
TPN2: Using positive-only learning to deal with the 
heterogeneity of labeled and unlabeled data 

Nikolaos Trogkanis 1, Georgios Paliouras 2 

1 School of Electrical and Computer Engineering, NTUA, Greece 
tronikos@gmail.com

2 Inst. of Informatics and Telecommunications, NCSR “Demokritos”, Greece 
paliourg@iit.demokritos.gr

Abstract. This paper introduces TPN2, the runner up method in both tasks of 
the ECML-PKDD Discovery Challenge 2006 on personalized spam filtering. 
TPN2 is a classifier training method that bootstraps positive-only learning with 
fully-supervised learning, in order to make the most of labeled and unlabeled 
data, under the assumption that the two are drawn from significantly different 
distributions. Furthermore, the unlabeled data themselves are separated into 
subsets that are assumed to be drawn from multiple distributions. For that 
reason, TPN2 trains a different classifier for each subset, making use of all 
unlabeled data each time. 

Keywords: one-class learning, positive-only learning, semi-supervised 
learning, multi-strategy learning, spam filtering 

1   Introduction 

The topic of the ECML-PKDD Discovery Challenge 2006 was personalized spam 
filtering. The goal was to train a personalized spam/ham classifier for each user that 
correctly classifies the emails in the user’s inbox. Despite their personalization, it was 
assumed that the classifiers will be trained and used on the mailing server. Therefore, 
training cannot rely on messages labeled by the individual users. An obvious 
surrogate for training data is the use of publicly available sources, such as mailing 
lists and newsgroups and emails received through "spam traps"1. Such data have been 
used for benchmarking spam filters in the past, e.g. the Ling-spam2 corpus. In 
addition to these labeled data, the personal emails of the users are assumed to be 
available for training, but without labels. These unlabeled data are available in large 
volumes and can be used to improve the classifiers in a semi-supervised fashion. 

In semi-supervised learning a small set of labeled examples of every class and a 
large unlabeled set are used for building the classifier. Semi-supervised learning has 
been shown to be particularly beneficial in training text classifiers, such as spam 

                                                           
1 Spam traps are email addresses published visually invisible for humans but get collected by 

the web crawlers of spammers. 
2 Ling-spam is available at: http://www.iit.demokritos.gr/skel/i-config/downloads/  

mailto:tronikos@gmail.com
mailto:paliourg@iit.demokritos.gr
http://www.iit.demokritos.gr/skel/i-config/downloads/


filters, e.g. [1], [3], [9]. However, all of these techniques assume that labeled and 
unlabeled examples are generated from the same distribution. This assumption may 
be violated in practice, and when this happens these methods perform poorly. 

One such example is the ECML-PKDD 2006 competition, where the labeled public 
data are very different from the emails received by individual users. Clearly, the 
unlabeled data are closer to the data expected to be processed by the filter in 
operation. Therefore, their use is even more important than in the usual semi-
supervised learning scenario. At the same time, the use of the labeled data is essential, 
but has to be done with care, in order to avoid misleading the training process. 

Addressing this dual problem, we chose to rely mostly on the large amounts of 
unlabeled emails in the user's inboxes. We used the labeled training data only to help 
us label a small part of the unlabeled data, sufficient to bootstrap the semi-supervised 
learning process. In doing that, we also took into account a natural asymmetry 
between the spam and the ham classes, namely that spam is much less personal than 
ham. Therefore, the discrepancy between the labeled and the unlabeled data is 
expected to be much higher for ham than for spam. Thus, we named spam the positive 
class and applied a positive-only learning approach on the unlabeled data. 

To solve the problem of learning from positive and unlabeled examples, a few 
algorithms have been proposed in the past few years. One class of algorithms is based 
on a two-step strategy. This class includes SEM (Spy Expectation Maximization) [6], 
PEBL (Positive Example Based Learning) [11] and Roc-SVM (Rocchio – Support 
Vector Machines) [4]. These algorithms aim to iteratively discover the true negative 
examples, while maintaining correctly-classified the positive ones. It has been shown 
theoretically that this approach can lead to a good classifier [6]. In addition to these 
two-step algorithms, there are other methods that aim to estimate the proportion of 
negative to positive examples in unlabeled data and use that to bias the training 
process, e.g. PNB (Positive Naive Bayes) [2] and biased-SVM [5]. 

