
Νικόλας Χελιώτης

Εργασία παρουσίασης άρθρου
Logic programming for deliberative robotic task planning



Context



Autonomy
“The ability to fulfill a mission without external supervision.”

Deliberation

“The ability to make decisions which are motivated by reasoning on the 
available resources, the capabilities of the robot, the actual description 
of the environment and the given mission.”

Context



Deliberation
Goal reasoning

Acting

Monitoring

ObservingPlanning

Learning

Planning module

Goal 

Resources 

Specifications

Context



Why logic task planners?

Stop :- red_light @#reach goal$%

• H αυτονομη συμπεριφορα ειναι interpretable απο τον χρηστη (input και output) 


• Interpretable planning -> Ζητουμενο EU για υψηλου κινδυνου συστηματα.

Context



Context
How was the paper created?

• Keywords:logic programming, 
task planning, robotics etc.


• <20 years old


• Real robotic applications


• Outdated methods excluded

,…,
1 N



Taxonomy of planners



Taxonomy of planners

Domain-depedent vs Domain-independent

Deterministic vs Non-Deterministic 

Classical planners,Temporal planners,Probabilistic planners

Deterministic environment

Time-sensitive tasks

Uncertainty and randomness



Planning Domain Description 
Language (PPDL)



PPDL vs Prolog

-What is it? A language to describe what is possible in a given problem.

PPDL PrologTransformation

-Why? • PDDL is useful for planning problems but it lacks reasoning 
capabilities.


• If conditions change, PDDL-based planners must 
recompute everything.



Criteria for logic framework 
selection



Criteria for logic framework selection

1. Expressivity (How much can it describe?)

2. Computational Eficciency (How fast can it compute a plan?)

-Classical-> PSPACE-complete


-Temporal-> EXSPACE- complete


-Probabilistic -> Unpredictable

3. Software Implementation (Can it work with standard robotic software like ROS?)

-Clingo and Prolog widely supported



Criteria for logic framework selection

4. Support for open-world planning (Can it work with unknown environments?)

-Prolog-based planners are great for querying external knowledge.

5. Plan revision opportunity (Can it update in real time if the situation changes?)

-Prolog based planners are non-monotonic meaning they can 
revise plans in real time.


-That is not the case for temporal planners.



Standard logic programming



Standard logic programming
1. Prolog based planners:

-Instead of searching for plans, they deduce for the next action.


-Dynamic capabilities if the environment changes (Non-monotonicity).


-Easier to debug.


-Represents knowledge in tree structure.

2. ASP- based planners:

-Creates all possible plans and picks the best one.Good for optimisation problems.


-Monotonic.

3. Other planners: CLP (numerical constraints), Hybrid (Mixed LP and ML).



Temporal logic programming



Temporal logic programming
-Sometimes, we need extra expressivity to describe conditions and relations.


Temporal logic solves this problem by introducing new operators (eventually,


always, etc.) regarding time.


-Logic programming is timeless.It reasons about facts and rules without thinking


about when things should happen.

-TL frameworks: 1.Linear Temporal Logic (Single sequence of future events)


2.Computanional Tree Logic (Multiple possible futures)


3.Timed Automata (Models real time systems)



Probabilistic logic programming



Probabilistic logic programming

-The problem with standard logic programming is that it assumes that everything 


Is either true or false.


-Uncertainty is everywhere (Sensors can be noisy.95% prob shelf_not_empty)

-PL frameworks:
1.Problog (extends Prolog with prob reasoning) 

2.LPAD (allows multiple uncertain outcomes per rule)



Questions?



Thank you :)


