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We present a system for recognising human behaviour given a symbolic representation
of surveillance videos. The input of our system is a set of time-stamped short-term
behaviours, that is, behaviours taking place in a short period of time — walking, run-
ning, standing still, etc — detected on video frames. The output of our system is a set
of recognised long-term behaviours — fighting, meeting, leaving an object, collapsing,
walking, etc — which are pre-defined temporal combinations of short-term behaviours.
The definition of a long-term behaviour, including the temporal constraints on the short-
term behaviours that, if satisfied, lead to the recognition of the long-term behaviour,
is expressed in the Event Calculus. We present experimental results concerning videos
with several humans and objects, temporally overlapping and repetitive behaviours.
Moreover, we present how machine learning techniques may be employed in order to
automatically develop long-term behaviour definitions.
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1. Introduction

We address the problem of human behaviour recognition by separating low-level

recognition, detecting activities that take place in a short period of time —

“short-term behaviours” — from high-level recognition, recognising “long-term be-

haviours”, that is, pre-defined temporal combinations of short-term behaviours. In

this paper we present our work on high-level recognition. We evaluate our approach

on a benchmark dataset of short-term behaviours identified on surveillance videos.

To perform high-level recognition we define a set of long-term behaviours of

interest — for example, “leaving an object”, “fighting” and “meeting” — as tem-

poral combinations of short-term behaviours — for instance, “walking”, “running”

and “inactive”. We employ a logic programming implementation of the Event Cal-

culus,8 an expressive, declarative temporal reasoning formalism, in order to define

long-term behaviours. More precisely, we employ the Event Calculus to express the

temporal constraints on a set of short-term behaviours that, if satisfied, lead to the

recognition of a long-term behaviour.
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A logic programming approach to behaviour recognition has, among others, the

advantage that machine learning techniques can be directly employed in order to

automatically develop a knowledge base of behaviour definitions. We present ini-

tial experiments with a combination of abductive and inductive logic programming

techniques to learn behaviour definitions for the aforementioned dataset of surveil-

lance videos.

The remainder of the paper is organised as follows. First, we present the Event

Calculus. Second, we describe the dataset of short-term behaviours on which we

perform long-term behaviour recognition. Third, we present our knowledge base of

long-term behaviour definitions. Fourth, we present our experimental results. Fifth,

we describe the use of machine learning techniques for automatically developing

long-term behaviour definitions given the dataset of short-term behaviours. Finally,

we discuss related work and outline directions for further research.

2. The Event Calculus

Our system for Long-Term Behaviour Recognition (LTBR) is a logic programming

implementation of an Event Calculus formalisation, expressing long-term behaviour

definitions. The Event Calculus (EC), introduced by Kowalski and Sergot,8 is a

formalism for representing and reasoning about actions or events and their effects.

We present here the version of the EC that we employ (more details about this

version may be found in Ref. 2).

EC is based on a many-sorted first-order predicate calculus. For the version

used here, the underlying time model is linear and it may include real numbers or

integers. Where F is a fluent — a property that is allowed to have different values

at different points in time — the term F = V denotes that fluent F has value V .

Boolean fluents are a special case in which the possible values are true and false.

Informally, F = V holds at a particular time-point if F = V has been initiated by

an action at some earlier time-point, and not terminated by another action in the

meantime.

An action description in EC includes rules that define, among other things, the

action occurrences (with the use of the happens predicate), the effects of actions

(with the use of the initiates and terminates predicates), and the values of the fluents

(with the use of the initially, holdsAt and holdsFor predicates). Table 1 summarises the

main EC predicates. Variables, starting with an upper-case letter, are assumed to

be universally quantified unless otherwise indicated. Predicates, function symbols

and constants start with a lower-case letter.

The holdsAt predicate is defined as follows:

holdsAt(F = V ,T )←

initially(F = V ) ,

not broken(F = V , 0 ,T )

(1)
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Table 1. Main predicates of the event calculus.

