50]. The above parameters are common in the two datasets, with each
having additional parameters regarding the events it implements. Specifically
in the Expand/Contract dataset 10 randomly selected communities expand or
contract by 25% of their previous size, while in the Hide/Appear dataset 10% of
the communities hide and reappear between timeframes.

Real World Data: Reddit . Reddit is a popular social network that has the
interesting construct of the subreddits which are theme-defined sub-communities
of the network, e.g. “cats”, “AskReddit”, “Philosophy”. The subreddits are
explicitly used as the ground truth of our community tracking and the network is
constructed through employing the users as nodes and their interactions/replies
in the comment section as edges. We used the JSON comment dumps that can be
found here1, cleaned them, preprocessed them and sampled from them in order
to have our final dataset based on the comments of the months 9/2010 and
10/2010. We removed inactive users and small, inactive or very large subreddits.
The timeframe length we used was 1 week and the experiments were performed
for 4 and 8 non-overlapping timeframes. Thus across a month there are 4 static
graphs of communities that macroscopically compose a dynamic graph.

5.2 Evaluation Measures

To evaluate the results of the experiments we use a set of extrinsic metrics. These
metrics require the actual community grouping to be known, commonly referred
to as the ground truth. A detected community structure is considered good if it is
close to the ground truth. There are different approaches in how to quantify the
term “close”. We use set matching methods (Normalised Mutual Information
[14]) and pairwise evaluation measures (Omega Index [16], BCubed [1]). Let
T = {T1, T2, . . . , Tk} be the ground truth community structure of the network
and C = {C1, C2, . . . , Cn} be the community structure detected by an algorithm.
Evaluation in this work is done in the context of dynamic communities, i.e.
1 http://files.pushshift.io/reddit/comments.

http://files.pushshift.io/reddit/comments

TimeRank: Community Discovery in Dynamic Networks 345

ground truth dynamic communities are compared to the dynamic communities
generated by the tested algorithms. The omega index as described in [16] can be
found in GitHub2 and the Python Package Index3.

5.3 Results

Below there are the results of some interesting experiments using the synthetic
and the Reddit data. The methods used were TimeRank-AOC (TR-AOC) and
TimeRank-NOC (TR-NOC) with MutuRank and with uniform timeframe dis-
tributions (-U) for q (Table 2), Non Negative Tensor Factorisation (NNTF) and
Group Evolution Discovery (GED). Overlapping versions were also tested, but
showed no promising results. All code is available in GitHub.4,5

Benchmark Dynamic Networks In the synthetic Expand/Contract dataset,
from the existing 32 communities, 10 expand and another 10 contract. Both
expansion and contraction happen with a rate of 25%. The results, as seen in
Table 1 establish that TimeRank succeeds in tracking the dynamic communities.
In the case of NOC performance is boosted with the use of MutuRank, while
AOC performance is inferior to NOC. In general the connection of each image
with all of its nodes in this case does not help MutuRank uncover a relative
ranking for the timeframes. While NNTF performs satisfactorily, GED fails to
track the communities, because it identifies some expanded or contracted com-
munities as new ones, instead of adjusted versions of the ones it has previously
encountered.

Table 1. Tables for Expand/Contract and Hide/Appear datasets

Expand/Contract Hide/Appear

Method NMI Omega Prec Rec F1 NMI Omega Prec Rec F1

TR-AOC-U 0.866 0.874 0.905 0.882 0.893 1.000 1.000 1.000 1.000 1.000

TR-NOC-U 0.908 0.919 0.944 0.921 0.933 0.880 0.890 0.912 0.963 0.937

TR-AOC 0.849 0.864 0.890 0.883 0.886 1.000 1.000 1.000 1.0000 1.000

TR-NOC 0.923 0.954 0.964 0.944 0.953 0.910 0.918 0.935 0.963 0.949

NNTF 0.805 0.8445 0.842 0.864 0.853 1.000 1.000 1.000 1.000 1.000

GED 0.464 0.659 0.924 0.572 0.707 0.531 0.700 0.901 0.662 0.763

2 https://github.com/isaranto/omega-index.
3 https://pypi.python.org/pypi/omega index/.
4 https://github.com/isaranto/community-tracking.
5 https://github.com/NightmareNyx/CommunityTracking.

