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ABSTRACT
Real world social networks are highly dynamic environments con-
sisting of numerous users and communities, rendering the tracking
of their evolution a challenging problem. In this work, we propose
a parallel algorithm for tracking dynamic communities between
consecutive timeframes of the social network, where communi-
ties are represented as undirected graphs. Our method compares
the communities based on the widely adopted Jaccard similarity
measure and is implemented on top of Apache Flink, a novel frame-
work for parallel and distributed data processing. We evaluate the
benefits, in terms of execution time, that parallel processing brings
to community tracking on datasets carrying different quantitative
characteristics, derived from two popular social media platforms;
Twitter and Mathematics Stack Exchange Q&A. Experiments show
that our parallel method has the ability to calculate the similarity
of communities within seconds, even for large social networks,
consisting of more than 600 communities per timeframe.

CCS CONCEPTS
• Human-centered computing → Social network analysis; •
Computing methodologies→ Parallel algorithms;

KEYWORDS
Social Network Analysis, Community Tracking, Parallel Processing,
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1 INTRODUCTION
In real world social networks, users who share common activi-
ties or interests (e.g. work, hobbies) closely interact (e.g. via likes,
re-tweets) and form user communities. The membership of com-
munities tends to change gradually as a result of users changing
interests. As social interactions in these networks evolve, it is of
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great importance to develop analysis tools that effectively capture
this evolution. In social network analysis, social networks are often
represented as graphs, the social actors, or users, constitute the ver-
tices of these graphs, and the edges indicate the social relationships
or interactions between the network actors.

There exist two main directions in analyzing social networks
represented as graphs. One is to handle them as static graphs which
do not change as time passes. However, real life social networks,
are dynamic and tend to evolve over time since their users dynami-
cally join or leave communities. Hence considering the dynamic
nature of communities in their analysis, in order to reveal their
structure and evolution, is of great importance [1, 2, 5, 9, 10]. Study-
ing the evolution of a community, which is the main focus of the
dynamic community tracking literature [2, 4–8], consists of locating
the instances (i.e. counterparts) of the community in the different
timeframes, where each timeframe corresponds to a distinct time
interval of a timestamped social network. Often an event is also as-
signed between two instances of the same community to designate
the type of evolution (e.g. community continuation, dissolution).

Despite the recent bloom of methods tackling the problem of dy-
namic community tracking, one major issue of such approaches is
the high number of comparisons required to calculate evolutionary
events. In the typical case, community tracking algorithms have
to compare every community of a given timeframe, with every
community contained in the next one in order to uncover their
counterparts and categorize their temporal evolution [4]. Appar-
ently, this procedure does not scale well to large social networks.

In this work, we propose a simple and efficient parallel commu-
nity tracking method, which compares communities of consecutive
timeframes based on the Jaccard similarity measure. We imple-
mented our method using Apache Flink1, a framework for parallel
and distributed data processing, which allows community com-
parisons to be executed across multiple CPUs. Subsequently, we
evaluated our method using real world datasets derived from popu-
lar social media platforms such as Twitter2 and Mathematics Stack
Exchange Q&A3. Performing experiments using different Apache
Flink configurations and datasets carrying different quantitative
characteristics, enables the better assessment of the scalability of
our method and of the behavior of Apache Flink under different
loads.
1https://flink.apache.org/
2https://twitter.com/
3https://math.stackexchange.com/
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2 PROBLEM DEFINITION
Before describing our framework, it is important to introduce the
basic notation used in this work. A static undirected graph is de-
noted by G = (V ,E) where V is a set of vertices and E ⊆ V ×V is a
set of edges. A dynamic social network, is a collection of undirected
graphs corresponding to the timeframes, that capture the time seg-
mentation of the social network. This dynamic social network is
defined as a set TF = {TF0,TF1, . . . ,TFT−1} of timeframes with
T being the number of timeframes available. Each timeframe TFt ,
contains a set of communities (i.e. subgraphs of the timeframe’s
graph) {C0

t ,C
1
t , . . . ,C

Kt−1
t } with Kt denoting the number of com-

munities in that timeframe. Each community Ckt contains a set of
vertices Vt,k corresponding to the users of the community and a
set of edges Et,k representing the interactions among its users.

