
Meta-learning beyond classification: A framework for
information extraction from the Web

Georgios Sigletos1, 2, Georgios Paliouras1,
Constantine D. Spyropoulos1, Takis Stamatopoulos2

1 Institute of Informatics and Telecommunications, NCSR “Demokritos”,
P.O. BOX 60228, Aghia Paraskeyh, GR-153 10, Athens, Greece

{sigletos, paliourg, costass}@iit.demokritos.gr
2 Department of Informatics and Telecommunications, University of Athens,

TYPA Buildings, Panepistimiopolis, Athens, Greece
{sigletos, takis}@di.uoa.gr

Abstract. This paper proposes a meta-learning framework in the context of in-
formation extraction from the Web. The proposed framework relies on learning
a meta-level classifier, based on the output of base-level information extraction
systems. Such systems are typically trained to recognize relevant information
within documents, i.e., streams of lexical units, which differs significantly from
the task of classifying feature vectors that is commonly assumed for meta-
learning. The proposed framework was evaluated experimentally on the chal-
lenging task of training an information extraction system for multiple Web sites.
Three well-known methods for training extraction systems were employed at
the base level. A variety of classifiers were comparatively evaluated at the meta
level. The extraction accuracy that was obtained demonstrated the effectiveness
of the proposed framework of collaboration between base-level extraction sys-
tems and common classifiers at meta-level.

1 Introduction

One common meta-learning approach, known as stacked generalization [18], deals
with the task of learning a meta-level module to combine the predictions of multiple
base-level learners. Base learners are treated as “black boxes”, i.e., only their output
predictions are used, without considering the details of their functionality. The meta-
level module is expected to achieve performance superior to each of the base learners,
on unseen data.

Current work in meta-learning of this type focuses on the classification problem,
i.e. learn how to assign the correct class value to each one of a set of different events,
where each event is described by a vector of predefined features. Various studies, e.g.
[1] and [16], have investigated which classifiers and data representations, either at the
base or the meta level, and under which strategies, can lead to better classification
results over unseen events.

In this paper, we attempt to drive the meta-learning framework outside the common
feature-vector representation, employed in classification tasks. Our motivation is the

information extraction (IE) task, which can be defined as the process of directly ex-
tracting relevant text fragments from collections of documents and filling the slots of a
predefined template. In particular, information extraction from Web pages is a simpli-
fied version of the harder free-text information extraction examined by the Message
Understanding Conferences [11]. Despite its simplicity, though, it has gained popular-
ity in the past few years, due to the proliferation of online sources, and the need to
recognize useful pieces of information inside the Web chaos.

IE can be formulated as a regular-expression matching process within a document
that is modeled by a sequence of lexical units (tokens). Learning a classifier to per-
form this task is unnatural and as a result specialized systems, like STALKER [12]
and SoftMealy [10], learn extraction rules in the form of special types of regular ex-
pressions. However, there is a small number of approaches, which enumerate the pos-
sible text fragments that can be found within a document and then model the task as a
binary classification one [5], [6]. In this case, the task is to learn whether or not a
candidate fragment fills some template-slot. There is a number of problems associated
with this approach, such as the exponential number of candidate fragments and the
disproportionately large number of “negative” events. Therefore, it is particularly
desirable to design an alternative framework that will use common IE systems.

Thus, the main contribution of this paper is a novel meta-learning framework that
removes the constraint of employing classifiers at the base level, accommodating IE
systems that recognize relevant text instances within documents, rather than classify-
ing text fragments. The prediction output of the base IE systems is appropriately trans-
formed into vectors of features, to be used for training a common meta-level classifier.
We have experimented with three algorithms at the base level: two deterministic
(STALKER [12] and (LP)2 [2]) and a stochastic finite-state approach (Hidden Markov
Models (HMMs) [13]). Four classifiers were evaluated at the meta level.

Section 2 reviews some basic theory in meta-learning for classification tasks. Sec-
tion 3 illustrates our proposed framework. Section 4 presents the experimental results.
Finally, the basic conclusions of this work are presented in Section 5.

2 Building a meta classifier – Basic theory

Wolpert [18] introduced an approach for constructing ensembles of classifiers, known
as stacked generalization or stacking. A classifier ensemble, consists of a set of n
classifiers C1, …Cn, called base-level classifiers and a meta-level classifier CML that
learns how to combine the predictions of the base-classifiers. The base-classifiers are
generated by applying n different classification algorithms on a labeled dataset LB =
{(xk, yk)}, where xk and yk are the features and the class value for the k-th instance
vector respectively. The individual predictions of the base-classifiers on a different
labeled dataset LM, are used to train the meta-classifier CML. The predictions of the
base-classifiers on LM are then transformed into a meta-level set of classification vec-
tors. At runtime, CML combines the predictions PM(x) = {Pi(x), i = 1…n} of the n base-
classifiers on each new instance x, and decides upon the final class value y(x). The

Document D

En

E2

E1

… …

Composer CML

Final extracted
instances

In

I1

I2

predictions of the base-classifiers on x are transformed into a single vector representa-
tion, which is then classified by CML.