One final aspect of our approach was the utilization of multiple different subsets of 
unlabeled data. These subsets correspond to the inboxes of different users. Clearly the 
inbox of a user should weigh more in the training of that user’s personalized filter. 
However, the inboxes of other users can also provide useful information. For that 
reason, we performed a weighted aggregation of the inboxes, giving more weight to 
the inbox of the current user. The inbox of the current user is taken as “foreground” 
and the other inboxes as “background” data. The weight of foreground data varied 
according to the dissimilarity of the user’s inbox from other inboxes. 

In summary the contribution of our TPN2 method comprises: 
• the use of fully-supervised learning to bootstrap positive-only learning on data 

from a different distribution; 
• the weighted aggregation of foreground and background unlabeled data. 

The rest of the paper is organized as follows. After presenting in section 2 the 
algorithms that we used, in section 3 we present the TPN2 method. Then, in section 4, 
we empirically evaluate the proposed technique on the two tasks of the ECML-PKDD 
Discovery Challenge 2006. Finally, we provide our conclusions from this work, 
together with suggestions for future work in section 5. 



2   Description of Existing Algorithms 

As explained in section 1, the proposed method combines both fully-supervised and 
semi-supervised learning. In the fully-supervised stage, the common Naive Bayes 
algorithm, following the multinomial model was used, while in the semi-supervised 
stages a version of PNB (Positive Naive Bayes) was combined with PEBL (Positive 
Example Based Learning) and Roc-SVM (Rocchio – Support Vector Machines). 
These four algorithms are presented briefly in this section. 

2.1   Naive Bayes Multinomial (NBM) 

Given a set D of labeled documents, let us denote by PD (respectively ND) the set of 
positive documents (respectively negative documents) in the set D. Considering bag-
of-words representation of the documents, each document is represented as the vector 

1...t t V
d x

=
= , where |V| the size of the vector of features Xt taking values xt. Each 

feature corresponds to a word and the value that it takes in a vector is a function of the 
number of occurrences of the word in document d. In the simplest case, the feature 
function indicates only the presence or absence of a word from a document. In that 
case the document vector contains binary features. 

Bayes classifiers assign an unclassified document to the most probable class, using 
Bayes theorem: 

arg max{ ( | )} arg max{ ( ) ( | )}j j
j

p c d p c p d c j=  (1) 

Naive Bayes calculates the required a-posteriori and a-priori probabilities as 
frequencies on the training data, under the simplifying assumption that the probability 
of a document given a class can be expressed as the product of the individual 
probabilities of its feature values xt given the class. In other words, features are 
assumed to be independent given the class. 

According to [7], there are two models of the Naive Bayes classifier that are 
mostly used for text classification. These are the multi-variate Bernoulli and the 
multinomial. Despite its initial use for handling word frequencies, the multinomial 
model has recently been shown to perform better than the multi-variate Bernoulli 
even when ignoring frequencies and translating the document vectors into binary 
ones, e.g. [10] and [8]. For this reason, we have opted for the multinomial model, 
which elaborates equation 1 as follows: 

( ){ } ( ) ( ) ( )
1

|
arg max | arg max !

!

tx
V

t j
j j

j j t t

p w c
p c d p c p d d

x=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∏  (2) 

where class and word probability estimates were calculated as frequencies on the 
training data, using Laplace smoothing to avoid zero probabilities. We have tested the 
method with both types of document vector, i.e., frequencies and binary, and arrived 
at similar conclusions to what has been reported in the literature, i.e. that binary 
document vectors lead to better performance. Therefore, we focus on binary vectors 
in the rest of the paper. 



2.2   Naive Bayes Multinomial Positive (Positive Naive Bayes – PNB) 

The second algorithm that we used is a representative of the second class of positive-
only learning methods mentioned in section 1, i.e. those that estimate the proportion 
of negative to positive examples in unlabeled data and use that to bias the training 
process. In particular, we adopt the approach proposed in [2] for PNB (Positive Naive 
Bayes), using the multinomial model for Naive Bayes. 

