Spatial Representation and Reasoning

KRR, Al MSc 2020 - 2021 A. Troumpoukis A. Charalambidis S. Konstantopoulos

Spatial Representation and Reasoning

- Representing time and space in information systems in general
- Qualitative representation and inference

Spatial Representation and Reasoning

Representing time and space in information systems in general

Space and Time

- Time: a 1D point or segment
- Computational issues:
 - Rigorously specified numerical or string representations: Unix time, ISO 8601
 - Timezones, leap seconds, faulty assumptions (y2k)
- Semantics issues:
 - Distinction between a range and an underspecified point within a range
 - Deciding inclusion, ordering

ex:stasinos ex:born "1973"^^xsd:date . ex:stasinos ex:born [rdf:type Period; starts "19730815"^^xsd:date; ends "19730915"^^xsd:date].

Space and Time

- Space: a 2D point or region
- Computational issues:
 - Rigorously specified numerical or string representations
 - Origin, unit, projection
- Semantics issues:
 - Distinction between a range and an underspecified point within a range
 - Deciding inclusion, ordering

Space and Time

- Space: a 2D point or region
- Computational issues:
 - Rigorously specified numerical or string representations
 - Approximating original shape
- Semantics issues:
 - Distinction between a range and an underspecified point within a range
 - Deciding inclusion, ordering
 - Leaving aside occlusions for now

 Origin: Is 17:10 in Athens before or after 16:15 in Melbourne?

GIS: Projecting a 3D surface on a 2D representation

Co-registering a 2D image with distance pointcloud

- Origin: Is 17:10 in Athens before or after 16:15 in Melbourne?
- Scale: Is 5 (m) more than 2 (km)?
- GIS: Projecting a 3D surface on a 2D representation
- Co-registering a 2D image with distance pointcloud

- These problems are addressed by:
 - Developing specifications
 - Making either implicit or explicit reference to such specifications when exchanging data
- A specification for spatiotemporal references is part of ROS
- A specification for timestamps is part of UNIX and the network stack
- GIS databases annotate data with the projection used
- GPS is specified as using WGS 84

Spatial Representation and Reasoning

Qualitative representations and inference

Spatiotemporal relations

- Qualitative relations can be computed from detailed information:
 - "21 January 2021" is contained within "2021"
 - The shape of "Ag. Paraskevi" is contained in the shape of "Greece"
 - The shape of "Lake Ohrid" overlaps with the shape of "Greece"
 - The shape of "Evros River" is the boundary of the shape of "Greece"
- Often, useful queries are expressed in terms of such relations rather than specific coordinates
 - All KR lectures during 2021
 - The number of municipalities in Attica with a population over 100k

Spatiotemporal relations

- Qualitative relations can be computed from detailed information
- Often, useful queries can be answered combining detailed, quantitative information with qualitative information
 - "Aztecs flourished in central Mexico"
 - "The Inca empire dominated western South America"
 - Machu Picchu, Peru, Mexico coords.
 - Was Machu Picchu built by the Aztecs?

Spatiotemporal relations

- Bottomline:
 - There is a need for representing both qualitative and quantitative information
 - There is a need for querying in either representation
- We need to draw inferences from either, and from combing both, to answer queries expressed either qualitatively or quantitavely

Allen

Relation	Illustration	Interpretation			
X < Y	Y	X precedes Y			
Y > X	<u> </u>	Y is preceded by X			
XmY		X meets Y			
$Y \operatorname{\mathbf{mi}} X$	<u> </u>	Y is met by X (<i>i</i> stands for <i>inverse</i>)			
XoY	Y	X overlaps with Y			
Y oi X	<u> </u>	Y is overlapped by X			
XsY	X	X starts Y			
$Y \operatorname{si} X$	<u> </u>	Y is started by X			
XdY	Y	X during Y			
$Y \operatorname{di} X$	<u> </u>	Y contains X			
XfY	X	X finishes Y			
Y fi X	<u> </u>	Y is finished by X			
X = Y	<u>X</u> <u>Y</u>	X is equal to Y			

