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C. Isolated character recognition 

A 5-fold cross-validation was applied in order to evaluate 
the recognition of isolated characters of subset GRPOLY-DB-
MachinePrinted-B. We first selected all characters belonging to 
classes with at least 30 instances (125 classes). Two different 
scenarios were defined. According to the first scenario (SC-1), 
all instances were used (143051 instances) while at the second 
scenario (SC-2), only 30 randomly selected instances per class 
were used (3750 instances). We evaluated two state-of-the-art 
character recognition techniques based on HoG features [21] 
combined with an SVM classifier and adaptive windows 
features [22] combined with a KNN classifier. The 
corresponding results are shown in Table IV.  

TABLE IV.  ISOLATED CHARACTER RECOGNITION RESULTS 

  Recognition 
Accuracy (%) 

HoG features [21] – 
SVM 

SC-1 98.37 

SC-2 92.00 

Adaptive Windows 
features [22] - KNN 

SC-1 97.71 

SC-2 88.69 

 

D. Text recognition 

We evaluated the OCR recognition performance at 
character and word levels using (a) the open source OCR 
engine of Tesseract [23] and (b) the commercial OCR 
FineReader Engine v.11 [24] on the dataset GRPOLY-DB-
MachinePrinted-B. Several text blocks that do not contain non-
Greek symbols and correspond to 2835 text lines were cropped 
and used as input in order to test both recognition engines. For 
Tesseract no training was necessary, as we used the model for 
Greek polytonic built by Nick White [25].   For the ABBYY 
FineReader Engine we used 367 text lines of GRPOLY-DB-
MachinePrinted-B that do not belong to the test set in a way so 
that each target character-class to appear at least 5 times.  We 
semi-automatically segmented the selected text line images 
into character images and used the training utility of the 
ABBYY FineReader engine SDK to create the respective 
characters’ models (we created 4 recognition databases that 
correspond to GRPOLY-DB-MachinePrinted-B 1-4 in order to 
be used with the corresponding testing sets). In addition, we 
have built a dictionary for Katharevousa (a form of the Greek 
language in the early 19th century) with the use of texts from 
the Thesaurus Linguae Graecae corpus [26]. The evaluation 
results recorded concerning error rates on character and word 
level are presented in Table V.  

E. Word spotting  

We ran word spotting trials using two well-known learning-
free, segmentation-based methods, adaptive windows [22] and 
profiles [4]. Both methods are suitable for Query-by-example 
(QBE) word spotting. Adaptive windows create a fixed-length 
descriptor for each segmented word image that can in turn be 
compared with descriptors of other images in the database 
using the Euclidean distance. The size of profile features is 
dependent on the length of the input word image, and 
comparison between feature vectors can be achieved using 
Dynamic Time Warping (DTW) which optimizes 

correspondence between matching feature components using 
dynamic programming. The input for our experiments is all 
cropped, binarized word images from GRPOLY-DB. 
Evaluation is performed using a fixed set of queries for each 
dataset. The query descriptor is matched against all other 
descriptors in the dataset, and image distances that fall under a 
variable threshold are considered matches. For the purpose of 
evaluation, we are not interested on a specific distance 
threshold, but we calculate average Precision [27] as a metric 
on all possible thresholds. Mean average Precision (MAP) is 
then calculated as the mean over all query evaluation results. In 
our numerical experiments, we use the implementation of the 
Text REtrieval Conference (TREC) community by the National 
Institute of Standards and Technology (NIST) [28]. In order to 
choose queries with a well-defined criterion, we follow the 
rationale of the recent word spotting contest [27] and define 
our query list on the basis of transcription length and number of 
instances in the whole dataset. For each of our subset, we add 
to our query list all words that have more than 6 characters and 
appearing more than 5 times. Specifically for GRPOLY-DB-
Handwritten we apply a less strict criterion due to the small 
size of this set, and use words with more than 5 characters and 
4 appearances. The evaluation results concerning MAP for 
each of our datasets are presented in table VI. 

TABLE V.  CHARACTER ERROR RATES (CER) AND  WORD ERROR 
RATES (WER) FOR TEXT RECOGNITION  

 
Tesseract 

ABBYY 
FineReader 

 CER 
(%) 

WER 
(%) 

CER 
(%) 

WER 
(%) 

GRPOLY-DB-
MachinePrinted-B1 

28.41 71.71 23.6 46.69 

GRPOLY-DB-
MachinePrinted-B2 

22.29 66.71 15.28 55.54 

GRPOLY-DB-
MachinePrinted-B3 

31.13 71.36 19.70 48.61 

GRPOLY-DB-
MachinePrinted-B4 

42.30 77.61 14.34 42.51 

Average 30.37 71.43 19.20 48.60 

 

TABLE VI.  MEAN AVERAGE PRECISION (MAP) RESULTS FOR WORD 
SPOTTING 

 
Number of 

query words 

MAP(%)

Adaptive 
windows [22] 

Profiles+
DTW [4] 

GRPOLY-DB-
Handwritten 

21 40.4 56.2 

GRPOLY-DB-
MachinePrinted-A 

35 68.2 89.8 

GRPOLY-DB-
MachinePrinted-B 

103 57.8 62.0 

GRPOLY-DB-
MachinePrinted-C 

363 79.0 87.7 

Average  61.35 73.93 
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VI. CONCLUSIONS 

In this paper, the first publicly available old Greek 
polytonic database GRPOLY-DB is introduced. It contains 
both machine-printed and handwritten documents as well as 
annotation with ground-truth information at several levels (text 
line, word, character level). For every segmentation level, the 
correspondence with the polytonic text is also provided. 
Representative state-of-the-art methods are used for applying 
the most common document image processing tasks, i.e., text 
line and word segmentation, text recognition, isolated character 
recognition and word spotting, on GRPOLY-DB. The 
following indicative evaluation results have been recorded: 
Text line segmentation using a shredding based method [16]: 
94.58% (F-Measure), word segmentation using a sequential 
clustering [19]  based method: 94.85% (F-Measure), isolated 
character recognition using HoG features [21] and SVM 
classifier: 98.37% (Recognition Accuracy), text recognition 
using FineReader Engine v.11 [24]: 19.20% (Character Error 
Rate), word spotting using Profiles and DTW [4]: 73.93% 
(Mean average Precision). 
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