According to PNB, we assume to be given an estimate  of the positive 
class probability , a set PD of positive documents together with a set UD of 
unlabeled documents, the Naive Bayes Multinomial Positive classifier classifies a 
document 

ˆ (p pos)

)(p pos

1...t t V
d x

=
=  as explained in section 2.1, calculating the class probabilities 

as follows: 
( )0 ˆ ( )p c pos p pos≡ = , ( )1 ˆ1 (p c neg p pos≡ = − )  (3) 

and the word probability estimates, using Laplace smoothing as follows: 

( ) ( )
( )

1 # ,
|

#
t

t

w PD
p w pos

V PD
+

=
+

 (4) 

( ) ( ) ( ) ( )
( )

ˆ |
|

1
t t

t

p w p w pos pr pos
p w neg

pr pos
− ⋅

=
−

 (5) 

where ( ) ( )
( )

# ,
ˆ

#
t

t

w UD
p w

UD
= . 

2.3   Positive Example Based Learning (PEBL) 

PNB was combined with two positive-only learners belonging in the first class 
mentioned in section 1, i.e. those that iteratively search for the true negative examples 
in the unlabeled ones, while maintaining correctly-classified the positive examples. 
The first of the two algorithms that we tested was PEBL [11], which adopts the 
following strategy: 
1. identify a set of reliable negative documents from the unlabeled set (strong 

negative); 
2. apply a common classifier learning algorithm, such as SVM, on the positive and 

the strong negative to obtain a classifier; 
3. apply the classifier on the unseen data that are not in the strong-negative set; 
4. add the new negatives to the strong-negative set and retrain the SVM; 
5. stop the iterative process when no new negatives are found by the classifier and 

consider the remaining examples as positive. 
In the first step, i.e. the one that identifies the first set of strong negatives, PEBL uses 
the 1-DNF method. This method rejects any unlabeled examples that contain words 
that appear very commonly in the positive examples. Clearly, this is a very strict 
criterion, but also one that reduces the chances of mislabeling positive examples as 
negative in the first step. 



2.4   Roc-SVM 

The second of the two-step algorithms that we used was Roc-SVM [4], which follows 
a similar approach to PEBL, consisting of two steps: (1) extracting some reliable 
negative documents from the unlabeled set, (2) applying SVM iteratively to build a 
classifier. 

In the first step Roc-SVM uses a more elaborate method than PEBL, a Rocchio 
classifier is built on the positive and unlabeled data, assuming that all unlabeled are 
negative, and then this classifier is applied on the unlabeled data to identify strong 
negative. The resulting labeled data are used to train the SVM classifier in step 2, 
following the same iterative procedure as in PEBL. 

The second difference of Roc-SVM to PEBL is that it does not trust the final SVM 
in the iterative process to be the best-trained one, as this classifier is often affected by 
noise. Instead it chooses either that, or the one produced in the first iteration, 
depending on how well the final one classifies the positive examples. The SVM 
produced in the first iteration is often a very good one, due to the way in which the 
strong negative examples are chosen. 

3   Proposed Method 

The TPN2 method addresses the problem of training a classifier in the presence of 
some labeled and many unlabeled data derived from different distributions. An 
example of that is the use of labeled public email and personal mailboxes in the 
Challenge. The method deals with this problem, by training a fully-supervised 
classifier on the labeled data and using that to select a small number of good positive 
examples in the unlabeled. These strong positives are used to bootstrap a positive-
only learner. An implicit assumption made here is that the positive examples are less 
different in the labeled and the unlabeled data than the negative ones. This is likely to 
be the case with spam (positive) vs. ham (negative) emails. 

The unlabeled data may also comprise a number of similar but different subsets, 
such as the mailboxes of different users. In order to make the best use of the unlabeled 
data, TPN2 trains a separate classifier for each subset, e.g. each user, using at the same 
time all unlabeled data. However, it weighs the current subset more, treating that as 
“foreground” data, while treating the rest of the unlabeled data as “background” data. 

Our method consists of four stages: (1) creating a weighted mixture of the different 
subsets of unlabeled data, (2) training a fully-supervised classifier to select the 
strongest positive from the unlabeled examples, (3) iteratively extend the positive set 
with a positive-only learner, and (4) using a two-step positive-only learner to refine 
the final classifier. The four stages are described in more detail below, while the 
pseudocode for TPN2 is presented in table 1. 

