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ABSTRACT
Real world social networks are highly dynamic environments con-
sisting of numerous users and communities, rendering the tracking
of their evolution a challenging problem. In this work, we propose
a parallel algorithm for tracking dynamic communities between
consecutive timeframes of the social network, where communi-
ties are represented as undirected graphs. Our method compares
the communities based on the widely adopted Jaccard similarity
measure and is implemented on top of Apache Flink, a novel frame-
work for parallel and distributed data processing. We evaluate the
benefits, in terms of execution time, that parallel processing brings
to community tracking on datasets carrying different quantitative
characteristics, derived from two popular social media platforms;
Twitter and Mathematics Stack Exchange Q&A. Experiments show
that our parallel method has the ability to calculate the similarity
of communities within seconds, even for large social networks,
consisting of more than 600 communities per timeframe.

CCS CONCEPTS
• Human-centered computing → Social network analysis;
• Theory of computation → Graph algorithms analysis; •
Computing methodologies→ Parallel algorithms;

KEYWORDS
Social Network Analysis, Community Tracking, Parallel Processing,
Apache Flink

1 INTRODUCTION
In real world social networks, users who share common interests or
activities (e.g. hobbies, work) closely interact (e.g. via likes, retweets)
and form user communities. The membership of communities tends
to change gradually as a result of users changing interests. As social
interactions in these networks evolve, it is of great importance to
develop analysis tools that effectively capture this evolution. In
social network analysis, social networks are often represented as
graphs, the social actors, or users, constitute the vertices of these

graphs, and the edges indicate the social relationships or interac-
tions between the network actors. A social network graph usually
consists of several communities which are commonly defined as
densely connected subsets of users (i.e. subgraphs) who are loosely
connected with others.

There exist two main directions in analyzing social networks
represented as graphs. One is to handle them as static graphs which
do not change as time passes. However, real life social networks, are
dynamic and tend to evolve over time since their users dynamically
join or leave communities, affecting the network’s composition.
Hence considering the dynamic nature of communities in their
analysis, in order to reveal their structure and evolution, is of great
importance [1, 3, 5, 10, 13]. Tracking the evolution of communities
has several real life applications such as, in cable and mobile net-
work management, to optimize the structure and capacity of their
networks; in journalism, to check how a story develops and if it
is gaining momentum; in law enforcement, to track criminal and
terrorist network activity.

In order to model dynamic communities in a social network, it is
essential to initially discretize the time dimension by segmenting a
timestamped social network into snapshots, also called timeframes,
that cover different, and possibly overlapping, time periods. Then
by using community detection algorithms, such as the Louvain
method [2], sets of highly intra-connected vertices (i.e. communi-
ties) are identified for each timeframe. Studying the evolution of
a community, which is the main focus of the dynamic community
tracking literature [1, 3, 10], consists of locating the instances (i.e.
counterparts) of the community in the different timeframes. Often
an event is also assigned between two instances of the same commu-
nity to designate the type of evolution. Commonly used events are
community continuation, community shrinkage, community growth
and community dissolution.

Despite the recent bloom of methods tackling the problem of dy-
namic community tracking, one major issue of such approaches is
the high number of comparisons required to calculate evolutionary
events. In the typical case, community tracking algorithms have
to compare every single community of a given timeframe, with
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every community contained in the next one in order to uncover
their counterparts and categorize their temporal evolution [3]. This
procedure is executed, for all communities in every timeframe.
Given that contemporary real world social networks, contain thou-
sands or even millions of users and communities, it is clear that
dynamic community tracking algorithms have to scale to that order
of magnitude.

In this work, we propose a simple and efficient parallel commu-
nity tracking method, which compares communities of consecutive
timeframes based on the widely adopted Jaccard similarity measure.
We implemented our method using Apache Flink1, a framework for
parallel and distributed data processing, which allows community
comparisons to be executed across multiple CPUs. Subsequently,
we evaluated our method using real world datasets derived from
popular social media platforms such as Twitter2 and Mathemat-
ics Stack Exchange Q&A3. Performing experiments using datasets
containing different number of timeframes, communities and com-
munity sizes, enables the better assessment of the scalability of our
method and of the behavior of Apache Flink under different loads.
Finally, by conducting experiments using various Apache Flink
parallelism configurations, we were able to fine tune the parallel
framework for the given datasets and for the specific machine used
for our experiments, thus leading to the fastest execution.

