Querying Datasets on
the Web with High
Availability

mtn2411 - Achilleas Oikonomopoulos
mtn2406 - loannis Koutsoukis
mtn2417 - Christina Tzortzaki

About the Paper

Title: Querying Datasets on the Web with High Availability
Authors:

o

o O O 0O O O O O O

Ruben Verborgh, Ghent University - iMinds, Belgium

Olaf Hartig, University of Waterloo, Canada

Ben De Meester, Ghent University - iMinds, Belgium

Gerald Haesendonck, Ghent University - iMinds, Belgium

Laurens De Vocht, Ghent University - iMinds, Belgium

Miel Vander Sande, Ghent University - iMinds, Belgium

Richard Cyganiak, Digital Enterprise Research Institute, nui Galway, Ireland
Pieter Colpaert, Ghent University - iMinds, Belgium

Erik Mannens, Ghent University - iMinds, Belgium

Rik Van de Walle, Ghent University - iMinds, Belgium

Release Year: 2014

Motivation & Problem Statement

The Web of Data is growing, but querying public datasets is unreliable.
e SPARQL endpoints have performance issues and low availability.
o Servers become overloaded under high traffic.
e Need for ascalable and high-availability querying method.
SPARQL endpoints struggle with availability (down ~1.5 days/month).
Downloading full datasets is inefficient.

Existing Querying Methods (HTTP Interfaces)

e SPARQL Endpoints: Flexible but unreliable.
e Linked Data: Simple but inefficient.

e RDF Dumps & APIs: Limited querying capabilities.
o Need to download data locally

Introduction to Linked Data Fragments (LDFs)

e LDFs aredifferent ways of publishing & accessing data
o SPARQL endpoints,
o Linked Data documents
o TPFs
(¢} + more

e Trade-off between server cost and query flexibility.

data Linked Data triple pattern SPARQL
dump document fragments result

I I H H I H H H I

generic requests specific requests
high client effort various types of high server effort
high server availability Linked Data Fragments low server availability

Triple Pattern Fragments (TPFs)

e Special type of LDFs.
e Provide triple pattern-based access (subject, predicate, object).
e Include metadata and hypermedia controls.

o Enable automatic navigation

o Improve scalability
o Encourage caching

How TPFs Work

e Clients process queries instead of servers.
e Serversonly provide simple fragments (lower computational cost).
e |Improves availability at the cost of query speed.

Query Execution in TPFs

e SPARQL queries are transformed into sequences of triple pattern queries.
e Iterator-based query execution optimizes performance.
e Dynamic pipelines adjust query execution order dynamically.

Dynamic Iterator Pipelines

it3. ?friend foaf:name ?friendName
it.2 ?person foaf:knows ?friend

Which are Alice’s

it.1 ?person foaf:name "Alice"

friends?

<
Q]
- I N/

?friend foaf:name "Bob" . ?friend

{ ?person = :Alice, foaf:name =

foaf:name "Charlie" .
"Alice" } + Metadata: (Estimated

total matches = 100)

Example Case

Zagreb

Budapest Alen_Peternac

Rome Drago_Ibler
Juraj_Neidhardt

?city subject
Capitals_in_Europe. ?person birthPlace Zagreb.

B’ = { Drago_Ibler a Architect:

B’ = { ?person a Architect. ?person birthPlace Zagreb. }

B = { ?person a Architect. ?person birthPlace ?city. ?city subject Capitals_in_Europe. }

Evaluation & Results

Method Query Power | Server Load Availability Client Load Best For
SPARQL V.V W Full > High >{ Oftenfails | > Slow under W Low (server | Complex
Endpoints SPARQL load does all work) queries
Linked Data | »{ Onlysingle | ¥ Low W High >{ Slow for large | W Low Browsing
Documents entities queries RDF data
TPFs W Limitedto | W Verylow | MW Very high | > Slower (many | »{ High (client | Scalable
triple patterns requests needed) | does query querying
processing)
Data Dumps | > Noqueries | M Zero W Always >{ Slow (must >{ High (must Offline
available process offline) load entire analysis

dataset)

Advantages of the Algorithm

+ High availability (even under heavy traffic).
+ Lower server costs.
+ Compatible with HTTP caching.

Limitations of the Algorithm

- Slower query execution.
- Client-side computation required.
- Limited support for complex queries (e.g., FILTER).

Critical Discussion: Query Speed Trade-offs

e TPFsprioritize availability but at the cost of speed.
e Many real-time applications require both speed & availability.
e Ahybrid approach with fallback SPARQL endpoints could work better.

Critical Discussion: Limited Query
EXpressiveness

e TPFsonly support exact matches, limiting:

o FILTER expressions
o Aggregation (COUNT, SUM)
o ORDERBY,GROUPBY, LIMIT

e Thisleads to more HTTP requests, increasing latency.

Critical Discussion: Client-Side Load

e Assumes clients can handle extra computation, but:
o Low-End Clients, Mobile devices & loT have limited resources.
o Web applications need fast responses.

Critical Discussion: Centralization Risks &
Alternatives

e TPFs move work to clients, but who runs the servers?
e Ifonly afew entities serve TPFs, we reintroduce centralization.
e Better Alternative: Federated TPF providers for decentralization.

Conclusion & Future Directions

TPFs shift query execution to clients, improving server availability.
Ideal for large-scale Linked Data applications.

Trade-off: Availability vs Query Speed.

Future Work:

o Supporting more SPARQL operators
o Optimizing query planning for better performance
o Hybrid approaches combining SPARQL & TPFs.

N\

?you foaf:hasQuestion ?curiosity .

Thank you for your time! \
9 9 8