Predicate Meaning

happens(Act ,T ) Action Act occurs at time T

initially(F = V ) The value of fluent
F is V at time 0

holdsAt(F = V ,T ) The value of fluent
F is V at time T

holdsFor(F = V , I ) I are the maximal intervals
for which F = V holds
continuously

initiates(Act ,F = V ,T ) The occurrence of action Act

at time T initiates a period of
time for which F = V

terminates(Act ,F = V ,T ) The occurrence of action Act

at time T terminates a period
of time for which F = V

holdsAt(F = V ,T )←

happens(Act ,T ′),T ′ < T ,

initiates(Act ,F = V ,T ′) ,

not broken(F = V ,T ′,T )

(2)

According to rule (1) a fluent holds at time T if it held initially (time 0) and

has not been “broken” in the meantime, that is, terminated between times 0 and T .

Rule (2) specifies that a fluent holds at a time T if it was initiated at some earlier

time T ′ and has not been terminated between T ′ and T . “not” represents “negation

by failure”.3 The auxiliary predicate broken is defined as follows:

broken(F = V ,T1 ,T3 )←

happens(Act ,T2 ),

T1 ≤ T2 ,T2 < T3 ,

terminates(Act ,F = V ,T2 )

(3)

F = V is “broken” between T1 and T3 if an event takes place in that interval

that terminates F = V . Note that, according to the above rules, a fluent does not

hold at the time that was initiated but holds at the time it was terminated.

A fluent cannot have more than one value at any time. The following rule

captures this feature:

terminates(Act ,F = V ,T )←

initiates(Act ,F = V ′,T ),

V 6= V ′

(4)
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Rule (4) states that if an action Act initiates F = V ′ then Act also terminates

F = V , for all other possible values V of the fluent F . We do not insist that a fluent

must have a value at every time-point. In this version of EC, therefore, there is a

difference between initiating a Boolean fluent F = false and terminating F = true:

the first implies, but is not implied by, the second.

The intervals for which a fluent has a particular value are computed with the

use of the holdsFor predicate. Below is a skeleton of this predicate:

holdsFor(F = V, I)←

start(F = V , StartPts),

end(F = V ,EndPts),

compute intervals(StartPts ,EndPts , I )

(5)

The start predicate computes a list of time-points in which F = V is initiated.

If F = V held initially then the output of start includes 0. The end predicate

computes a list of time-points in which F = V is terminated. Given the output of

these predicates, compute intervals computes the maximal intervals of time-points for

which F = V holds continuously. The computed intervals are of the form (T1, T2]

or since(T ). To save space we do not present here the complete formalisation of

holdsFor; the interested reader is referred to the source code of LTBR, which is

available upon request.

3. Short-Term Behaviours: The CAVIAR Dataset

LTBR includes an EC action description expressing long-term behaviour definitions.

The input to LTBR is a symbolic representation of short-term behaviours. The

output of LTBR is a set of recognised long-term behaviours. In this paper we

present experimental results given the short-term behaviours of the first dataset

of the CAVIAR project.a This dataset includes 28 surveillance videos of a public

space. The videos are staged — actors walk around, browse information displays,

sit down, meet one another, leave objects behind, fight, and so on. Each video has

been manually annotated in order to provide the ground truth for both short-term

and long-term behaviours.

For the presented set of experiments the input to LTBR is: (i) the short-term

behaviours walking, running, active (body movement in the same position) and

inactive (standing still) — these behaviours are mutually exclusive — along with

their time-stamps, that is, the frame in which a short-term behaviour took place,

(ii) the coordinates of the tracked people and objects as pixel positions at each

time-point, and (iii) the first and the last time a person or object is tracked

“appears”/“disappears”). Given this input, LTBR recognises the following long-

term behaviours: a person leaving an object, a person being immobile, people meet-

ing, moving together, or fighting.

ahttp://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
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Long-term behaviours are represented as EC fluents in order to use the built-

in (domain-independent) holdsFor predicate for computing the intervals of these

behaviours. Short-term behaviours are represented as EC actions in order to use

the initiates and terminates predicates for expressing the conditions in which these

behaviours initiate and terminate a long-term behaviour. In the following section

we present example fragments of all long-term behaviour definitions.