Our method has the ability to calculate the similarity of commu-
nities within seconds, scales quite well to social networks consisting
of thousands of users and communities, and it is easily extensible
towards supporting different similarity measures with minimum ef-
fort from the end user. Furthermore, as our method is implemented
using the Apache Flink framework, it has the potential to scale
to even bigger social networks, as long as more computational
resources are available.

The rest of this paper is structured as follows. In Section 2 we
briefly review related work. In Section 3 we introduce basic nota-
tion and formalize our problem. Then, in Section 4, we clarify some
important characteristics of the functionality of Apache Flink. In
Section 5, we present our parallel algorithm for tracking dynamic
communities, whereas, in Section 6 we describe the characteristics
of the datasets used in our experiments. The results and the evalua-
tion of our method are discussed in Section 7. Finally, in Section 8
we conclude this work and discuss future directions.

2 RELATEDWORK
Dynamic Community Tracking. Many methods have been pro-
posed for tackling the problem of dynamic community tracking.
In the general case, these methods are divided in two distinct cate-
gories. The one-step methods and the two-step methods. One-step
methods are those which combine community detection and com-
munity tracking in a single-simultaneous step. Two-step methods,
require at the first step, the application of a community detection
algorithm. Then, at the second step, the execution of the community
tracking algorithm using as input the previously detected commu-
nities follows. Two-step approaches do not tend to focus on the first
step (community detection), but rather on tracking of the evolution

1https://flink.apache.org/
2https://twitter.com/
3https://math.stackexchange.com/

of the already detected communities. Our approach falls under the
two-step category.

Gauvin et al. [6], proposed an one-step method to simultaneously
identify network communities together with their activity patterns
over time based on non-negative tensor factorization techniques.
They represented the interaction between users across time using
a 3-dimensional tensor T ∈ RN×N×T , where N denote the number
of nodes (i.e. users) of the network and S the number of network
timeframes. This approach outputs two matrices that represent the
community detection and the community tracking results. Saran-
topoulos [12], proposed Timerank, an one-step method for detecting
and tracking communities in dynamic social networks. This method
represents the social network as a tensor, utilizes Muturank [14] in
order to rank the timeframes, and as a final step, it applies spectral
clustering to obtain the dynamic communities.

In the context of two-step methods, Asur et al. [1], proposed an
event-based framework for characterizing dynamic communities
which contain various evolutionary events such as, group continue,
dissolve and form. They evaluated their framework using two real
world datasets; one derived from DBLP (Digital Bibliography & Li-
brary Project)4 and another from the clinical trials of a major phar-
maceutical company. Brodka et al. [3], proposed Group Evolution
Detection (GED), a method for dynamic community tracking based
on a measure called inclusion which captures both the quantity
(i.e. the number of members) and the quality (i.e. the importance)
of members of a community. Goldberg et al. [7], proposed a two
step method, which is based on an axiomatic foundation for the
evolution of communities. By viewing each dynamic community as
a chain, they proposed three axioms: (1) Identity, (2) Monotonicity
and (3) Extension which formulate the chain strength based on the
strength of the chain’s weakest links. In this way, they correlated
the lifespan of the communities to structural parameters of their
early evolution. Greene et al. [8], addressed the problem of dynamic
community tracking, by representing the social network as a col-
lection of graphs, one for each timeframe. After applying a static
community detection algorithm to extract the dynamic commu-
nities in each timeframe, they developed a community tracking
strategy which finds the counterparts of the communities based
on the Jaccard similarity. For the evaluation their method, they
used synthetic datasets, as well as data coming from a real mobile
network. Pavlopoulou et al. [11], tackled the problem of community
evolution prediction. In their work employed community tracking,
in order to assign evolutionary events to communities of a social
networks and thus to derive a "ground truth" for training their
prediction model.

Distributed Processing using Apache Flink. Apache Flink
is a relatively new distributed data processing framework, which
offers both streaming and batch data processing capabilities. Vari-
ous works in the broad field of artificial intelligence are based on
Apache Flink. Ciobanu and Lommatzsch [4], developed a news rec-
ommender system based on the DataStream API of Apache Flink,
in order to facilitate the processing of news steams which at a next
step were used to update their recommender system’s models. The
evaluation of their method performed in the context of a news
recommendation benchmarking platform called CLEF NewsREEL.