3 Building a meta-classifier for information extraction

The majority of IE systems that use machine learning, e.g. [10], [12], represent the
acquired knowledge in the form of finite-state automata (FSA) or stochastic FSA [13].
Thus, IE becomes a task of matching a set of regular expressions within each docu-
ment. We further assume a single-slot approach to IE that deals with extracting in-
stances of isolated facts (i.e. extraction fields), whereby a different automaton is in-
duced for each fact. For example, in a Web page describing CS courses, one automa-
ton has to be induced for extracting instances of the “course number” fact, while a
different one is required for extracting instances of the “course Title” fact.

3.1 Preliminaries

Our goal is to incorporate single-slot IE systems, into a meta-learning framework and
thus exploit the advantages provided by the meta-learning theory, aiming at higher
extraction accuracy. We make the following assumptions:
1. Let D be the sequence of a document’s tokens, and Ti(si, ei) a fragment of that se-

quence, where si , ei are the start and end token bounds respectively.
2. Let EB = {Ek | k = 1…n} be the set of n single-slot IE systems, generated by n dif-

ferent learning algorithms.
3. Let Ik = {ij : Tj → factj} be the set of instances extracted by Ek, and factj the pre-

dicted fact associated with the text fragment Tj.

3.2 The proposed framework

We suggest a novel framework for combining the IE systems at base-level with a
common classifier at meta-level, which is graphically illustrated in Figure 1.

Fig. 1. Combining extraction systems and a common classifier at runtime

The starting point of the architecture depicted in Figure 1 is a document D, which is
the input to each extraction system Ek, which generates a set of extracted instances Ik,
over D. In contrast, the input to each classifier Ci in the common stacking framework,
is an instance vector x, while the output is the predicted class value Pi(x).

The combination of the base-level IE systems with the meta-level classifier CML
depends on a composer module. At runtime, the input to the composer comprises the n
sets of extracted instances I1,…,In. The output of the composer must be a set of vec-
tors, to be finally classified at meta-level by CML. Similarly in the training phase of
CML, the output of the composer must be a set of classified vectors, based on informa-
tion from the hand-labeled data. In order to translate the output of the IE systems to a
fixed-length vector of events for CML, we make the following assumptions, affecting
the functionality of the composer module:
1. Each event corresponds to a distinct text fragment T(s, e) among all predicted in-

stances in ∪Ik, k = 1…n. Note that two text fragments T1(s1, e1) and T2(s2, e2) are
different, if either s1 ≠ s2 or e1 ≠ e2 .

2. The features of the new vector, associated with the text fragment T, are based on
the predicted facts for T by the base-level IE systems. Note that for each distinct T
among all instances in ∪Ik, k = 1…n., there exists at least one instance ik : T →
factk.

3. At runtime, each vector associated to a fragment T is to be classified into one of a
set of nominal values, corresponding to the f different facts in the domain of inter-
est, plus an additional value “false” if the text fragment is judged as not being an
interesting fact.

4. During the training of CML, each vector associated to a T, is augmented with a class
value, corresponding to the hand-labeled fact of the fragment. If T is not labeled,
the new vector is assigned to the “false” class.

Consider the token table in Table 1(a), which is part of a page describing computer
science courses. Table 1(b) shows the extracted instances by 2 base-level IE systems
over the token table in Table 1(a). Note that the first system has not predicted a fact
for the text fragment T2(27, 28).

Table 1. (a) Part of a token table for a page describing computer science courses. (b) Extracted
instances by two base-level IE systems E1, E2. (c) The distinct text fragments and the
information associated to each T for constructing the new vectors

… 25 26 27 28 …
… CS414 : Operating Systems …
 (a)

T(s, e) Information for meta-level vectors
T1(25, 25) (1, Course Number),

(2, Course Number)
T2(27, 28) (2, Course Title)

(c)

T(s, e) Ek Fact

T1(25, 25) 1 Course
Number

T1(25, 25) 2 Course
Number

T2(27, 28) 2 Course Title

(b)

Table 1(c) shows the two distinct text fragments, each associated with a set of pairs
<Ek, factk>, where factk is the predicted fact by the k-th base-level IE system. The

information in those pairs will be used for building the two meta-level vectors – one
for each distinct T.

3.3 Meta-level data representation

In this paper we experiment with two different vector representations:
1. Numeric-feature representation: each distinct text fragment T is modeled by a vec-

tor of f numeric features, each one corresponding to a fact of interest, e.g. Course
Number, Course Title. During the training of the meta-classifier, the vector is aug-
mented with an additional class feature, which is the true fact of T, according to the
labeled document. For each fact predicted by an IE system, the corresponding fea-
ture value is incremented by one, starting from zero.