4. Long-Term Behaviour Definitions

The long-term behaviour “leaving an object” is defined as follows:

initiates(inactive(Object), leaving object(Person,Object) = true,T )←

holdsAt(appearance(Object) = appear ,T ),

holdsAt(close(Person,Object , 30 ) = true,T ),

holdsAt(appearance(Person) = appear ,T0 ),

T0 < T

(6)

initiates(exit(Object), leaving object(Person,Object) = false,T ) (7)

Rule (6) expresses the conditions in which a “leaving an object” behaviour

is recognised. The fluent recording this behaviour, leaving object(Person , Object),

becomes true at time T if Object is inactive at T , Object “appears” at T , there is

a Person close to Object at T (in a sense to be specified below), and Person has

appeared at some time earlier than T . The appearance fluent records the times in

which an object/person “appears” and “disappears”. The close(A,B ,D) fluent is

true when the distance between A and B is at most D. The distance between two

tracked objects/people is computed given their coordinates. The value of 30 pixel

positions was based on an empirical analysis of the dataset.

An object exhibits only inactive short-term behaviour. Any other type of short-

term behaviour would imply that what is tracked is not an object. Therefore, the

short-term behaviours active, walking and running do not initiate the leaving object

fluent. In the CAVIAR videos an object carried by a person is not tracked — only

the person that carries it is tracked. The object will be tracked, that is, “appear”,

if and only if the person leaves it somewhere. Consequently, given rule (6), the

leaving object behaviour will be recognised only when a person leaves an object

(see the second line of rule (6)), not when a person carries an object.

Rule (7) expresses the conditions in which a leaving object behaviour ceases

to be recognised. In brief, leaving object is terminated — the value of this fluent

becomes false — when the object in question is picked up. exit(A) is an event

that takes place when appearance(A) = disappear . An object that is picked up by

someone is no longer tracked — it “disappears” — triggering an exit event which

in turn terminates leaving object .

In the present formalisation of the CAVIAR long-term behaviours, we chose

to adopt the “strong termination” of fluents, and thus write rules of the form
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initiates(ST ,LT = false,T ) instead of terminates(ST ,LT = true,T ), to express that

short-term behaviour ST terminates long-term behaviour LT at time T . Conse-

quently, in the present formalisation the heads of the rules expressing long-term

behaviour definitions are only initiates predicates.

The long-term behaviour immobile is defined in order to signify that a person

is resting in a chair or on the floor, or has fallen on the floor (fainted, for example).

Note that there is no short-term behaviour in the annotation of the CAVIAR dataset

for the motion of leaning towards the floor or a chair. The absence of such a short-

term behaviour substantially complicates the definition of immobile (and reduces

the accuracy of recognising immobile — see Section 5). Below is (a simplified version

of) one of the rules of the immobile definition:

initiates(inactive(Person), immobile(Person) = true,T )←

happens(active(Person),T0 ),

T0 < T ,

duration(inactive(Person), Intervals),

(T ,T1 ) ∈ Intervals ,

T1 > T+54

(8)

According to rule (8), the behaviour immobile(Person) is recognised if Person :

(i) has been active some time in the past (see lines 2–3 of rule (8)), and (ii) stays

inactive for more than 54 frames (see lines 4–6 of rule (8)) — we chose this num-

ber of frames, like all other numerical constraints of the definitions, based on our

empirical analysis of the CAVIAR dataset. duration is a predicate computing the

maximal duration of inactive behaviour, that is, the number of consecutive instan-

taneous inactive events. The output of duration is a set of tuples of the form (s, e)

where s is the time in which inactive(Person) started and e is the time in which

inactive(Person) ended. (holdsFor computes the duration of fluents and thus can-

not be used for computing the duration of inactive behaviour.) Note that this is

not the only way to represent durative events in EC. See Ref. 25 for alternative

representations.

Rule (8) has an additional constraint, requiring that Person is not close to an

information display or a shop. If Person were close to a shop, then he would have

to stay inactive much longer than 54 frames before immobile could be recognised.

In this way we avoid classifying the behaviour of browsing a shop as immobile . To

simplify the presentation we do not present here the extra constraint of rule (8).