Stage 1: Weighted mixture of foreground and background unlabeled data 
In this stage the set of unlabeled data is weighted. The method focuses on one of the 
distinct subsets in the dataset, treating that as foreground data and awarding its 
members with w times more weight than the rest of the unlabeled (background) data. 



This is implemented by simply using each example of the foreground data w times, 
instead of just once. The value of the weight w is user-defined, but we will show a 
heuristic method for choosing it at the end of this section. 

Stage 2: Selection of strong positives from the unlabeled examples 
In this stage, fully-supervised learning is used to train a classifier on the labeled data. 
After experimentation, we chose the Naive Bayes classifier, using the multinomial 
model (NBM) for this purpose. Once the classifier is trained, it is applied on the 
unlabeled data, allowing us to choose a small number of strong positive examples. 
Strong positives are the examples classified as positive by NBM with confidence 
greater than a user-defined threshold. 

Stage 3: Iterative extension of the strong positive set 
Given a set of good positive examples and many unlabeled ones, we apply a positive-
only learner (PNB) to identify more positive. We assume here that the labeled data 
have provided more information about the positive class and there are thus very few 
false positives among the selected set of strong positive examples.3 Using the initial 
set of strong positive examples, PNB builds a classifier that is applied on all unlabeled 
examples. Those examples that are classified as positive will make the new positive 
set, which is used in turn by PNB to build a new classifier. At the end of stage 3, we 
will have a positive set containing most of the positive examples of the unlabeled set 
and very few false positives. 

Stage 4: Refine the positive-only trained classifier 
Having identified most of the positive examples, we refine the classifier using a 
different positive-only learner that focuses on finding strong negative examples. We 
have tested both PEBL and Roc-SVM in that role. 

 
The algorithm presented in table 1, has three parameters that need to be defined by 

the user: 
1. Positive class probability p. This was provided for the challenge and it is p=0.5. 
2. Confidence threshold for NBM, above which a positive example is considered 

strong positive. Given the fact that Naive Bayes tends to push probabilities 
estimates to 0 and 1, we have opted for a strict value for this threshold, i.e. 0.99. 

3. Foreground data weight w. For the selection of this parameter the following 
heuristic is proposed: Test for increasing values of w and keep the lowest value 
that leads to the maximum number of identified positive emails in Ei just before 
entering the final stage. This heuristic pushes the assumption of minimum false 
positive rate to the extreme. 
                                                           

3 This was actually proven when we were given the true labels of the challenge data. About half 
of the messages identified as ham by the initial classifier were false. 



 

Table 1. Pseudocode description of the TPN2 method. 

Input: 
• labeled training emails, T 
• unlabeled subsets, E1, …, En 
• foreground subset, Ei 
• foreground weight, w 
• positive (spam) class probability, p 
 
Output: 
• classifier 
 
Algorithm: 

j i
; // ...(1) 

NBM := construct_NBM (T); // ...(2) 
POS := NBM.classify(E); // ...(3) 
do { 
 POS_OLD := POS; 
 U := E – POS; // ...(4) 

j i
E : E w E

≠

= + ⋅∑

 PNB := construct_PNB(POS, U, p); // ...(5) 
 POS := PNB.classify(E); // ...(6) 
} while (POS ≠ POS_OLD); // …(7) 
U := E – POS; 
PEBL := construct_PEBL(POS, U); // ...(8) 
return PEBL; 
 
Notes: 
…(1) E is a weighted mixture of all unlabeled data (the foreground data Ei is added w times) 
…(2) Naive Bayes Multinomial (NBM) learns from T 
…(3) NBM is used to extract the strongest positive examples from the unlabeled ones 
…(4) remove the strong positives from the unlabeled examples 
…(5) train PNB on strong positives and remaining unlabeled, using positive class probability4

…(6) use the trained PNB to classify all unlabeled and keep the positive 
…(7) continue iteratively, until no more positive can be found 
…(8) run PEBL (or Roc-SVM) on positive and remaining unlabeled 
 

                                                           
4 In the version of the algorithm that participated in the challenge, we used a more pessimistic 

estimate of the positive class probability for PNB. The use of p, as shown here, led to 
considerably better results than all of the reported results in the challenge. We would like to 
thank the reviewer of the paper for this simplifying suggestion. 