2. Binary-feature representation: each distinct text fragment T is modeled by a vector
of n*f binary features. The output of each of the n base-level IE systems is a set of
f binary features. For each predicted fact, the corresponding feature is set to one. In
case of ambiguous facts, more that one features will have the value one. All other
features are set to zero.

The advantage of the first representation is that the number of features depends only
on the number of the facts of interest, and remains fixed, independently of the IE sys-
tems employed at base-level. The advantage of the second representation is that the
predicted facts of the base-level IE systems are modelled separately. The numeric and
binary representations for each of the two distinct text fragments of Table 1(c) are
depicted in Table 2.

Table 2. Numeric (a) and binary (b) feature representation for the text fragments of Table 1(c),
f1 = course number, f2 = course title

 f1 f2 …
T(25, 25) 2, 0, …
T(27, 28) 0, 1, …

(a)

 E1 E2

 f1 f2 … f1 f2 …
T(25, 25) 1, 0, … 1, 0, …
T(27, 28) 0, 0, … 0, 1, …

(b)

4 Experiments

Our goal is to empirically evaluate the proposed architecture in the context of single-
slot IE from the Web. For this purpose, we conducted experiments on the task of IE
from pages across multiple Web sites, which exhibit multiple formats, including ta-
bles, nested tables and lists, thus making the extraction task more difficult.

4.1 Base-learners and meta-learners employed

At base level, we experimented with three learning algorithms for performing IE:
STALKER [12], (LP)2 [2] and Hidden Markov Models (HMMs) [13]. In this paper
we used STALKER in a single-slot mode, as described in [15]. For the HMMs, we
adopted the approach proposed in [7] and [14]. For the (LP)2 system, we used the
default settings of the Amilcare [3] environment1, in which the (LP)2 is embedded.

At meta level, we experimented with four classification algorithms, all imple-
mented in the WEKA environment [17]. The first one is j48, a reimplementation of
the C4.5 decision-tree learning algorithm. The next two belong in the family of boost-
ing algorithms: AdaBoost.M1 [8], with j48 as a weak classifier, and LogitBoost [9].
The last one is the IB1, an implementation of the 1-nearest-neighbor algorithm.

4.2 Dataset description

Experiments were conducted on a collection of 101 Web pages describing CS courses,
collected from four different university sites in the context of the WebKB project [4].
Three facts were hand-tagged for this domain: course number, course title, and course
instructor. All pages were pre-processed by a tokenizer module, using wildcards [12]2.

This corpus was selected due to the fact that it has been used in the past and results
are reported in [5]. The approach in [5] is a multi-strategy one, but it does not involve
the learning of a meta-classifier. Simple regression models are learned to map the
relationship between confidence values in the predictions of the base classifiers to true
probabilities. At runtime, they rely on a voting scheme, to decide upon the prediction
with the highest true probability.

4.3 Results

In order to evaluate our approach we employed a 5-fold double cross-validation pro-
cedure, known as cross-validation stacking [18] and we used micro-average recall
and precision over all facts. Table 3 shows the base-level experimental results for the
CS courses domain. Results for the F1 metric are also provided, which is the harmonic
mean of the recall and precision metrics.

Table 3. Base-level results for the CS courses domain

Macro (%) Prec. Recall F1
HMMs 60,85 62,06 61,45
(LP)2 69,74 62,12 65,71
STALKER 19,77 49,55 28,26
Best Indiv. [5] 74,37 59,47 66,08

1 The pattern-length was set to 5.
2 For the (LP)2, pages were preprocessed by a POS tagging module and a Stemming module.

In the CS courses domain, the results of the (LP)2 are comparable to the best individual
learner’s results, reported in [5]. (LP)2 and HMMs share the same recall, however
(LP)2 achieves a higher precision. STALKER does not perform well in this domain.
However, we rely on the diversity in the results of the three systems, aiming at higher
performance at meta-level.

Tables 4(a) and 4(b) show the meta-level results, using the numeric-feature and bi-
nary-feature representation respectively. The results are micro-averages of the corre-
sponding results for the three facts. The false class is excluded as it is of no particular
interest.