https://github.com/isaranto/omega-index
https://pypi.python.org/pypi/omega_index/
https://github.com/isaranto/community-tracking
https://github.com/NightmareNyx/CommunityTracking

346 I. Sarantopoulos et al.

Table 2. Values for q distribution for the Expand/Contract and Hide/Appear datasets

Expand/Contract Hide/Appear

Method t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

TR-AOC 0.212 0.196 0.198 0.196 0.199 0.214 0.189 0.199 0.191 0.207

TR-NOC 0.217 0.189 0.191 0.196 0.207 0.218 0.183 0.193 0.193 0.213

The output of NNTF does not support dynamic communities that are made
up of communities whose composition differs in different timeframes. The compo-
sition of communities is obtained from the factors A and B, and factor C declares
the timeframes in which each community exists, thus defining dynamic commu-
nities that comprise of identical communities in different timeframes. With the
above taken into consideration it seems as the Hide/Appear dataset , with its
evaluation results presented in 1 is tailored to the NNTF method, as commu-
nities in this dataset have exactly the same composition across time, but 10%
of them disappear in some timeframe and appear again in another timeframe.
TimeRank AOC captures these changes because it connects with all the images
of a node, thus being able to place the same community in the corresponding
dynamic one. TimeRank NOC on the other hand, although it achieves high per-
formance, it does not provide such strong connections between the node images
as in AOC, hence it can misplace nodes in datasets with behaviour similar to
this one. In all the changes GED identifies death events in the case where a com-
munity is hidden introducing a new dynamic community when the community
appears again, accompanied by a birth event.

Reddit Each table showcases the results in the basic (4 timeframes) and
extended setting (8 timeframes) which tested the scalability of the methods.

Experiment 1 This experiment has 17 different-sized communities with
temporal behaviours such as delayed birth, death, non-uniform size distribution
across time, overlaps, death and re-birth. MutuRank-oriented TimeRank algo-
rithms ended up with non-uniform weights and scoring marginally lower than
uniform versions. Meanwhile, GED takes the lead managing to detect the sequen-
tial behaviour of the communities in the timeframe, especially the birth/death
incidents. In the 8 timeframes setting, GED couldn’t keep up and lowered its
scores making TR-NOC the winner, which was better at differentiating between
deaths/births and expands/contracts in the long run. Results in Table 3 below.
At this point we can mention that MutuRank cause a significant drop in execu-
tion time performance, being more than 100 times slower than TimeRank with
uniform q distributions.

TimeRank: Community Discovery in Dynamic Networks 347

Table 3. Experiment 1 results for 4 and 8 timeframes

4 Timeframes 8 Timeframes

Method NMI Omega Prec Rec F1 NMI Omega Prec Rec F1

TR-AOC-U 0.385 0.316 0.557 0.56 0.558 0.319 0.243 0.547 0.543 0.545

TR-NOC-U 0.48 0.428 0.639 0.619 0.629 0.377 0.455 0.612 0.580 0.596

TR-AOC 0.390 0.373 0.576 0.605 0.591 0.295 0.217 0.531 0.521 0.526

TR-NOC 0.457 0.473 0.633 0.623 0.628 0.435 0.537 0.610 0.654 0.631

NNTF 0.447 0.496 0.627 0.642 0.634 0.395 0.480 0.590 0.650 0.619

GED-T 0.584 0.776 1.000 0.625 0.769 0.323 0.432 1.000 0.377 0.548

Experiment 2 Here we have three big communities that change size in each
timeframe with minor overlap. Results in Table 4 show that it was an easy win
for TR-NOC in the 4-timeframe setting, which employed MutuRank correctly
catching the underlying temporal structures. Interestingly, the tables are turned
when four more timeframes are added, where everything fails except for NNTF,
which scores much higher than before, due to the small number communities
that express membership homogeneity through this longer period.