The definition of immobile includes rules according to which immobile(Person)

is recognised if Person : (i) has been walking some time in the past, and (ii) stays

inactive for more than 54 frames. We insist that Person in immobile(Person) has

been active or walking before being inactive, in order to distinguish between a

left object, which is inactive from the first time it is tracked, from an immobile

person.
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immobile(Person) is terminated when Person starts walking, running or “dis-

appears” — see rules (9)–(11) below:

initiates(walking(Person), immobile(Person) = false,T ) (9)

initiates(running(Person), immobile(Person) = false,T ) (10)

initiates(exit(Person), immobile(Person) = false,T ) (11)

The following rules represent a fragment of the moving behaviour definition:

initiates(walking(Person),moving(Person,Person2 ) = true,T )←

holdsAt(close(Person,Person2 , 34 ) = true,T ),

happens(walking(Person2), T )

(12)

initiates(walking(Person),moving(Person,Person2 ) = false,T )←

holdsAt(close(Person,Person2 , 34 ) = false,T )
(13)

initiates(active(Person),moving(Person,Person2 ) = false,T )←

happens(active(Person2 ),T )
(14)

initiates(running(Person),moving(Person,Person2 ) = false,T ) (15)

initiates(exit(Person),moving(Person,Person2 ) = false,T ) (16)

According to rule (12) moving is initiated when two people are walking and

are close to each other (their distance is at most 34). moving is terminated when

the people walk away from each other, that is, their distance becomes greater than

34 (see rule (13)), when they stop moving, that is, become active (see rule (14))

or inactive, when one of them starts running (see rule (15)), or when one of them

“disappears” (see rule (16)).

The following rules express the conditions in which meeting is recognised:

initiates(active(Person),meeting(Person,Person2 ) = true,T )←

holdsAt(close(Person,Person2 , 25 ) = true,T ),

not happens(running(Person2 ),T )

(17)

initiates(inactive(Person),meeting(Person,Person2 ) = true,T )←

holdsAt(close(Person,Person2 , 25 ) = true,T ) ,

not happens(running(Person2 ),T )

(18)

meeting is initiated when two people “interact’: at least one of them is active or

inactive, the other is not running, and the distance between them is at most 25. This

interaction phase can be seen as some form of greeting (for example, a handshake).

meeting is terminated when the two people walk away from each other, or one
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of them starts running or “disappears”. The rules representing the termination of

meeting are similar to rules (13), (15) and (16). Note that meeting may overlap with

moving : two people interact and then start moving , that is, walk while being close

to each other. In general, however, there is no fixed relationship between meeting

and moving .

The rules below present the conditions in which fighting is initiated:

initiates(active(Person), fighting(Person,Person2 ) = true,T )←

holdsAt(close(Person,Person2 , 24 ) = true,T ) ,

not happens(inactive(Person2 ),T )

(19)

initiates(running(Person), fighting(Person,Person2 ) = true,T )←

holdsAt(close(Person,Person2 , 24 ) = true,T ) ,

not happens(inactive(Person2 ),T )

(20)

Two people are assumed to be fighting if at least one of them is active or run-

ning, the other is not inactive, and the distance between them is at most 24. We

have specified that running initiates fighting because, in the CAVIAR dataset, mov-

ing abruptly, which is what happens during a fight, is often classified as running.

fighting is terminated when one of the people walks or runs away from the other,

or “disappears” — see rules (21)–(23) below:

initiates(walking(Person), fighting(Person,Person2 ) = false,T )←

holdsAt(close(Person,Person2 , 24 ) = false,T )
(21)

initiates(running(Person), fighting(Person,Person2 ) = false,T )←

holdsAt(close(Person,Person2 , 24 ) = false,T )
(22)

initiates(exit(Person), fighting(Person,Person2 ) = false,T ) (23)

Under certain circumstances LTBR recognises both fighting and meeting. This hap-

pens when two people are active and the distance between them is at most 24. This

problem would be resolved if the CAVIAR dataset included a short-term behaviour

for abrupt motion, which would be used (instead of the active short-term behaviour)

to initiate fighting, but would not be used to initiate meeting.

5. Experimental Results

We present our experimental results on 28 surveillance videos of the CAVIAR

project. These videos contain 26419 frames that have been manually annotated

in order to provide the ground truth for short-term and long-term behaviours.

Table 2 shows the performance of LTBR — it shows, for each long-term behaviour,

the number of True Positives (TP), False Positives (FP) and False Negatives (FN),

as well as Recall and Precision. Long-term behaviours are recognised with the use

of the holdsFor EC predicate.
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Table 2. Experimental results.

