
Querying Datasets on
the Web with High
Availability

mtn2411 - Achilleas Oikonomopoulos
mtn2406 - Ioannis Koutsoukis
mtn2417 - Christina Tzortzaki

About the Paper

● Title: Querying Datasets on the Web with High Availability

● Authors:
○ Ruben Verborgh, Ghent University – iMinds, Belgium

○ Olaf Hartig, University of Waterloo, Canada

○ Ben De Meester, Ghent University – iMinds, Belgium

○ Gerald Haesendonck, Ghent University – iMinds, Belgium

○ Laurens De Vocht, Ghent University – iMinds, Belgium

○ Miel Vander Sande, Ghent University – iMinds, Belgium

○ Richard Cyganiak, Digital Enterprise Research Institute, nui Galway, Ireland

○ Pieter Colpaert, Ghent University – iMinds, Belgium

○ Erik Mannens, Ghent University – iMinds, Belgium

○ Rik Van de Walle, Ghent University – iMinds, Belgium

● Release Year: 2014

Motivation & Problem Statement

● The Web of Data is growing, but querying public datasets is unreliable.

● SPARQL endpoints have performance issues and low availability.

○ Servers become overloaded under high traffic.

● Need for a scalable and high-availability querying method.

● SPARQL endpoints struggle with availability (down ~1.5 days/month).

● Downloading full datasets is inefficient.

Existing Querying Methods (HTTP Interfaces)

● SPARQL Endpoints: Flexible but unreliable.

● Linked Data: Simple but inefficient.

● RDF Dumps & APIs: Limited querying capabilities.
○ Need to download data locally

Introduction to Linked Data Fragments (LDFs)

● LDFs are different ways of publishing & accessing data
○ SPARQL endpoints,

○ Linked Data documents

○ TPFs

○ + more

● Trade-off between server cost and query flexibility.

Triple Pattern Fragments (TPFs)

● Special type of LDFs.

● Provide triple pattern-based access (subject, predicate, object).

● Include metadata and hypermedia controls.
○ Enable automatic navigation

○ Improve scalability

○ Encourage caching

How TPFs Work

● Clients process queries instead of servers.

● Servers only provide simple fragments (lower computational cost).

● Improves availability at the cost of query speed.

Query Execution in TPFs

● SPARQL queries are transformed into sequences of triple pattern queries.

● Iterator-based query execution optimizes performance.

● Dynamic pipelines adjust query execution order dynamically.

Dynamic Iterator Pipelines

Example Case

Evaluation & Results

Method Query Power Server Load Availability Speed Client Load Best For

SPARQL
Endpoints

✅✅✅ Full
SPARQL

❌ High ❌ Often fails ❌ Slow under
load

✅ Low (server
does all work)

Complex
queries

Linked Data
Documents

❌ Only single
entities

✅ Low ✅ High ❌ Slow for large
queries

✅ Low Browsing
RDF data

TPFs ✅ Limited to
triple patterns

✅ Very low ✅✅ Very high ❌ Slower (many
requests needed)

❌ High (client
does query
processing)

Scalable
querying

Data Dumps ❌ No queries ✅ Zero ✅ Always
available

❌ Slow (must
process offline)

❌ High (must
load entire
dataset)

Offline
analysis

Advantages of the Algorithm

+ High availability (even under heavy traffic).

+ Lower server costs.

+ Compatible with HTTP caching.

Limitations of the Algorithm

- Slower query execution.

- Client-side computation required.

- Limited support for complex queries (e.g., FILTER).

Critical Discussion: Query Speed Trade-offs

● TPFs prioritize availability but at the cost of speed.

● Many real-time applications require both speed & availability.

● A hybrid approach with fallback SPARQL endpoints could work better.

Critical Discussion: Limited Query
Expressiveness

● TPFs only support exact matches, limiting:
○ FILTER expressions

○ Aggregation (COUNT, SUM)

○ ORDER BY, GROUP BY, LIMIT

● This leads to more HTTP requests, increasing latency.

Critical Discussion: Client-Side Load

● Assumes clients can handle extra computation, but:
○ Low-End Clients, Mobile devices & IoT have limited resources.

○ Web applications need fast responses.

Critical Discussion: Centralization Risks &
Alternatives

● TPFs move work to clients, but who runs the servers?
● If only a few entities serve TPFs, we reintroduce centralization.

● Better Alternative: Federated TPF providers for decentralization.

Conclusion & Future Directions

● TPFs shift query execution to clients, improving server availability.

● Ideal for large-scale Linked Data applications.

● Trade-off: Availability vs Query Speed.

● Future Work:
○ Supporting more SPARQL operators

○ Optimizing query planning for better performance

○ Hybrid approaches combining SPARQL & TPFs.

?you foaf:hasQuestion ?curiosity .

Thank you for your time!