4   Experimental Results 

4.1   Experimental Set-up 

This section uses the Challenge data to study the behavior of TPN2 under varying 
conditions and parameter values. In particular we wanted to study: 
1. The performance of TPN2 in the two different tasks of the challenge. Table 2 

presents the main properties of the two tasks. In Task A, the size of labeled training 
data from public corpora is large and so is the size of unlabeled data per user. The 
aim here is to be able to train a personalized filter from each user’s data separately. 
In contrast, Task B requires the use of information from the unlabeled data of other 
users. The labeled data is very limited and so is the number of emails available for 
each user. Presumably, the users share enough common characteristics to be able to 
utilize unlabeled data from all inboxes when training a personalized filter. 

2. The choice of value for the parameter w, i.e. the relative weight of the user’s own 
data (foreground data) to the rest of the unlabeled data (background data). This 
value is expected to be smaller and closer to 1, the closer the user’s data are to the 
norm. 

3. The effect of the various training stages and corresponding algorithms that we 
used. 

Table 2. Number of emails and inboxes for each task of the challenge. 

 Task A Task B 
Number of labeled training emails 4000 100 
Number of emails within one evaluation inbox 2500 400 
Number of inboxes for evaluation 3 15 

 
The data was provided in feature vector format and therefore the use of text 

analysis or heuristics that are commonly used in spam filtering was not possible. The 
performance of the methods was assessed by the AUC (Area Under Curve) method, 
which measures the area under the ROC (Receiver Operating Characteristics) curve. 
The ROC curve is usually a plot of sensitivity against 1-specifity. In this case it was a 
plot of the true positive rate (correctly identified spam) against the false positive rate 
(incorrectly identified spam). 

4.2   Choosing the Weight of Foreground Data 

In section 3, we presented a heuristic for choosing the value of w, based on the 
unlabeled data only. This section presents the results of this heuristic (Tables 3 and 4). 
The tables present the value of w chosen by the heuristic, the optimal, according to 
the AUC score, choice of w in the range [1,30] if we were given the labels of all 
unlabeled data, the number of unlabeled examples assigned to the positive class by 
the method trained with the heuristic w: |POS|=(TP+FP) in Ei just before entering the 



final stage, the number of false positive examples: FP in Ei, and the performance of 
TPN2 using PEBL with the heuristic and the optimal values of w. 

Table 3. Task A performance of the method, using PEBL in stage 4 and setting the value of w 
with the proposed heuristic vs. the optimal value. 

Inbox w (heur) w (opt) |POS| FP AUC (heur) AUC (opt) 
task_a_u00 5 27 905 2 0.936654 0.939847 
task_a_u01 13 19 992 2 0.948652 0.949384 
task_a_u02 21 15 1157 8 0.991288 0.991479 
Average     0.958865 0.960237 

Table 4. Task B performance of the method, using PEBL in stage 4 and setting the value of w 
with the proposed heuristic vs. the optimal value. 

Inbox w (heur) w (opt) |POS| FP AUC (heur) AUC (opt) 
task_b_u00 1 4 181 2 0.9852 0.9915 
task_b_u01 9 25 181 1 0.986375 0.9904 
task_b_u02 27 2 183 1 0.9857 0.9876 
task_b_u03 1 9 197 16 0.981 0.9945 
task_b_u04 1 26 144 9 0.929975 0.94415 
task_b_u05 1 1 122 16 0.853175 0.853175 
task_b_u06 18 28 122 5 0.87295 0.88445 
task_b_u07 1 1 184 4 0.98505 0.98505 
task_b_u08 8 5 198 7 0.99365 0.995975 
task_b_u09 1 19 187 4 0.976325 0.985975 
task_b_u10 1 26 165 13 0.925125 0.970925 
task_b_u11 1 20 158 4 0.939425 0.9521 
task_b_u12 1 17 188 1 0.9861 0.9921 
task_b_u13 1 1 124 5 0.946575 0.946575 
task_b_u14 3 3 159 2 0.9404 0.9404 
Average     0.952468 0.960992 

 
The first observation is that the chosen value of w is much more variable in task A, 

than task B. In task B, in 10 out of the 15 mailboxes the heuristic chooses to give the 
same weight to foreground and background data. Practically, this means that 10 out of 
the 15 classifiers in task B are identical. This is an indication of the similarity between 
the unlabeled data of different users in task B. In contrast, the values of w chosen in 
task A are high, focusing the training process on the data of the user, rather than the 
background data. 