Table 4. Meta-level results using (a) the numeric-feature and (b) binary feature representation
for the CS courses domain

Macro (%) Prec. Rec. F1
J48 83,80 59,59 69,65
AdaBoostM1 83,80 59,59 69,65
LogitBoost 84,59 58,93 69,46
KNN (k=1) 84,33 58,75 69,25
Average 84,13 59,22 69,50
M/strategy [5] N/A N/A 66,9

(a)

Macro (%) Prec. Rec. F1
J48 86,35 56,45 68,27
AdaBoostM1 86,92 56,15 68,22
LogitBoost 87,48 56,03 68,31
KNN (k=1) 85,19 57,60 68,73
Average 86,49 56,56 68,38
M/strategy [5] N/A N/A 66,9

(b)

A clear conclusion from the above results is that the differences between the meta-
level classifiers –in each vector representation- are negligible. The numeric-feature
representation led to slightly better results than the binary-feature one, but the differ-
ence is too small to lead to an interesting conclusion.

Comparing the meta-level results of Table 4 against the base-level results of Table
3 and the results reported in [5] we note a small decrease in recall, accompanied by a
substantial improvement in precision. The meta-level classifiers exploited the diversity
in the predictions of the three systems and achieved an overall performance higher
than the individual IE systems. The overall conclusion is that the proposed meta-
learning framework helps to improve the extraction performance of a series of base-
level IE systems.

5 Conclusions

We presented and evaluated a meta-learning framework in the context of IE from the
Web. The proposed framework is independent of the employed IE systems at base-
level that are not required be classifiers. The presented results are encouraging, show-
ing that the proposed approach improves the precision and overall performance of the
IE systems, while outperforming also the state-of-the-art reported in the literature.

Plans for future work include experiments with more complex meta-level vector
representations. Additional sources of information (e.g. DOM-based information) will
also be investigated. Finally, we plan to experiment with more IE systems and more
extraction tasks, in order to evaluate the proposed framework more thoroughly.

References

1. Chan P. K., Stolfo S. J., On the Accuracy of Meta-Learning for Scalable Data Mining. Jour-
nal of Intelligent Information Systems 8(1): 5-28, (1997).

2. Ciravegna, F., Adaptive Information Extraction from Text by Rule Induction and Generaliza-
tion. In Proceedings of the 17th IJCAI Conference. Seattle (2001).

3. Ciravegna, F., Amilcare: adaptive IE tool, http://nlp.shef.ac.uk/amilcare/ .
4. Craven, M., DiPasquo, D., Freitag, D., McCallum, A.K., Mitchell, T., Nigam, K., Slattery,

S., Learning to extract symbolic knowledge from the World Wide Web, 19th AAAI (1998).
5. Freitag, D., Machine Learning from Informal Domains, PhD Thesis, CMU, (1998).
6. Freitag, D., Kushmerick N., Boosted Wrapper Induction, 17th AAAI Conference, (2000).
7. Freitag, D., McCallum, A.K., Information Extraction using HMMs and shrinkage, AAAI-99

Workshop on Machine Learning for Information Extraction, pp.31-36 (1999).
8. Freund, Y., Shapire, R.E., A Decision-theoretic Generalization of online Learning and an

Application to Boosting, Journal Of Computer and System Sciences, 55(1), 119-139 (1997)
9. Friedman, J., Hastie, T., Tibshirani, R., Additive Logistic Regression: a Statistical View Of

Boosting. Technical Report, Stanford University (1999).
10. Hsu, C., Dung, M., Generating Finite-state Transducers for Semi-structured Data Extraction

from the Web, Journal Of Information Systems, Vol 33 (1998).
11. MUC 7, http://www.itl.nist.gov/iaui/894.02/related_projects/muc.
12. Muslea, I., Minton, S., Knoblock, C., Hierarchical Wrapper Induction for Semistructured

Information Sources, Aut/mous Agents and Multi-Agent Systems, 4:93-114, (2001).
13. Rabiner, L., A tutorial on hidden Markov models and selected applications in speech rec-

ognition. Proceedings of the IEEE 77-2 (1989).
14. Seymore, K., McCallum A.K., Rosenfeld, R., Learning hidden Markov model structure for

Information Extraction. Journal of Intelligent Information Systems 8(1): 5-28, (1999).
15. Sigletos, G. Paliouras G., Spyropoulos C.D., Hatzopoulos M., Mining Web sites using

using wrapper induction, named entity recognition and post-processing, 1st European Web
Mining Forum, Cavtat (Dubrovnik) Croatia, September 2003 (to appear).

16. Todorovski, L., Džeroski, S., Combining Classifiers with Meta Decision Trees, Machine
Learning Journal, Kluwer Academic Publ., Volume 50-(3), p.223-249, (2003).

17. Witten, I., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations, Morgan Kaufmann Publishers (2000).

18. Wolpert, D., Stacked Generalization, Neural Networks,5(2): 241-260 (1992).

ACKNOWLEDGEMENTS

This work has been partially funded by a research grant -provided by the NCSR “De-
mokritos”- and CROSSMARC, a EC-funded research project.

http://nlp.shef.ac.uk/amilcare/

	3.2 The proposed framework
	3.3 Meta-level data representation