Behaviour True positive False positive False negative Recall Precision

leaving object 4 0 1 0.8 1

immobile 9 8 0 1 0.52

moving 16 12 1 0.94 0.57

meeting 6 3 3 0.66 0.66

fighting 4 8 2 0.66 0.33

LTBR correctly recognised 4 leaving object behaviours. Moreover, there were

no FP. On the other hand, there was 1 FN. This, however, cannot be attributed to

LTBR because in the video in question the object was left behind a chair and was

not tracked. In other words, the left object never “appeared”, it never exhibited a

short-term behaviour.

Regarding immobile we had 9 TP, 8 FP and no FN. The recognition of immobile

would be much more accurate if there was a short-term behaviour for the motion of

leaning towards the floor or a chair. In the absence of such a short-term behaviour,

the recognition of immobile is primarily based on how long a person is inactive. In

the CAVIAR videos, a person falling on the floor or resting in a chair stays inactive

for at least 54 frames. Consequently LTBR recognises immobile if, among other

things, a person stays inactive for at least 54 frames. There are situations, however,

in which a person stays inactive for more than 54 frames and has not fallen on the

floor or sat in a chair: people watching a fight, or just staying inactive waiting for

someone. It is in those situations that we have the FP concerning immobile .

LTBR recognised correctly 16 moving behaviours. However, it also recognised

incorrectly 12 such behaviours. Half of the FP concern people that do move together:

walk towards the same direction while being close to each other. According to the

manual annotation of the videos, however, these people do not exhibit the moving

long-term behaviour. The remaining FP fall into two categories. First, people walk

close to each other as they move to different directions — in these cases the duration

of FP is very short. These FP could have been eliminated if there was (reliable)

information about the orientation of the tracked people. Second, the short-term

behaviours of people fighting are sometimes classified as walking. Consequently,

the behaviour of these people is incorrectly recognised by LTBR as moving since,

according to the manual annotation of the CAVIAR dataset, they are walking while

being close to each other (moreover, their coordinates change). Introducing a short-

term behaviour for abrupt motion would resolve this issue, as abrupt motion would

not initiate moving .

LTBR did not recognise 1 moving behaviour. This FN was due to the fact that

the distance between the people walking together was greater than the threshold

we have specified. Increasing this threshold would result in substantially increasing

the number of FP. Therefore we chose not to increase it.
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LTBR recognised 9 meeting behaviours, 6 of which took place and 3 did not take

place. 2 FP concerned fighting behaviours realised by people being active and close

to each other. As mentioned in the previous section, in these cases LTBR recognises

both meeting and fighting . The third FP was due to the fact that two people were

active and close to each other, but were not interacting. LTBR did not recognise 3

meeting behaviours. 2 FN were due to the fact that the distance between the people

in the meeting was greater than the threshold we have specified. If we increased this

threshold LTBR would correctly recognise these 2 meeting behaviours. However,

the number of FP for meeting would substantially increase. Therefore we chose not

to increase this threshold. The third FN was due to the fact that the short-term

behaviours of the people interacting — handshaking — were classified as walking,

although one of them was actually active. We chose to specify that walking does not

initiate a meeting in order to avoid incorrectly recognising meetings when people

simply walk close to each other.

Regarding fighting we had 4 TP, 8 FP and 2 FN. The FP were mainly due to

the fact that when a meeting takes place LTBR often recognises the long-term be-

haviour fighting (as well as meeting). LTBR did not recognise 2 fighting behaviours

because in these two cases the short-term behaviours of the people fighting were

classified as walking (recall the discussion on the recognition ofmoving). We chose to

specify that walking does not initiate fighting. Allowing walking to initiate fighting

(provided, of course, that two people are close to each other) would substantially

increase the number of FP for fighting, because fighting would be recognised every

time a person walked close to another person.

6. Machine Learning Event Definitions

Given the analysis presented so far, it is clear that the manual development of

long-term behaviour definitions is a tedious and error-prone process. Consequently,

a method for automatically generating such definitions from temporal data is re-

quired.

As LTBR is a logic program, Inductive Logic Programming (ILP) methods are

an obvious candidate for constructing domain-dependent rules expressing long-term

behaviour definitions. ILP can be used to generalise observations, producing hy-

potheses about yet unseen instances. A typical type of ILP learning, Observational

Predicate Learning (OPL),13 requires that both observations and their generalisa-

tions are described by the same predicate. In our EC-based behaviour recognition

approach, however, OPL cannot be directly applied. This is due to the fact that

the sequence of observations, expressing the ground truth for long-term behaviours,

is represented by a set of holdsAt predicates, whereas the domain-dependent rules

that need to be learnt, expressing long-term behaviour definitions, are represented

by initiates predicates.