The main problem addressed in this work, is the speed up of com-
munity tracking by parallelizing the execution of the comparisons
required to match communities between sequential timeframes, us-
ing Apache Flink as the underlying parallelization framework. Each
community Ckt of a given timeframe TFt must be compared to all
communitiesC j

t+1 of the following timeframe. To compare commu-
nities, a community similarity measure is needed. As similarity mea-
sure we choose the Jaccard similarity, as it is very easy to calculate
and has already been exploited in tracking communities [6, 7]. Given
a pair of communities at consecutive timeframes Ckt , C

j
t+1, their

Jaccard similarity is defined as: Jaccard(Ckt ,C
j
t+1) =

Vt,k∩Vt+1, j
Vt,k∪Vt+1, j .

3 APACHE FLINK
Apache Flink is an open source framework for distributed data
streaming and artificial intelligence applications. It offers data struc-
tures and functions that help users in parallelizing their algorithms
which then Flink is responsible to execute. Thus the details of
parallel programming are abstracted away. Flink consists of three
distributed components: (1) the job client, (2) the job manager and
(3) the task manager. All these components have to communicate
in order to parallelize and execute the submitted program. The job
client takes a Flink job (i.e. an algorithm) as input, creates its job
graph which is a representation of the algorithm’s workflow, and
submits it to the job manager. The job manager is responsible to
determine the resource allocation and task scheduling of the pro-
gram. When a task manager becomes available and has successfully
registered with the job manager, the latter starts to distribute the
individual tasks of a job to the task manager. The task manager
is a JVM process which executes tasks using one or more threads.
The task manager may have one or more available task slots, whose
number determines the degree of Flink’s parallelism of task execu-
tion. Tasks (e.g. Map, Reduce, Cross) are possible to be split into
several subtasks which are distributed to the available task slots for
execution, and each such subtask processes an appropriate subset
of the task’s input data. It is Flink’s responsibility to decide the size
of the input of each subtask. The number of parallel subtasks of a
Flink task, is defined by the programmer by setting the number of
task slots (i.e. the parallelism degree). At this point, it is important
to mention that Flink by default utilizes all available CPU cores
(even in the case of a single task slot) and that a task slot is not
bound to a particular CPU core.

4 PARALLEL DYNAMIC COMMUNITY
TRACKING

To track communities across consecutive timeframes, it is necessary
to compare the communities by estimating their pairwise similari-
ties, in order to locate their counterparts. The problem of calculating
the similarities between two consecutive timeframes consisting of
K and K ′ communities, respectively, has complexity O(K × K ′).

Due to the high number of comparisons required to perform
community tracking, especially when using large datasets with
several communities and timeframes, it is imperative to parallelize
this procedure. In order to speed up community tracking, we use
Apache Flink, a framework for parallel and distributed data process-
ing. Note that in this work we solely focus on parallelizing the basic
step involved in community tracking, i.e. the pairwise comparisons
of communities. We do not study the steps involved in deciding
which communities match and assigning evolutionary events be-
tween them. The matching and the assignment of events can be
performed as a post-processing step using as input the community
similarities. Hence, different tracking approaches can benefit from
our parallelization.

Algorithm 1 Parallel Algorithm for Community Tracking
Input: TF : the set of timeframes
1: Obtain Flink’s execution environment
2: TFver t ←Gather Vt,k ,∀Ckt ∈ TFt ,∀t ∈ {0, 1 . . .T − 1}
3: TFids = {0, 1 . . .T − 1}
4: TFf il t = {}
5: for id ∈ TFids do
6: FilterResult ← Filter (TFver t , id)
7: TFf il t ← TFf il t .append(FilterResult)
8: end for
9: JaccardSim = {}
10: for i = 0 to SizeO f (TFf il t ) − 2 do
11: CrossResult ← Cross(TFf il t,i ,TFf il t,i+1, Jaccard)
12: JaccardSim ← JaccardSim.append(CrossResult)
13: end for
Output: JaccardSim

An overview of our parallel method is described in Algorithm 1.
After initializing Flink’s execution environment (Step 1), we gather
the vertices of each community into an array, and store these ar-
rays into a new set (TFver t ) alongside with the their specific time-
frame and community identifiers4 (Step 2). This was done using
the GroupReduce transformation of Apache Flink. In our method,
for all timeframes, we grouped the edges of each community using
the community id, and then we reduced the vertices of these com-
munities to an array. Next (Steps 5-8), we filter each timeframe in
the reduced dataset using its id. By filtering, an essential timeframe
isolation is achieved since Flink’sDataSet, an internal data structure
which is used to store intermediate as well as final results, does
not support indexes like those used in traditional programming
languages. After that (Steps 10-13), by using Flink’s Cross trans-
formation, we automatically build all the pairwise combinations
4The timeframe identifiers are indexes from the set {0, 1, . . . , T −1}. The community
identifiers for timeframe T Ft are indexes from the set {0, 1, . . . , Kt−1 }.
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Table 1: Number of communities and community vertices
over the timeframes of the tested datasets.

