Epvacia napovotaocnc apdpovu

Logic programming for deliberative robotic task planning

NikoAac XeAiwTng

Context

Context
Autonomy

“The ability to fulfill a mission without external supervision.”

Deliberation

“The ability to make decisions which are motivated by reasoning on the
available resources, the capabilities of the robot, the actual description
of the environment and the given mission.”

Context
Deliberation

Goal reasoning Monitoring

Observing

Planning

Learning Acting

Goal

A
nesources | —— Planning module — E

Specifications

Context

Why logic task planners?

g -
rSum ~ i

Stop :- red_light @#treach goal$%

 H avtovopun ocvpriepidpopa ewval interpretable arto tov xpnotn (input Kat output)

* |nterpretable planning -> Zntoupevo EU yia vpnAou Kivouvou cuotnuata.

Context

How was the paper created?

« Keywords:logic programming,
task planning, robotics etc.

e <20 years old

 Real robotic applications

e (Qutdated methods excluded

Taxonomy of planners

Taxonomy of planners

Domain-depedent vs Domain-independentx

Deterministic vs Non-Deterministic x

Classical planners,Temporal planners,Probabilistic planners

l

Deterministic environment

Time-sensitive tasks

Uncertainty and randomness

Planning Domain Description
Language (PPDL)

PPDL vs Prolog

-What is it? A language to describe what is possible in a given problem.

PPDL —— | Transformation | —— Prolog

-Why? + PDDL is useful for planning problems but it lacks reasoning
capabilities.

 |f conditions change, PDDL-based planners must
recompute everything.

Criteria for logic framework
selection

Criteria for logic framework selection

1. Expressivity (How much can it describe?)
2. Computational Eficciency (How fast can it compute a plan?)

-Classical-> PSPACE-complete

-Temporal-> EXSPACE- complete

-Probabilistic -> Unpredictable

3. Software Implementation (Can it work with standard robotic software like ROS?)

-Clingo and Prolog widely supported

Criteria for logic framework selection

4. Support for open-world planning (Can it work with unknown environments?)

-Prolog-based planners are great for querying external knowledge.

5. Plan revision opportunity (Can it update in real time if the situation changes?)

-Prolog based planners are nhon-monotonic meaning they can
revise plans in real time.

-That is not the case for temporal planners.

Standard logic programming

Standard logic programming

1. Prolog based planners:

-Instead of searching for plans, they deduce for the next action.

-Dynamic capabilities if the environment changes (Non-monotonicity).

-Easier to debug.

-Represents knowledge In tree structure.

2. ASP- based planners:

-Creates all possible plans and picks the best one.Good for optimisation problems.

-Monotonic.

3. Other planners: |CLP (numerical constraints), Hybrid (Mixed LP and ML).

Temporal logic programming

Temporal logic programming

-Sometimes, we need extra expressivity to describe conditions and relations.
Temporal logic solves this problem by introducing new operators (eventually,
always, etc.) regarding time.

-Logic programming is timeless.It reasons about facts and rules without thinking

about when things should happen.

-TL frameworks: |1.Linear Temporal Logic (Single sequence of future events)

2.Computanional Tree Logic (Multiple possible futures)

3.Timed Automata (Models real time systems)

Probabillistic logic programming

Probabilistic logic programming

-The problem with standard logic programming is that it assumes that everything
Is either true or false.

-Uncertainty is everywhere (Sensors can be noisy.95% prob shelf_not_empty)

-PL frameworks:

1.Problog (extends Prolog with prob reasoning)

2.LPAD (allows multiple uncertain outcomes per rule)

Questions?

Thank you :)

