Simulating Sets in Answer Set Programming
lwdvvne Kaotwovne Nikdhog KaPoakAfic TMétpoc Tprovtdpuiiog
NCSR Democritus

February 6, 2025

1/15



Overview

1. Introduction

2. Syntax Rules &Complexity

3. Reducing DLP(S) to DLP

4. Lazy Grounding in ASP

5. Grounding with Existential Rules

6. Our Takeaways & Conclusions

2/15



Introduction to ASP

Answer Set Programming (ASP):
® A declarative paradigm for modeling complex search and reasoning problems.
® Grounded in nonmonotonic logic

® Handles incomplete and uncertain information efficiently.

Flexible means to encode combinatorial tasks

3/15



Introduction to ASP

Answer Set Programming (ASP):
® A declarative paradigm for modeling complex search and reasoning problems.
® Grounded in nonmonotonic logic
® Handles incomplete and uncertain information efficiently.
® Flexible means to encode combinatorial tasks
Intricate Domains
® Real-world problems naturally involve collections of objects

e Farly ASP formulations no native support for richer data structures
® Collections naturally modeled as sets

3/15



Extending ASP

¢ Calimeri et al. (2008, 2009):
® Introduced set terms in ASP by combining them with functions and lists.
® Enabled natural, concise representations of complex constructs (e.g., maximal strongly

connected components in graphs).
® Their prototypes demonstrated the modeling elegance of sets.
® Did not explore theoretical implications or practical implications

4/15



Extending ASP

¢ Calimeri et al. (2008, 2009):
® Introduced set terms in ASP by combining them with functions and lists.
® Enabled natural, concise representations of complex constructs (e.g., maximal strongly

connected components in graphs).
® Their prototypes demonstrated the modeling elegance of sets.
® Did not explore theoretical implications or practical implications

¢ Insights from Related Frameworks:

® Research in Datalog and work by Ortiz et al., Carral et al. highlighted the

computational advantages of using set constructs.
® These findings reinforced the idea that a carefully designed native integration of sets
into ASP could expand its applicability—especially in domains like ontological reasoning.

4/15



Solver Approaches and the Need for Efficiency

® The Practical Challenge:
Naive incorporation of set constructs can cause severe inefficiencies during the
grounding phase.

5/15



Solver Approaches and the Need for Efficiency

® The Practical Challenge:
Naive incorporation of set constructs can cause severe inefficiencies during the
grounding phase.
® Emerging Solver Approaches:
® [azy Grounding Techniques:

® Systems like Alpha and ASPeRiX interleave grounding with solving.
® They generate only the ground instances relevant to the search for a stable model.
® Ground-and-Solve with Existential Rules:

® | everages nonmonotonic existential rules to derive only necessary set encodings.

® Control predicates (e.g., get su(c, s)) signal when a specific union representation is
needed.

5/15



Main Contributions

e DLP(S):
® A formal extension of disjunctive logic programs that natively incorporates set terms.
® Preserves decidability while boosting expressiveness.

6/15



Main Contributions

e DLP(S):
® A formal extension of disjunctive logic programs that natively incorporates set terms.
® Preserves decidability while boosting expressiveness.

¢ Dual Solver Approaches:
® Semantics-Preserving Translation:

® Transforms DLP(S) into an ASP language with function symbols.
® |everages lazy grounding to efficiently manage set encodings.

® Ground-and-Solve Approach:
® Employs nonmonotonic existential rules during grounding.
® Ensures that only those set encodings that are truly needed (e.g., indicated by get
su(c, s)) are derived.
® Establishes coNEXPTIMENP_completeness for cautious entailment (Previously Open
Question) Provides practical techniques for efficiently implementing set constructs
in ASP.

6/15



ASP with Sets

Disjunctive Logic Programs with Sets (DLP(S)):

® Extension of non-monotonic disjunctive logic programs to handle finite sets.
® Allows declarative modeling with set operations € and C.

® Example: Defining strongly connected components (scc) in graphs.

7/15



Semantics and Complexity

Stable Model Semantics:
® Sets interpreted as finite subsets of the object domain.
¢ Grounding: Replacing variables with constants/sets to form ground rules.

® Interpretation /: Set of ground facts, satisfying specific conditions for € and C.

Stable Model: Minimal model satisfying the program’s reduct.

Computational Complexity:
¢ Deciding if P =« is CONEXPTIMENP-complete.
® Without disjunction (V): CONEXPTIME-complete.

® Removing disjunctions simplifies the problem, but it still remains exponentially hard.