Another observation is that the choice of w with the heuristic method is quite good 
in most cases. Although the choices are not so close to the ones we would choose if 
we were given the labels of unlabeled data, the optimal w does not lead to much better 
performance. 

In order to study the sensitivity of TPN2 to the choice of w, figure 1 presents the 
AUC performance using PEBL for varying w in the two tasks. For the sake of 
comprehensibility, figure 1 presents results for only four indicative datasets of task B. 



0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

0 5 10 15 20 25 30
w

A
U

C

task_a_u00
task_a_u01
task_a_u02

 
0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30
w

A
U

C

task_b_u00
task_b_u06
task_b_u08
task_b_u13

 
Fig. 1. Performance for inboxes of Task A and Task B varying w. 

The figure shows that the method is relatively insensitive to the choice of w in 
most of the datasets. This is also confirmed by most of task B datasets that are not 
shown here. Nevertheless, a careful examination of the curves shows that the choice 
of w is important. One obvious argument for that is the steep and sudden change 
decrease in performance for dataset task_b_u08 when w changes from 8 to 9. More 
importantly, the shape of the curves is very different in task A than task B. Choosing 
a low value for w in task A could hurt the performance seriously. 

Finally, it is also not always true that a large value of w is better, as shown by the 
performance in task_b_u08. Even in task A, where the curves in figure 1 seem to 
indicate that there is no difference for any big value of w, the performance slightly 
decreases after the optimal value of w. For w → infinity, which means no influence of 
the background inboxes (E=Ei), we have the following values of AUC for each inbox: 
0.895408, 0.909718, and 0.875867, which are much lower than the best we achieved. 

Therefore, one needs to choose w carefully, although its exact value can vary 
without significant loss of performance in most cases. The proposed heuristic works 
reasonably well, although there could be room for improvement. 

4.3   Performance of the Algorithms used in Different Stages 

This subsection examines the contribution of each of the three learning stages to the 
performance of TPN2. Tables 5 and 6 present the results obtained in each stage for 
each dataset. All of the results are obtained using the value of w chosen by the 
heuristic of section 3. 

Table 5. Performance in the three learning stages for Task A. 

 Stage 2 Stage 3 Stage 4 
Inbox NBM PNB PEBL Roc-SVM 
task_a_u00 0.818971 0.864881 0.936654 0.924884 
task_a_u01 0.874001 0.901113 0.948652 0.945581 
task_a_u02 0.897548 0.967851 0.991288 0.987226 
Average 0.863507 0.911282 0.958865 0.952564 



Table 6. Performance in the three learning stages for Task B. 

 Stage 2 Stage 3 Stage 4 
Inbox NBM PNB PEBL Roc-SVM 
task_b_u00 0.493075 0.948963 0.9852 0.981825 
task_b_u01 0.456338 0.952325 0.986375 0.980175 
task_b_u02 0.7228 0.954787 0.9857 0.9856 
task_b_u03 0.707225 0.984637 0.981 0.980975 
task_b_u04 0.77165 0.878 0.929975 0.926025 
task_b_u05 0.617887 0.761825 0.853175 0.830475 
task_b_u06 0.569925 0.768138 0.87295 0.8687 
task_b_u07 0.563175 0.974075 0.98505 0.986025 
task_b_u08 0.520763 0.986625 0.99365 0.9943 
task_b_u09 0.431412 0.964063 0.976325 0.9776 
task_b_u10 0.6655 0.9127 0.925125 0.936025 
task_b_u11 0.714988 0.905338 0.939425 0.9368 
task_b_u12 0.634975 0.967538 0.9861 0.988375 
task_b_u13 0.66315 0.853562 0.946575 0.942425 
task_b_u14 0.56955 0.904675 0.9404 0.9378 
Average 0.606828 0.914483 0.952468 0.950208 

 
As expected, the performance of the fully-supervised classifier (NBM) is much 

better in task A than task B, since the labeled dataset available in task A is larger. 
However, with the use of PNB, our method is able to reach approximately the same 
level of performance in stage 3. Then, the improvement in the fourth stage is 
essentially the same for both tasks and both of the algorithms that we tested. Thus, the 
main conclusion is that the proposed method can compensate for the lack of labeled 
data, by iteratively searching for strong positive examples in the unlabeled data set. 
Furthermore, the use of a two-step positive-only learner in the last stage is important, 
when a substantial set of strong positives has been established. 