To overcome this problem, we employ a combination of abduction and induc-

tion techniques, as proposed in the literature.10,18–20,22 The learning procedure
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we developed has the following input: (i) a background theory, including the EC

domain-independent rules — rules (1)–(5) — and domain-specific knowledge, such

as the rules computing the distance between two people/objects, (ii) a narrative,

expressing the short-behaviours taking place in each video, represented by happens

Prolog facts, and the coordinates of each person/object in the video, and (iii) a set

of observations, represented by holdsAt facts, expressing the long-term behaviours

taking place in each video. (ii) and (iii) correspond, respectively, to the ground

truth for short-term and long-term behaviours. The output of our learning proce-

dure consists of domain-dependent rules, where the head of each rule is an initiates

predicate expressing a long-term behaviour definition.

Our learning procedure follows three steps. First, given the background theory,

narrative and observations, an Abductive Logic Programming (ALP) reasoner is

employed to generate a set of abduced explanations in terms of ground initiates

facts. Second, a Kernel Set18,21 is formed by adding a set of body atoms, entailed

by the background theory, to each ground initiates fact produced in the previous

step. Third, an ILP reasoner is employed to induce a set of hypotheses, in terms of

non-ground initiates rules, given the Kernel Set, background theory, narrative and

observations. A detailed description of the operation of our learning procedure is

given below.

For the first step of our procedure we employ the ProLogICA23 ALP reasoner to

construct abduced explanations given the background theory, narrative and obser-

vations. An additional input to the ALP reasoner is a set of integrity constraints,

such as, for example, that an event may not initiate and terminate the same flu-

ent at the same time. Due to substantial delays in ProLogICA’s reasoning time,

instead of parsing the complete set of observations and short-term behaviours of

the narrative, we employ a sliding window approach. Each sliding window contains

a subset of observations and short-term behaviours of the narrative. For example,

a window of temporal range 12600 to 12760 (each video frame takes 40ms) includes

the following narrative (short-term behaviours in terms of happens facts, and the

coordinates of people/objects in terms of holdsAt facts) and observations (long-term

behaviours in terms of holdsAt facts):

happens(walking(id6 ), 12600 ), happens(walking(id7 ), 12600 ),

happens(walking(id6 ), 12640 ), happens(walking(id7 ), 12640 ),

happens(walking(id6 ), 12680 ), happens(walking(id7 ), 12680 ),

happens(active(id6 ), 12720 ), happens(active(id7 ), 12720 ).

holdsAt(coord(id6 ) = (165 , 79 ), 12600 ), holdsAt(coord(id7 ) = (40 , 64 ), 12600 ),

holdsAt(coord(id6 ) = (168 , 69 ), 12640 ), holdsAt(coord(id7 ) = ( 42 , 65 ), 12640 ),

holdsAt(coord(id6 ) = (165 , 79 ), 12680 ), holdsAt(coord(id7 ) = (160 , 74 ), 12680 ),

holdsAt(coord(id6 ) = (168 , 69 ), 12720 ), holdsAt(coord(id7 ) = (165 , 65 ), 12720 ).



March 23, 2010 17:7 WSPC-IJAIT S021821301000011X

204 A. Artikis, A. Skarlatidis & G. Paliouras

holdsAt(fighting(id6 , id7 ) = false, 12640 ),

holdsAt(fighting(id6 , id7 ) = false, 12680 ),

holdsAt(fighting(id6 , id7 ) = true, 12720 ),

holdsAt(fighting(id6 , id7 ) = true, 12760 ).

Given that, in the employed EC version (see Section 2), the effects of an action

Act (short-term behaviour in this example) taking place at time T come into play

at the time-point following T , the observations of each window start from the

second frame of the window. According to the sliding window approach, ProLogICA

produces, for each window i, explanations ∆i, given the observations that exist

within the range of i, Oi, and the narrative within the range of i, Ni. Each Oi is

entailed from the background theory, integrity constraints, Ni and ∆i. At the end of

this step, the complete set of explanations ∆ is computed as the union of each ∆i.