Table 4. Experiment 2 results for 4 and 8 timeframes

4 Timeframes 8 Timeframes

Method NMI Omega Prec Rec F1 NMI Omega Prec Rec F1

TR-AOC-U 0.050 0.068 0.480 0.544 0.510 0.028 −0.007 0.438 0.438 0.438

TR-NOC-U 0.380 0.487 0.692 0.905 0.784 0.032 0.032 0.435 0.536 0.480

TR-AOC 0.038 0.032 0.471 0.542 0.500 0.028 −0.007 0.438 0.439 0.439

TR-NOC 0.456 0.604 0.741 0.951 0.833 0.031 0.030 0.435 0.536 0.480

NNTF 0.276 0.389 0.723 0.652 0.686 0.637 0.772 0.849 0.933 0.890

GED-T 0.210 0.280 1.000 0.269 0.424 0.099 0.147 1.000 0.132 0.233

Experiment 3 This experiment contains 20 different sized communities that
have big overlaps. Unsurprisingly, it proved to be the hardest one so far, espe-
cially for TimeRank, as the low scores indicate in Table 5 below. At this point
we tried using the Fuzzy C-Means algorithm instead of K-Means in the Spectral
Clustering process of TimeRank, to achieve an overlapping version of TimeR-
ank and also used the overlapping version of NNTF. We tested these versions
in the first 4 timeframes that showed the biggest overlap. Neither the overlap-
ping versions nor the simple ones managed to score high; former losing points
from high overlap generosity and the latter from the inability to predict over-
laps. Moreover, the FCM clustering on the spectral embedding returned very
uniform assignment matrices which led to predicting very overlapping commu-
nities. The highest scores came from GED and simple NNTF, except for the
BCubed-Recall in which NNTF-Overlap scored relatively high, because of the

348 I. Sarantopoulos et al.

high amount of true positives. TimeRank’s overlapping versions scored poorly
and are not included.

Table 5. Experiment 3 results for 4 and 8 timeframes

4 Timeframes 8 Timeframes

Method NMI Omega Prec Rec F1 NMI Omega Prec Rec F1

TR-AOC-U 0.043 0.091 0.241 0.512 0.327 0.028 0.029 0.198 0.431 0.271

TR-NOC-U 0.056 0.075 0.256 0.501 0.338 0.080 0.088 0.227 0.566 0.324

TR-AOC 0.044 0.094 0.243 0.520 0.331 0.029 0.031 0.199 0.431 0.272

TR-NOC 0.071 0.114 0.264 0.495 0.345 0.053 0.086 0.228 0.420 0.296

NNTF 0.277 0.410 0.551 0.451 0.496 0.170 0.344 0.582 0.386 0.464

GED-T 0.277 0.398 1.000 0.307 0.470 0.088 0.234 1.000 0.178 0.302

NNTF-Ovlp 0.109 0.134 0.171 0.859 0.286

6 Conclusions and Future Work

In this work we proposed TimeRank, with its two variations, as a new one-
step method that performs both tracking and community detection in dynamic
networks in one step. TimeRank represents a dynamic network as a tensor and
then performs a random walk on the tensor in order to efficiently expose dynamic
community structure. We compared TimeRank with two other methods. There
seems to be no universal solution that can guarantee the best outcome. The GED
method, could be characterised as a local method, as it can only discover changes
between sequential timeframes, while NNTF is more suitable when communities
show a membership homogeneity across time. On the other hand, TimeRank is
robust to disruptions of homogeneity and is able to discover non-local temporal
structure.