4http://dblp.uni-trier.de

https://flink.apache.org/
https://twitter.com/
https://math.stackexchange.com/
http://dblp.uni-trier.de
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Kalavri et al. [9], used Apache Flink DataSet API in order to create
methods for detecting web trackers and defending ordinary Inter-
net users. Their methods were based on simple classifiers such as
nearest neighbor and label propagation. They modeled user brows-
ing as a graph using data they derived from user traces collected
by a real world web proxy.

3 PROBLEM DEFINITION
Before describing our framework, it is important to introduce the
basic notation used in this work. A static undirected graph is de-
noted by G = (V ,E) where V is a set of vertices and E ⊆ V ×V is a
set of edges. A dynamic social network, is a collection of undirected
graphs corresponding to the timeframes, that capture the time seg-
mentation of the social network. This dynamic social network is
defined as a set TF = {TF0,TF1, . . . ,TFT−1} of timeframes with
T being the number of timeframes available. Each timeframe TFt ,
contains a set of communities (i.e. subgraphs of the timeframe’s
graph) {C0

t ,C
1
t , . . . ,C

Kt−1
t } with Kt denoting the number of com-

munities in that timeframe. Each community Ckt contains a set of
vertices Vt,k corresponding to the users of the community and a
set of edges Et,k representing the interactions among its users.

The main problem addressed in this work, is the speed up of com-
munity tracking by parallelizing the execution of the comparisons
required to match communities between sequential timeframes,
using Apache Flink as the underlying parallelization framework.
Our method follows the two-step paradigm and each community
Ckt of a given timeframe TFt must be compared to all communi-
ties C j

t+1 of the following timeframe. To compare communities, a
community similarity measure is needed. As similarity measure we
choose the Jaccard similarity, as it is very easy to calculate and has
already been exploited in tracking communities [7, 8]. Given a pair
of communities at consecutive timeframes Ckt , C

j
t+1, their Jaccard

similarity is defined as:

Jaccard(Ckt ,C
j
t+1) =

Vt,k ∩Vt+1, j
Vt,k ∪Vt+1, j

(1)

4 APACHE FLINK
Apache Flink is an open source framework for distributed data
streaming applications. It offers data structures and functions that
help users in parallelizing their algorithms which then Flink is
responsible to execute. Thus the details of parallel programming
are abstracted away. Flink consists of three distributed components:
(1) the job client, (2) the job manager and (3) the task manager. All
these components have to communicate in order to parallelize and
execute the submitted program. The job client takes a Flink job (i.e.
an algorithm) as input, creates its job graphwhich is a representation
of the algorithm’s workflow, and submits it to the job manager. The
job manager is responsible to determine the resource allocation,
task scheduling and state reporting of the program. When a task
manager 5 becomes available and has successfully registered with
the job manager, the latter starts to distribute the individual tasks
of a job to the task manager. Indicative tasks of a job in Apache

5Flink allows the existence of multiple task managers, but to simplify the description
of Flink we will refer to only one task manager.

Flink are illustrated in Figure 1, where each rectangle corresponds
to a different task (e.g. Data Source, GroupReduce, Cross DataSink).

It is obvious from the above description, that a Flink program
does not start its execution immediately, like traditional sequential
programs, but only after a task manager receives a task and spawns
a thread to execute it.

The Task manager is a JVM (Java Virtual Machine) process which
executes tasks using one or more threads. The task manager may
have one or more available task slots, whose number determines
the degree of Flink’s parallelism of task execution. In more detail,
tasks are possible to be splitted into several subtasks which are
distributed to the available task slots for execution, and each such
subtask, processes an appropriate subset of the task’s input data.
It is Flink’s responsibility to decide the size of the input of each
subtask. The number of parallel subtasks of a Flink task, is defined
by the programmer by setting the number of task slots (i.e. the
parallelism degree).

In Flink a task slot represents a fixed subset of computational
resources managed by the task manager (e.g. a task manager with
6 slots, is going to dedicate 1

6 of its managed RAM memory to each
slot). In this fashion, Flink achieves that subtasks of the same task
won’t compete for memory, but instead have a certain amount of
reserved memory. Furthermore it is important to mention that Flink
by default utilizes all available CPU cores (even in the case of a
single task slot) and that a task slot is not bound to a particular CPU
core. Nevertheless, it is recommended by the Flink documentation
to create as many task slots as the number of a system’s CPU cores.
The reason for this, is to guarantee that a physical CPU core is
available for each task slot, reducing kernel context switching and,
thus, increasing the system’s overall performance.

