A Parallel Algorithm for Tracking Dynamic Communities based on Apache Flink

Georgios Kechagias ¹ Grigorios Tzortzis ² Dimitrios Vogiatzis ^{2,3} George Paliouras²

¹School of Electrical and Computer Engineering Technical University of Crete Chania, Greece

²Institute of Informatics and Telecommunications NCSR "Demokritos" Athens, Greece

> ³The American College of Greece Deree Athens. Greece

Social Networks and Community Tracking

▷ Real life social networks are inherently highly dynamic

- Community tracking is the problem of locating the instances (i.e. counterparts) of a community in the different timeframes
- \triangleright Common approach e.g. GED Method ¹:
 - Compare communities using some similarity measure
 - Find their counterparts between consecutive timeframes

¹Bródka et al. GED: the method for group evolution discovery in social networks.

Key Challenges - Our Objective

- Community Tracking algorithms have time complexity quadratic to the number of communities
- Contemporary real world social networks, contain thousands or even millions of users and communities

- Speed up the community tracking by parallelizing the community comparisons
 - Measure: Jaccard Similarity
 - Parallelizing framework: Apache Flink

 $\triangleright\,$ Evaluate the scalability of the algorithm using real world SN datasets

A Parallel Algorithm for Community Tracking

- ▷ Apache Flink tasks: GroupReduce, Filter, Cross
- Parallelism in Apache Flink is a configuration which defines the splitting of a task into subtasks
- > Apache Flink assigns these subtasks to threads for execution

Crimea Dataset Characteristics

- ▷ 208,841 tweets
- > Crimea crisis on the 18th of March 2014
- ▷ 20 timeframes
- ▷ 32-120 communities per timeframe
- \triangleright on average, 15-160 vertices per community

WorldCup Dataset Characteristics

- ▷ 1,112,875 tweets
- ▷ 2014 FIFA World Cup, Between June and July 2014
- ▷ 20 timeframes
- ▷ 175-327 communities per timeframe
- \triangleright on average, 132-250 vertices per community

MathExchange Dataset Characteristics

- ▷ 376,030 posts
- ▷ Mathematics Stack Exchange Q&A website, Between 2009 and 2013
- ▷ 10 timeframes
- ▷ 479-940 communities per timeframe
- ▷ on average, 45-58 vertices per community

Parallel Algorithm vs GED

 $\triangleright\,$ The machine used for our experiments has:

- CPU: 12cores at 2.5GHz each
- RAM: 30GB

Dataset	Exec. Time (sec)		Difference
	GED	Parallel	Difference
Crimea 20	21.67	2.53	88.3%
WorldCup 20	810.45	29.93	96.3%
MathExchange 10	1670.69	53.0	96.8%

Apache Flink's Parallelism Impact

- \triangleright We artificially enlarged the initial datasets $\times 2$ and $\times 3$ times in order to further evaluate the scalability of our algorithm
- > Reminder: Apache Flink Parallelism defines the task splitting

- High Parallelism is only effective when we have sufficiently large datasets
- ▷ The performance is increased when we tune appropriately Apache Flink for each individual dataset

Conclusion

- Our parallel method can exploit all available CPUs without any effort due to Apache Flink
- > An alternative similarity measure can be easily incorporated
- Community evolutionary events can be calculated at a post-processing step using the output of our algorithm

Future Work

▷ Evolution categorization using event labels proposed in the literature

- Evaluation of more sophisticated similarity measures
- Extend to streaming using Apache Flink

Thank you for your attention

Questions?