Communities Vertices
Dataset min max mean min max mean
Crimea 32 120 36 15 159 40

WorldCup 175 327 253 132 250 173
MathExchange 479 940 729 45 58 54

of the communities of two consecutive timeframes and apply on
each pair the user-defined Jaccard similarity function. The Cross
transformation ultimately builds the Cartesian product between the
communities of two timeframes, which has the same complexity
as a serial algorithm. The difference is that all these comparisons
can now be executed over multiple CPU cores in a parallel fashion
through Flink. Finally, when all Cross transformations are com-
pleted, Flink collects and returns the results (Step 14).

The main advantages of our method are that it can exploit all
available CPUs without any effort due to Flink, an alternative simi-
larity measure can be easily incorporated by simply replacing the
similarity function and that the community matching and evolu-
tionary events can be calculated at a post-processing step using the
output of our algorithm.

5 DATASETS
To experimentally evaluate our community tracking method, we
used three different datasets containing communities, derived from
real world social networks. More specifically, we used two datasets
from Twitter, one discussing the Crimea crisis on the 18th of March
2014, containing 208,841 tweets, and another discussing the 2014
FIFA World Cup during May 2014, containing 1,112,875 tweets.
Furthermore we used a dataset containing communities from the
Mathematics Stack Exchange Q&A website, which includes 376,030
posts spanning between 2009 and 2013. The two Twitter datasets
were split in 20 timeframes, while the MathExchange dataset in 10
timeframes.

To detect communities on the Twitter datasets we employed
the Louvain method [3] on the timeframe graphs. The vertices
correspond to users who posted a tweet on a particular timeframe
and an edge connects two users if either of the two mentioned the
other in their tweets. In the MathExchange dataset each post is
tagged with its subject areas (i.e. topics). To detect the communities
in each timeframe, we take advantage of the topics and consider
that users belong in the same community if they make posts about
the same topic in a particular timeframe. Hence, each community
is associated with a particular topic. Edges connect users who post
an answer or comment to respond to the other’s post.

The characteristics of the datasets used for our evaluation are
summarized in Table 1. The Crimea dataset contains timeframes
consisting of a relatively small number of communities, and these
communities, contain on average a small number of vertices. The
WorldCup dataset contains significantly more communities per
timeframe compared to Crimea and these communities contain
considerably more vertices. Finally, the MathExchange dataset con-
sists of even more communities per timeframe than WorldCup, but
these communities have on average less members than WorldCup.

6 EXPERIMENTAL EVALUATION
The evaluation of our community tracking method was performed
using a machine with 12 cores at 2.5GHz and 30GB of RAMmemory.
Our parallel community tracking algorithmwas implemented using
the DataSet API offered by the Apache Flink framework and is avail-
able on Github5. The tracking algorithm described in Section 4 was
executed for the Crimea, WorldCup and MathExchange datasets
and the similarities among communities contained in consecutive
timeframes were calculated. We performed experiments for differ-
ent parallelism level configurations (i.e. number of task slots) of
Apache Flink, ranging from parallelism 1 to parallelism 12 given
that our machine had 12 CPUs, allowing us to locate the best con-
figuration for each dataset. Remember (Section 3) that parallelism
1 (i.e. one task slot) does not imply serial execution.

To better assess the scalability of our method in the context of a
distributed framework like Apache Flink, we decided to conduct
additional experiments by artificially enlarging each dataset. Specifi-
cally, we enlarged each dataset by repeating the existing timeframes
two and three times. For the Crimea and WorldCup datasets we got
two larger datasets containing 40 and 60 timeframes respectively,
while for MathExchange two larger datasets containing 20 and 30
timeframes respectively. We repeated each experiment 25 times,
and the mean execution time of these iterations is reported along
with the standard deviation. The overall numerical results of our
experiments are illustrated in Figure 1.