As Flink by default spawns a thread for each task of a job, this
means that these tasks are ready to start their execution as long
as the input that corresponds to them is available. Hence Flink
programs are inherently parallel, even in the scenario of parallelism
1, i.e. when single task slot is used. The only waiting time for some
specific tasks occurs when their input depends on the output of
other ancestral tasks which are still executing. An example which
illustrates this idea is shown in Figure 1. Here, the Filter tasks start
their execution at the same time, as they all depend on the same
ancestral task GroupReduce. Cross-Map tasks, whose inputs are the
results of the Filter tasks, are waiting for at least one of them to
finish its processing in order to start their execution. This does not
mean that they start to process actual data, but thread initializations
andmemorymanagement operations which are essential for Flink’s
operation are performed.

5 PARALLEL DYNAMIC COMMUNITY
TRACKING

To track communities across consecutive timeframes in the context
of two-step methods, it is necessary to compare the communities,
by estimating their similarities, in order to locate their counter-
parts on each timeframe. Assuming that the communities of each
timeframe are available (extracted using a community detection al-
gorithm), the typical steps required by a (serial) tracking algorithm
to calculate the similarities of communities contained in sequential
timeframes, are illustrated in Algorithm 1. Every community of a
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Figure 1: The workflow of our method for an example network consisting of three timeframes as outputted by Apache Flink.

Algorithm 1 Serial Algorithm for Community Tracking
Input: TF : the set of timeframes
1: JaccardSim = {}
2: for t = 0 to SizeO f (TF ) − 2 do
3: JaccardPartial = {}
4: for Ckt ∈ TFt do
5: for C j

t+1 ∈ TFt+1 do
6: Result ← CalculateJaccard(Vt,k ,Vt+1, j )
7: JaccardPartial ← JaccardPartial .append(Result)
8: end for
9: end for
10: JaccardSim ← JaccardSim.append(JaccardPartial)
11: end for
Output: JaccardSim

given timeframe has to be compared with every other contained in
the next one, and this procedure is repeated until all timeframes
have been processed. The problem of calculating the similarities
between two consecutive timeframes consisting of K and K’ com-
munities, respectively, has complexity O(K × K ′).

Due to the high number of comparisons required to perform
community tracking, especially when using large datasets with
many communities, it is imperative to parallelize this procedure.
In order to speed up community tracking as describe in Algorithm
1, we use Apache Flink, a framework for parallel and distributed
data processing. Therefore, the logic and the functions required to
address the problem of dynamic community tracking have to be
converted into the appropriate transformation functions and data

structures that Flink is designed to handle. Note that in this work we
solely focus on parallelizing the basic step involved in community
tracking, i.e. the pairwise comparisons of communities. We do not
study the steps of deciding which communities match and assigning
evolutionary events between matched communities. The matching
and the assignment of events can be performed as a post-processing
step using as input the community similarities. Hence, different
tracking approaches can benefit from our parallelization.

Algorithm 2 CalculateJaccard

Input: Vt,k ,Vt+1, j : community vertex sets
1: VertexIntersec ← Vt,k ∩Vt+1, j
2: VertexUnion ← Vt,k ∪Vt+1, j
3: Jaccard ← |V er tex Intersec |

|V er texUnion |
4: return Jaccard

An overview of our parallel method is described in Algorithm 3.
After initializing Flink’s execution environment (Step 1), we gather
the vertices of each community into an array, and store these arrays
into a new set (TFver t ) alongside with the their specific timeframe
and community identifiers6 (Step 2). By gathering the vertices of
each community, there is a benefit of simpler data representation
which helps their better manipulation inside Flink. This was done
using the GroupReduce transformation of Apache Flink, whose
functionality is similar to that of GroupBy statements used in SQL,
combined with a reduce function. In our method, for all timeframes,
we grouped the edges of each community using the community id,
6The timeframe identifiers are indexes from the set {0, 1, . . . , T −1}. The community
identifiers for timeframe T Ft are indexes from the set {0, 1, . . . , Kt−1 }.
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Algorithm 3 Parallel Algorithm for Community Tracking
Input: TF : the set of timeframes
1: Obtain Flink’s execution environment
2: TFver t ←Gather Vt,k ,∀Ckt ∈ TFt ,∀t ∈ {0, 1 . . .T − 1}
3: TFids = {0, 1 . . .T − 1}
4: TFf il t = {}
5: for id ∈ TFids do
6: FilterResult ← Filter (TFver t , id)
7: TFf il t ← TFf il t .append(FilterResult)
8: end for
9: JaccardSim = {}
10: for i = 0 to SizeO f (TFf il t ) − 2 do
11: CrossResult ← Cross(TFf il t,i ,TFf il t,i+1, CalculateJaccard)
12: JaccardSim ← JaccardSim.append(CrossResult)
13: end for
Output: JaccardSim