Note that, in this example, the combination of background knowledge and integrity

constraints eliminates the possibility of alternative inconsistent explanations. A

fragment of an example output of our procedure’s first step is presented below:

initiates(walking(id6 ), fighting(id6 , id7 ) = false, 12600 )

initiates(walking(id6 ), fighting(id7 , id6 ) = false, 12640 )

initiates(walking(id6 ), fighting(id6 , id7 ) = true, 12680 )

initiates(active(id6 ), fighting(id6 , id7 ) = true, 12720 )

In the second step of our learning procedure, the Kernel Set is constructed by a

deductive process which adds to each ground initiates fact produced in the previous

step, a body atom expressing the distance between the people/objects exhibiting

a particular long-term behaviour. Consider the following fragment of an example

output of this step of the learning procedure:

initiates(walking(id6 ), fighting(id6 , id7 ) = false, 12640 )←

holdsAt(close(id6 , id7 , 24 ) = false, 12640 )

initiates(walking(id6 ), fighting(id6 , id7 ) = true, 12680 )←

holdsAt(close(id6 , id7 , 24 ) = true, 12680 )

Recall that the close(A,B ,D) fluent is true when the distance between A and

B is at most D.

Effectively in this step we compute, for each long-term behaviour, the threshold

distance associated with the initiation (respectively termination) of this behaviour;

when the distance between two people/objects is less (respectively greater) than the

threshold, then the long-term behaviour under consideration may be initiated (re-

spectively terminated). The computation of the threshold distance for a long-term

behaviour is based on the cumulative distribution of distances between the people/

objects initiating this behaviour. The threshold distance is set to the minimum

distance that maximizes the corresponding distribution.
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For the third step of our learning procedure we employ the Aleph26 ILP rea-

soner to induce non-ground initiates rules, given the Kernel Set produced in the

previous step, background theory, narrative and observations. The produced Ker-

nel Set forms the positive example set of the induction phase. The negative example

set is constructed as follows. For every rule r of the Kernel Set, if the head of r

is initiates(st , lt = true, t), meaning that short-term behaviour st initiates long-term

behaviour lt at time t, we add in the negative example set initiates(st ′, lt = false, t),

for every short-term behaviour st′. Similarly, for every rule r of the Kernel Set,

where the head of r is initiates(st , lt = false, t), we add in the negative example set

initiates(st ′, lt = true, t), for every short-term behaviour st′.

In order to deal with the noise in the video dataset — as mentioned in

Section 5, according to the annotation of the dataset, a pair of short-term be-

haviours may initiate a long-term behaviour at some time-points and terminate the

same behaviour at other time-points — we have configured the ILP reasoner to

allow for (restricted) coverage of negative examples.

We performed initial experiments with the learning procedure on selected videos

of the CAVIAR dataset. We observed that the “quality” of the induced rules

(expressing long-term behaviour definitions), that is, the accuracy of behaviour

recognition achieved by the induced rules, heavily depends on the choice of toler-

ance threshold for noise handling (the allowed coverage of negative examples and

the required coverage of positive examples). Qualitatively, our preliminary results

are encouraging in the sense that, when the noise tolerance threshold is set appro-

priately, the induced rules are a good approximation of the manually developed

rules. Further experimentation is of course necessary in order to validate our ap-

proach. Additionally, we need to reduce the sensitivity of our method on the choice

of noise tolerance threshold.

7. Related Work

A well-known system for behaviour recognition is the Chronicle Recognition System

(CRS).b A “chronicle” can be seen as a long-term behaviour — it is expressed in

terms of a set of events (short-term behaviours in our example), linked together by

time constraints, and, possibly, a set of context constraints. The input language of

the CRS relies on a reified temporal logic, where propositional terms are related to

time-points or other propositional terms. Time is considered as a linearly ordered

discrete set of instants. The language includes predicates for persistence and event

absence. Details about the input language of the CRS, and CRS in general, may

be found on the web page of the system and in Refs. 4–6.

The CRS language does not allow mathematical operators in the constraints

of atemporal variables. Consequently, the computation of the distance between

two people/objects cannot be computed. CRS, therefore, cannot be directly used

bhttp://crs.elibel.tm.fr/

http://crs.elibel.tm.fr/
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for behaviour recognition in video surveillance applications. More generally, CRS

cannot be directly used for behaviour recognition in applications requiring any form

of spatial reasoning, or any other type of atemporal reasoning. These limitations

could be overcome by developing a separate tool for atemporal reasoning that would

be used by CRS whenever this form of reasoning was required. To the best of our

knowledge, such extensions of CRS are not available. Clearly, the computational

efficiency of CRS, which is one of the main advantages of using this system for

behaviour recognition, would be compromised by the integration of an atemporal

reasoner.