Allen

 \rightarrow

- study {d,f} afternoon
- afternoon {m,<} sleep
- study {m,<} sleep

Relation	Illustration	Interpretation		
X < Y $Y > X$	XY	X precedes Y Y is preceded by X		
XmY YmiX	Y	X meets Y Y is met by X (<i>i</i> stands for - <i>inverse</i>)		
XoY Yoi X	Y	X overlaps with Y Y is overlapped by X		
XsY YsiX	<u> </u>	X starts Y Y is started by X		
X d Y Y di X	<u> </u>	X during Y Y contains X		
XfY YfiX	<u> </u>	X finishes Y Y is finished by X		
X = Y	<u> </u>	X is equal to Y		

RCC8

- Disconnected (DC)
- Externally connected (EC)
- Partially overlapping (PO)
- Equal (EQ)

RCC8: Region Connection Calculus

- Tangential proper part (TPP) and inverse
- Non-tangential proper part (NTPP) and inverse

RCC8

Axioms: Symmetry, inverse

- X DC Y \rightarrow Y DC X
- X EC Y \rightarrow Y EC X
- X PO Y \rightarrow Y PO X
- $X EQ Y \rightarrow Y EQ X$
- X TPP Y \rightarrow Y TPPi X
- X NTPP Y \rightarrow Y NTPPi X

Axioms: Transitivity

- X EQ Y, Y EQ Z \rightarrow X EQ Z
- X NTPP Y, Y NTPP Z \rightarrow X NTPP Z
- X NTPPi Y, Y NTPPi Z \rightarrow X NTPPi Z

Composition

- X NTPP Y, Y DC Z \rightarrow X DC Z
- X TPP Y, Y TPP Z \rightarrow X { NTPP , TPP } Z

Composition

- X NTPP Z \rightarrow Exists Y : X NTPP Y, Y NTPP Z
- X TPP Z \rightarrow Exists Y : X TPP Y, Y TPP Z
- X TPP Z \rightarrow Not Exists Y : X NTPP Y, Y NTPP Z

Composition table

;	DC	EC	PO	TPP	TPP~	NTPP	NTPP
DC	DC, EC, PO TPP, TPP [*] , 1' NTPP, NTPP [*]	DC, EC, PO TPP NTPP	DC, EC, PO TPP NTPP	DC, EC, PO TPP NTPP	DC	DC, EC, PO TPP NTPP	DC
EC	DC, EC, PO TPP [°] NTPP [°]	DC, EC, PO TPP, TPP [~] 1'	DC, EC, PO TPP NTPP	EC, PO TPP NTPP	DC, EC	PO TPP NTPP	DC
PO	DC, EC, PO TPP [~] NTPP [~]	DC, EC, PO TPP [~] NTPP [~]	DC, EC, PO TPP, TPP ⁻ , 1' NTPP, NTPP ⁻	PO TPP NTPP	DC, EC, PO TPP [~] NTPP [~]	PO TPP NTPP	DC, EC, PO TPP [~] NTPP [~]
TPP	DC	DC, EC	DC, EC, PO TPP NTPP	TPP NTPP	DC, EC, PO TPP, TPP [~] 1'	NTPP	DC, EC, PO TPP [~] NTPP [~]
TPP	DC, EC, PO TPP [°] NTPP [°]	EC, PO TPP [~] NTPP [~]	PO TPP [~] NTPP [~]	PO TPP, TPP [~]	TPP- NTPP-	PO TPP NTPP	NTPP ⁻
NTPP	DC	DC	DC, EC, PO TPP NTPP	NTPP	DC, EC, PO TPP NTPP	NTPP	DC, EC, PO TPP, TPP [*] , 1' NTPP, NTPP [*]
NTPP	DC, EC, PO TPP° NTPP°	PO TPP~ NTPP~	PO TPP ⁻ NTPP ⁻	PO TPP~ NTPP~	NTPP~	PO TPP, TPP [°] , 1' NTPP, NTPP [°]	NTPP

Inferring from quantitative data

Two houses

- Two houses are connected via a road
 - h1 EC r
 - r EC h2
- House1 is located on Property1, touching the boundary
 h1 TPP p1
- House2 is located on Property2, without touching the boundary
 - h2 NTPP p2
- What can you infer about the road?