and then we reduced the vertices of these communities to an array.
Next (Steps 5-8), we filter each timeframe in the reduced dataset
using its id. By filtering, an essential timeframe isolation is achieved
since Flink’s DataSet, an internal data structure which is used to
store intermediate as well as final results, does not support indexes
like those used in traditional programming languages. The result
of this step, is a new set (TFf il t ), in which, each element contains
the communities of a particular timeframe which can be accessed
using indexes. After that (Steps 10-13), we build all the pairwise
combinations of the communities of two consecutive timeframes
using Flink’s Cross transformation. The Cross transformation auto-
matically builds the community pairs and applies on each pair the
user-defined CalculateJaccard function. The latter is illustrated
in Algorithm 2 and simply computes the Jaccard similarity between
two communities. Inside this function, the union and the intersec-
tion of the vertex arrays of each community pair are calculated,
and the ratio of their cardinalities is returned as the Jaccard value
which falls in the range [0, 1]. By using the Cross transformation
we ultimately build the Cartesian product between the communi-
ties of two timeframes, which has the same complexity as a serial
algorithm. The difference is that all these comparisons can now be
distributed and executed efficiently over multiple CPU cores in a
parallel fashion. It is Flink’s responsibility to handle the details of
distributing the comparisons to the available CPUs. Finally, when
all calculations in the Cross transformation are completed, Flink
collects and returns the results (Step 14).

A schematic representation of the workflow that Flink generates
for our algorithm in the case of a social network with three time-
frames is shown in Figure 1. It is obvious that the different Filter and
Cross tasks are independent and can be executed in parallel by Flink.
The main advantages of our method can be summarized on the
following: it can exploit all available CPUs without any effort due to
Flink, an alternative similarity measure can be easily incorporated
by simply replacing the CalculateJaccard function and that the
community matching and evolutionary events can be calculated at
a post-processing step using the output of our algorithm.

6 DATASETS
To experimentally evaluate our community tracking method, we
used three different datasets containing communities, derived from
real world social networks. More specifically, we used two datasets
from Twitter, one discussing the Crimea crisis on the 18th of March
2014, containing 208,841 tweets, and another discussing the 2014
FIFA World Cup during May 2014, containing 1,112,875 tweets.
Furthermore we used a dataset containing communities from the
Mathematics Stack Exchange Q&A website, which includes 376,030
posts spanning between 2009 and 2013. Hereafter, each of the above
three datasets is going to be referred as Crimea, WorldCup and
MathExchange, respectively. The two Twitter datasets were split in
20 timeframes, while the MathExchange dataset in 10 timeframes.
To segment datasets, tweets and posts were ordered based on their
timestamp and assigned to timeframes so that each timeframe con-
tains an equal number of tweets (posts). To detect communities on
the Twitter datasets we employed the Louvain method [2] on the
timeframed graphs. The vertices correspond to users who posted a
tweet on a particular timeframe and an edge connects two users if ei-
ther of the two mentioned the other in her tweets in that timeframe.
In the MathExchange dataset each post is tagged with its subject
areas (i.e. topics). To detect the communities in each timeframe,
we take advantage of the topics and consider that users belong
in the same community if they make posts about the same topic
in a particular timeframe. Hence, each community is associated
with a particular topic. Edges connect users who post an answer
or comment to respond to the other’s post. Note that communi-
ties that contain less than four members are considered as artifact
communities and are ignored in our experiments.