Using the Crimea dataset as input to our algorithm, as Figure 1a
depicts, we can see that after an initial reduction of the execution
time, it is clear that as parallelism increases, the performance is
reduced. This behavior is observed to all versions of this dataset.
There is a simple explanation behind this behavior. The Crimea
dataset is a relatively small dataset, thus, by increasing parallelism
(i.e. creating more subtasks and thus spawning more threads), the
execution overhead also increases, becoming greater than the pro-
cessing time needed for the actual data.

Experiments conducted using the WorldCup dataset, are pre-
sented in Figure 1b. For 20 timeframes, as parallelism increases, the
execution of the algorithm decreases until parallelism 4. After that,
the execution time remains steady, showing a slight increase for
higher parallelism levels. By increasing the number of timeframes to
40, we can observe that our method’s execution time now decreases
until parallelism level 8. After this point, it is slightly increasing
due to the overhead created by the additional parallelism. Finally,
by increasing the input to 60 timeframes the execution time, drops
until parallelism 4 and then remains steady with some slight fluc-
tuations. We observe that as the dataset becomes larger (i.e. more
timeframes) a higher parallelism level is preferable. An interesting
observation throughout the above experiments, is the consistency
of the results as expressed by the small standard deviation.

The results of our method on the MathExchange dataset are
depicted in Figure 1c. Experiments conducted for 10 timeframes,
show that until parallelism 6, the execution time slightly decreases.
After that, the execution time remains relatively steady. However,
for more timeframes, we observe a decrease in performance even for
parallelism 4 and the standard deviation increases. Especially after
parallelism 8, both for 20 and 30 timeframes experiments, a rapid

5https://github.com/gkech/A-Parallel-Algorithm-for-Tracking-Dynamic-Communities-Flink
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Figure 1: Execution time of our community tracking approach for various Flink Parallelism levels on three social network
datasets. The number next to the dataset name indicates the number of dataset timeframes.

Table 2: Execution time of GED algorithm.

Dataset Exec. Time (sec)
Crimea 20 21.67

WorldCup 20 810.45
MathExchange 10 1670.69

drop in performance is evident, and the standard deviation further
increases. We observed that experiments with 20 and 30 timeframes
of the MathExchange dataset, utilized fully the machine’s RAM
memory, which created a severe bottleneck in the execution of
the experiments and introduced delays that are related to memory
management issues and not to our method.

Until now, we discussed only the execution time variations ob-
served for different parallelism levels of Apache Flink. Below we
compare our method to a popular serial community tracking algo-
rithm, in order to get a rough estimate of the speedup we achieve.
Table 2 illustrates the execution time needed to calculate evolution-
ary events of communities in consecutive timeframes using the
GED method [4] implemented in Python6, on the aforementioned
datasets. We chose GED for this comparison as it follows a very
similar approach to ours in order to track the communities. Even
for parallelism 1, our method achieves execution time which is
88.3% faster than the sequential GED on the Crimea dataset. In fact,
for the two bigger datasets of WorldCup and MathExchange, this
improvement increases to 96.3% and 96.8% respectively.

Summarizing the reported results, our experiments indicate that
the parallel algorithm proposed in this work is much faster than
serial algorithms for tracking dynamic communities. Moreover, the
best parallelism level of Apache Flink, depends on the underlying
dataset, as depicted in Figure 1. It is clear that for larger datasets
with more timeframes and communities per timeframe, higher
parallelism is preferable. It is also clear from the experiments that a
high parallelism level may have negative impact on performance if
the dataset is not big enough, as in the case of the Crimea dataset.

7 CONCLUSIONS
In this paper, we presented a parallel algorithm for tracking dy-
namic communities based on Apache Flink. Our proposed method
6https://github.com/iit-Demokritos/community-Tracking-GED

has the ability to calculate the similarity of communities contained
in consecutive timeframe within seconds, using a widely adopted
similarity measure. The evaluation of our method was conducted
using three real world social networks, which enabled the com-
prehensive evaluation of the scalability of our method with very
encouraging results. Our method is highly modular, as the similarity
function used to compare communities, could be easily substituted.
Furthermore, as we implemented this method using Apache Flink,
it has the ability to scale to larger datasets to those tested here.

In the future we intend to extend our parallel algorithm, by
incorporating the necessary steps to categorize the evolution of
communities using the event labels proposed in the literature, such
as community continuation, growth, shrinkage etc. Additionally, we
plan to devise a software suite for dynamic community tracking
which is going to offer streaming capabilities in order to track evo-
lutionary events in real time on top of the fast batch data processing
proposed in this work.
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