Future work involves experiments with more datasets. To speed up execution
time we could relax the probabilities’ estimation by adopting the idea from [17].
Finally, the inter-timeframe edges in AOC could have weights, proportional to
the distance in terms of timeframes.

References

1. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering
evaluation metrics based on formal constraints. Inf. Retr. 12(4), 461–486 (2009)

2. Appel, A.P., Cunha, R.L., Aggarwal, C.C., Terakado, M.M.: Temporally evolving
community detection and prediction in content-centric networks. arXiv:1807.06560
(2018)

3. Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P.,Swami,
A., Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery oftemporal
(‘comet’) communities. In: Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 271–283. Springer (2014)

http://arxiv.org/abs/1807.06560

TimeRank: Community Discovery in Dynamic Networks 349

4. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing
the evolutionary behavior of interaction graphs. ACM Trans. Knowl. Discov. Data
(TKDD) 3(4), 16 (2009)

5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. (10), P10,008 (2008)

6. Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution
discovery in social networks. Soc. Netw. Anal. Mining 3(1), 1–14 (2013)

7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
8. Gauvin, L., Panisson, A., Cattuto, C.: Detecting the community structure and

activity patterns of temporal networks: a non-negative tensor factorization app-
roach. PloS One 9(1), e86,028 (2014)

9. Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identi-
fication of group changes in blogosphere. In: 2012 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM), pp.
1201–1206. IEEE (2012)

10. Goldberg, M.K., Magdon-Ismail, M., Nambirajan, S., Thompson, J.: Tracking and
predicting evolution of social communities. In: SocialCom/PASSAT, pp. 780–783.
Citeseer (2011)

11. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in
dynamic social networks. In: Advances in Social Networks Analysis and Mining,
pp. 176–183. IEEE (2010)

12. Harshman, R.A.: Parafac: an “explanatory” factor analysis procedure. J. Acoust.
Soc. Amer. 50(1A), 117–117 (1971)

13. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
(JACM) 46(5), 604–632 (1999)

14. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hier-
archical community structure in complex networks. New J. Phys. 11(3), 033,015
(2009)

15. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046,110 (2008)

16. Murray, G., Carenini, G., Ng, R.: Using the omega index for evaluating abstrac-
tive community detection. In: Proceedings of Workshop on Evaluation Metrics
and System Comparison for Automatic Summarization, pp. 10–18. Association for
Computational Linguistics (2012)

17. Ng, M.K.P., Li, X., Ye, Y.: Multirank: co-ranking for objects and relations in
multi-relational data. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1217–1225. ACM (2011)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical Report, Stanford InfoLab (1999)

19. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature
446(7136), 664 (2007)

20. Tajeuna, E.G., Bouguessa, M., Wang, S.: Tracking the evolution of community
structures in time-evolving social networks. In: IEEE International Conference on
Data Science and Advanced Analytics (DSAA). 36678 2015, pp. 1–10. IEEE (2015)

21. Takaffoli, M., Fagnan, J., Sangi, F., Zäıane, O.R.: Tracking changes in dynamic
information networks. In: 2011 International Conference on Computational Aspects
of Social Networks (CASoN), pp. 94–101. IEEE (2011)

22. Wu, Z., Cao, J., Zhu, G., Yin, W., Cuzzocrea, A., Shi, J.: Detecting overlapping
communities in poly-relational networks. World Wide Web 18(5), 1373–1390 (2015)

350 I. Sarantopoulos et al.

23. Yang, J., Leskovec, J.: Overlapping community detection at scale: a non negative
matrix factorization approach. In: Proceedings of the Sixth ACM International
Conference on Websearch and Data Mining, pp. 587–596. ACM (2013)

	TimeRank: A Random Walk Approach for Community Discovery in Dynamic Networks
	1 Introduction
	2 Related Work
	3 Background: MutuRank
	4 TimeRank
	5 Experimentation
	5.1 Data Description and Engineering
	5.2 Evaluation Measures
	5.3 Results

	6 Conclusions and Future Work
	References