The characteristics of the datasets used for our evaluation are
summarized in Figure 2. The Crimea dataset illustrated in Figures 2a
and 2b, contains timeframes consisting of a relatively small number
of communities, containing at the most 120 communities and at
the least 32 communities. Moreover, these communities, contain a
small number of vertices (i.e. members), ranging on average from
15 vertices to almost 60. The WorldCup dataset contains signifi-
cantly larger timeframes compared to Crimea, ranging between 175
and 327 communities as Figure 2c depicts. Furthermore, as Figure
2d shows, these communities contain considerably more vertices
as the minimum mean number is 132, and the maximum is 250.
Finally, the MathExchange dataset, (Figures 2e and 2f), consists of
even bigger timeframes than WorldCup, as the largest contains 940
communities and the smallest 479. However, these communities
have less members than WorldCup, ranging on average between
45 and 58 vertices.

7 EXPERIMENTAL EVALUATION
The evaluation of our community tracking method was performed
using a machine with 12 cores at 2.5GHz and 30GB of RAM mem-
ory and focuses on the execution time of the proposed parallel
algorithm. Our parallel community tracking algorithm was imple-
mented in Java using the DataSet API offered by the Apache Flink
framework and is available on Github 7. The tracking algorithm
described in Section 5 was executed for the Crimea, WorldCup and
MathExchange datasets and the similarities among communities
7https://github.com/gkech/A-Parallel-Algorithm-for-Tracking-Dynamic-Communities-Flink

https://github.com/gkech/A-Parallel-Algorithm-for-Tracking-Dynamic-Communities-Flink
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Figure 2: The number of communities and the mean number of vertices per community in each timeframe, for each dataset.
Figures 2a and 2b concern the Crimea dataset, Figures 2c and 2d the WorldCup dataset, while Figures 2e and 2f the

MathExchange dataset.
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Figure 3: Execution time of our community tracking approach for various Flink Parallelism levels on three social network
datasets. The number next to the dataset name indicates the number of dataset timeframes.

contained in consecutive timeframes were calculated. Performing
experiments with real world social network datasets carrying dif-
ferent statistical characteristics Figure 2, enables us to test the
scalability of the proposed algorithm. We performed experiments
for different parallelism level configurations (i.e. number of task
slots) of Apache Flink, ranging from parallelism 1 to parallelism 12
given that our machine had 12 CPUs, enabling the comprehensive
evaluation of performance deviation among the different levels on
different datasets and allowing us to locate the best configuration
for each dataset. Remember (Section 4) that parallelism 1 (i.e. one
task slot) does not imply serial execution and that Flink always ex-
ploits all available CPUs. Furthermore, to better test the scalability
of our method in the context of a distributed framework like Apache
Flink, we decided to conduct additional experiments by artificially
enlarging each dataset. Specifically, we enlarged each dataset by
repeating the existing timeframes two and three times, leading to
two new datasets. For the Crimea and WorldCup datasets we got
two larger datasets containing 40 and 60 timeframes respectively,
while for MathExchange the two larger datasets contain 20 and 30
timeframes respectively. Notice that we repeated each experiment
25 times, and the mean execution time of these iterations is reported
along with the standard deviation. The overall numerical results of
our experiments are illustrated in Figure 3.

Using the Crimea dataset as input to our algorithm, as Figure 3a
depicts, we can see that after an initial reduction of the execution
time from parallelism 1 to 2, it is clear that as parallelism increases,
the performance is reduced. The only exception to this pattern is
the experiment with 60 Crimea timeframes, where from parallelism
2 to parallelism 4, the execution time remains constant. Results for
higher parallelism than 4 follow the same pattern as the previous
experiments. At first this result may be counterintuitive, as some-
one would expect to achieve better performance as the parallelism
increases, but there is a simple explanation behind this behaviour.
The Crimea dataset is a relatively small dataset, thus, by increasing
parallelism (i.e. creating more subtasks and thus spawning more
threads), the execution overhead also increases, becoming greater
than the processing time needed for the actual data and leading to
a higher execution time.

Table 1: Best parallelism values from Figure 3 resulting in
fastest execution.