8/15



Reducing DLP(S) to DLP

Reduction Approach:
¢ Encode sets in DLP with function symbols (DLPf).
® Use ¢y for the empty set and f, for the unions, e.g., fu(a, fu(b, c0)) — {a, b}.
® Avoid redundancy with predicates:

® su(c, s, t): Singleton union {c}Us =1t
® in(c, s): Membership c € s

Core Rules:

su(X, S, fu(X,S)) «+ get_su(X,S) A —in(X,S)
su(X, U, U) + su(X,S,U)
in(X,S) < su(X,S,S)

9/15



Example and Stable Model Translation

Example Transformation:
e Original DLP(S) Rule: p(S) < q(S,x) A r(SU{x})A=(x € S)
® Transformed to DLPf:

P(Vs) < G(Vs,x) A F(Vsugxy) A —in(x, Vs) A su(x, ¢, Vi) A u(Vs, Vi, Vsuia)
get su(x, c0) < G(Vs,x) A F(Vsugxy)
get_u(Vs, Vi,y) < 4(Vs, x) A F(Vsugg) A su(x, €, Vi)

Stable Model Equivalence:

® Theorem 3: Stable models of DLP(S) correspond exactly to those of the
transformed DLP.

e All models are finite, ensuring decidability.

10/15



Lazy Grounding in ASP

Ground & Solve Approach:

® Traditional ASP reasoning first grounds all rules, then solves the propositional
problem.

® This can lead to inefficiencies, especially with large rule sets.

Lazy Grounding Strategy:
® Ground rules only when they are needed during solving.
® Avoids unnecessary expansion of rule sets.

® Implemented in systems like Alpha and ASPeRiX.

Theorem b5:
® Alpha ensures termination on all programs of form DLPf(P).
® Produces stable models that correspond exactly to those of P.

11/15



Grounding DLP(S) with Existential Rules

Transformation and Grounding Process

¢ Transformation of DLP(S) into Existential Rules
® Motivation:

® Standard ASP grounding is inefficient due to the exponential number of ground instances.

® Existential rules introduce null values dynamically for compact set representation.
® Approach:

® Replace set terms (€, C, U) with dedicated predicates (in, sub, su).

® Use existential quantification to introduce new elements (nulls).

® Encode set operations via auxiliary predicates for unique representations.

® The Grounding Process

® Objective: Construct a finite, computationally feasible grounding.
® Methodology:
® Stratification: Partition rules into layers for well-founded computation.
® Chase Algorithm: Expand rules iteratively, introducing nulls as needed.
® Rule Instantiation: Minimize rule applications to avoid unnecessary derivations.
® Stable Model Computation: Grounded program is solved using ASP solvers (e.g.,
Clasp).

12/15



Set Representation in Non-Monotonic DLP

® Paper Objectives and methods:
® This paper explores set representation for non-monotonic disjunctive logic programs,

aiming to enhance expressive power while maintaining decidable reasoning.
® |t introduces DLP(S) syntax, definitions, and two grounding methods:

® Lazy Grounding: Reduces DLP(S) to DLP using functions.
® Existential Rules: Built on a Datalog engine with sets.
¢ Evaluation Results:
® No meaningful conclusions from Lazy Grounding method as it failed for complex
problems.
® Existential Rules performed similarly to the existing DLV-complex implementation. But
they had some interesting results for tasks with sets of incomparable classes, but
possibly due to implementation weaknesses.

13/15



Our Takeaways

® The rules and syntax of DLP(S) are complete and intuitive in representing sets, while
ensuring that the complexity and hardness hold when only facts are allowed to vary.

® The DLP(S) to DLP reduction using functions is complete and ensures that all stable
models of the reduction are finite.

® From an optimization perspective, results were not impressive.

® The new Lazy Grounding method lacked informative outcomes and struggled with
complex problems, but there is potential in its methodology.
® Existential Rules showed no significant improvement over existing methods.

14/15



Conclusions

® While the paper seeks to achieve increased expressive power and practical
applications, it does not quantify how these results are achieved by their
implementations compared to existing ones, leaving the conclusion incomplete.

® This leaves the evaluation solely based on numerical results for the paper’s
conclusions, which are incomplete, as their main innovation, Lazy Grounding, did not
perform as expected.

® But the paper achieved the goal of maintaining decidable reasoning with sets in ASP
and made significant strides in incorporating sets, notably with Theorems 1, 2, 5,
and 7 supporting completeness.

15/15



	Introduction
	Syntax Rules & Complexity
	Reducing DLP(S) to DLP
	Lazy Grounding in ASP
	Grounding with Existential Rules
	Our Takeaways & Conclusions