5   Conclusions 

In this paper, we introduced the TPN2 method, which tackles the problem of learning 
from labeled and unlabeled that are derived from different distributions. The method 
adopts a four-stage approach combining fully-supervised and positive-only learning 
methods. The underlying assumption is that the positive examples are more similar in 
the labeled and unlabeled data than the negative ones. Based on this assumption, the 
core of the method iteratively selects strong positive examples from the unlabeled 
data, starting from the ones most confidently identified by a classifier trained on the 
labeled data. Furthermore, the method handles unlabeled data comprising of different 
subsets. In that case, the method builds a separate classifier for each subset, using the 
whole set of unlabeled data, but focusing more on the current subset. 

The proposed method participated in the ECML/PKDD Discovery Challenge 2006, 
the subject of which was the construction of personalized spam filters. The challenge 



defined two tasks, in which a set of public email data was given as labeled and a 
number of personal inboxes as unlabeled data. The two tasks posed a different 
proportion of labeled and unlabeled data, as well as a different number of personal 
inboxes. The proposed method obtained the second place in both tasks, as it is 
particularly suitable for the scenario of the challenge, i.e. spam (positive) email is 
more homogeneous in the two datasets (public and private) than ham (negative) 
email. 

The paper contains a selection of the results obtained in the various experiments 
with the parameters of the method, focusing particularly on the choice of algorithms 
for the four stages of the method and the choice of weight for the foreground data. 
Despite the good results, a number of extensions seem interesting, such as the use of 
different weights for different subsets of the unlabeled background data. Additionally, 
a different configuration of the positive-only learners could be used to reduce the risk 
of error amplification by the iterative use of the same search bias. Finally, the method 
should be tested on other problems, which may violate its underlying assumptions. 

References 

1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. Proceedings 
of the Workshop on Computational Learning Theory, COLT-98, (1998) 92-100. 

2. Denis, F., Gilleron, R., Tommasi, M.: Text classification from positive and unlabeled 
examples. Conference on Information Processing and Management of Uncertainty in 
Knowledge-Based Systems, IPMU, (2002). 

3. Joachims, T.: Transductive inference for text classification using support vector machines. 
Proceedings of ICML-99, 16th International Conference on Machine Learning, (1999) 200-
209. 

4. Li, X., Liu, B.: Learning to classify text using positive and unlabeled data. Proceedings of the 
18th International Joint Conference on Artificial Intelligence, IJCAI-03, (2003). 

5. Liu B., Dai Y., Li X., Lee W., Yu P.: Building text classifiers using positive and unlabeled 
examples. Proceedings of the Third IEEE International Conference on Data Mining, ICDM-
03, (2003). 

6. Liu, B., Lee, W. S., Yu, P., Li, X.: Partially supervised classification of text documents. 
Proceedings of the Nineteenth International Conference on Machine Learning, ICML-02, 
(2002). 

7. McCallum, A., Nigam, K.: A comparison of event models for naïve Bayes text classification. 
AAAI-98 Workshop on Learning for Text Categorization, (1998). 

8. Metsis V., Androutsopoulos I., Paliouras G.: Spam Filtering with Naive Bayes - Which 
Naive Bayes?. Proceedings of the 3rd Conference on Email and Anti-Spam, CEAS-06, 
(2006). 

9. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text Classification from Labeled and 
Unlabeled Documents using EM. Machine Learning, 39(2/3), (2000) 103-134. 

10. Schneider, K.-M.: On Word Frequency Information and Negative Evidence in Naive Bayes 
Text Classification. España for Natural Language Processing, EsTAL, (2004). 

11. Yu, H., Han, J., Chang, K.: PEBL: Positive example based learning for Web page 
classification using SVM. Proc. ACM SIGKDD International Conference on Knowledge 
Discovery in Databases, KDD-02, (2002). 