Dataset Parallelism Exec. Time (sec)
Crimea 20 2 2.29
Crimea 40 2 3.19
Crimea 60 2 4.85

WorldCup 20 4 19.27
WorldCup 40 8 38.77
WorldCup 60 10 67.86

MathExchange 10 6 38.71
MathExchange 20 8 105.71
MathExchange 30 2 212.89

Experiments conducted using the WorldCup dataset, are pre-
sented in Figure 3b. Here, for 20 timeframes, as parallelism in-
creases, the execution of the algorithm decreases until parallelism
4. After that, the execution time remains steady, showing a slight
increase for higher parallelism levels. By increasing the number
of timeframes to 40, we can observe that our method’s execution
time now decreases until parallelism level 8. After this point, it is
slightly increasing due to the overhead created by the additional
parallelism. Finally, by increasing the input to 60 timeframes the ex-
ecution time, drops until parallelism 4 and then remains steady with
some slight fluctuations. We observe that as the dataset becomes
larger (i.e. more timeframes) a higher parallelism level is preferable.
An interesting observation throughout the above experiments, is
the consistency of the results as expressed by the small standard
deviation.

The results of our method on the MathExchange dataset are
depicted in Figure 3c. Experiments conducted for 10 timeframes,
show that until parallelism 6, the execution time slightly decreases.
After that, following the same behavior as the experiments reported
before for WorldCup, the execution time remains relatively steady.
However, for more timeframes, the general behavior is different.
We observe a decrease in performance even for parallelism 4 and
the standard deviation increases. Especially after parallelism 8, both
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Table 2: Execution time of GED algorithm implemented in
Python.

Dataset Exec. Time (sec)
Crimea 20 21.67

WorldCup 20 810.45
MathExchange 10 1670.69

for 20 and 30 timeframes experiments, a rapid drop in performance
is evident, and the standard deviation further increases. This be-
havior reveals that the machine used to run our experiments has
reached its limits. In fact, we observed that experiments with 20
and 30 timeframes of the MathExchange dataset, utilized fully the
machine’s RAM memory, which created a severe bottleneck in the
execution of the experiments and introduced delays that are related
to memory management issues and not to our method. These delays
become more prominent for higher parallelism values, since more
parallel subtasks are generated by Flink (due to more task slots
being available) and, thus, more threads are spawned to handle
them, creating additional memory overhead.

Until now, we discussed only the execution time variations ob-
served for different parallelism levels of Apache Flink. Below we
compare our parallel community tracking method in Apache Flink
to a popular serial community tracking algorithm, in order to get a
rough estimate of the speedup offered by our method. Table 2 illus-
trates the execution time needed to calculate evolutionary events of
communities in consecutive timeframes using the GED method [3]
implemented in Python8, on the aforementioned datasets. We chose
GED for this comparison as it follows a very similar approach to
ours in order to track the communities, by calculating the similarity
between all pairs of communities in two consecutive timeframes.
Even for parallelism 1, our method achieves execution time which
is 88.3% faster than the sequential GED on the Crimea dataset. In
fact, for the two bigger datasets of WorldCup and MathExchange,
this improvement increases to 96.3% and 96.8% respectively.

Summarizing the reported results, our experiments indicate that
the parallel algorithm proposed in this work is much faster than
serial algorithms for tracking dynamic communities. Moreover, the
best parallelism level of Apache Flink, depends on the underlying
dataset, as demonstrated in Table 1. It is clear that for larger datasets
with more timeframes and communities per timeframe, higher
parallelism is preferable. It is also clear from the experiments that
a high parallelism level may have negative impact on performance
if the dataset is not big enough (this is particularly evident on the
Crimea dataset).

8 CONCLUSIONS
In this paper, we presented a parallel algorithm for tracking dy-
namic communities based on Apache Flink. Our proposed method
has the ability to calculate the similarity of communities contained
in consecutive timeframe within seconds, using a widely adopted
similarity measure. The evaluation of our method was conducted
using three real world social networks, which enabled the com-
prehensive evaluation of the scalability of our method with very

8https://github.com/iit-Demokritos/community-Tracking-GED

encouraging results. Our method is highly modular, as the similarity
function used to compare communities, could be easily substituted.
Furthermore, as we implemented this method using Apache Flink,
it has the ability to scale to larger datasets to those tested here, if
more computational resources are available.

In the future we intend to extend our parallel algorithm, by in-
corporating the necessary steps to categorize the evolution of com-
munities using the event labels proposed in the literature, such as
community continuation, growth, shrinkage etc. Another possible
future direction is the evaluation of more sophisticated similarity
measures and a comparison among them in terms of event catego-
rization accuracy using ground truth labelled datasets. Finally, we
plan to devise a software suite for dynamic community tracking
which is going to offer streaming capabilities in order to track evo-
lutionary events in real time on top of the fast batch data processing
proposed in this work.
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