In our approach to behaviour recognition, the availability of the full power of

logic programming, which is one of the main attractions of employing the Event

Calculus (EC) as the temporal formalism, allows for the development of behaviour

definitions including complex temporal (EC is at least as expressive as the CRS

language with respect to temporal representation) and atemporal constraints. When

necessary, more expressive EC versions may be employed (see Refs. 9 and 25 for

presentations of the EC expressiveness).

Paschke and colleagues15–17 have proposed a logic programming implementa-

tion of an EC version for behaviour recognition. Unlike our EC version, there is no

support for multi-valued fluents — only Boolean fluents are considered. The use

of multi-valued fluents makes the representation considerably more succinct. More-

over, the EC version of Paschke and colleagues does not include rules for recognising

a behaviour that has been initiated at some earlier time-point and has not (yet)

terminated. For example, there is no built-in support for recognising an on-going

fighting behaviour. Our treatment of behaviours as EC fluents in combination with

the holdsFor predicate for computing the intervals in which a fluent holds, allows

us to overcome the above limitation. In the case of an on-going fighting behaviour,

for instance, an answer to a query regarding fighting would be of the form since(T ),

indicating that the recognition of fighting started at T and has not (yet) ended.

We described our first steps towards automatically constructing behaviour def-

initions expressed as logic programming implementations of EC. There are sev-

eral approaches in the literature for learning EC-based logic programs. Moyle and

Muggleton,11 for instance, combined a generalisation of mode-directed inverse en-

tailment12 with Stickel’s theorem prover,27 in order to perform non-observational

predicate learning and produce EC domain-dependent rules from observations. The

ALECTO system10 combines abduction with induction to address the same prob-

lem. Our approach was motivated by the more recently developed HAIL and XHAIL

systems1,18–20,22 that also use a hybrid abductive-inductive method to perform

non-observational predicate learning.c We opted for developing a new system based

on the philosophy of HAIL and XHAIL, in order to have the flexibility of adding

new features to it. One such feature is the use of a sliding window for abduc-

tion, which was necessary in order to handle the size of the CAVIAR dataset with

cThere are currently no publicly available versions of HAIL and XHAIL.
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ProLogICA. Since the same abductive reasoner forms the basis of HAIL and

XHAIL, we expect that a similar extension of these systems will be necessary.

Clearly HAIL and XHAIL have features that our preliminary approach is lacking,

including the computation of a consistent rule-set, as opposed to single rules. We

are currently working towards incorporating such features in our approach.

8. Summary and Future Work

We presented a behaviour recognition system based on an EC logic programming

implementation, and outlined the advantages of our system with respect to state-of-

the-art recognition systems. We showed experimental results on a benchmark video

surveillance dataset. We are currently investigating the extent to which recognition

accuracy may improve. For instance, we are investigating the extent to which a finer

classification of short-term behaviours, offered by existing short-term behaviour

recognition systems (such as, for example, the system presented in Ref. 7), and

respective modification of long-term behaviour definitions, reduce False Positives

and False Negatives.

A logic programming approach to behaviour recognition has the additional ad-

vantage that machine learning techniques can be directly employed in order to

automatically develop a knowledge base of behaviour definitions. We presented ini-

tial experiments with a combination of abductive and inductive logic programming

techniques for constructing such definitions. There are several directions for further

work concerning this task. We are investigating the effects of enhancing the Ker-

nel Set (adding more body atoms in the rules of this set) on the efficiency of the

induction phase as well as on the “quality” of the induced rules. Moreover, we are

considering techniques for theory learning. To address the problems that arise from

large search spaces, such as that of our example, we are considering techniques for

theory revision,14,24,28 assuming that some rules, however incomplete, may be man-

ually produced. Further experimentation with noisy datasets is also necessary. In

the context of the EU-project PRONTOd we will automatically develop long-term

behaviours for emergency rescue operations and public transport services, using

data from video cameras, microphones, accelerometers and other sensor types that

are available in these fields.
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