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Abstract

This paper presents an extensive empirical evaluation of memory-based learning in the context of anti-spam filtering, a

novel cost-sensitive application of text categorization that attempts to identify automatically unsolicited commercial

messages that flood mailboxes. Focusing on anti-spam filtering for mailing lists, a thorough investigation of the

effectiveness of a memory-based anti-spam filter is performed using a publicly available corpus. The investigation

includes different attribute and distance-weighting schemes, and studies on the effect of the neighborhood size, the size

of the attribute set, and the size of the training corpus. Three different cost scenarios are identified, and suitable cost-

sensitive evaluation functions are employed. We conclude that memory-based anti-spam filtering for mailing lists is

practically feasible, especially when combined with additional safety nets. Compared to a previously tested Naïve

Bayes filter, the memory-based filter performs on average better, particularly when the misclassification cost for non-

spam messages is high.
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1. Introduction

This paper presents a thorough empirical evaluation of memory-based learning in the context of a novel cost-sensitive

application, that of filtering unsolicited commercial e-mail messages.
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The increasing popularity and low cost of electronic mail have intrigued direct marketers to flood the mailboxes of

thousands of users with unsolicited messages. These messages are usually referred to as spam or, more formally,

Unsolicited Commercial E-mail (UCE), and may advertise anything, from vacations to get-rich schemes. Spam

messages are extremely annoying to most users, as they waste their time and prolong dial-up connections. They also

waste bandwidth, and often expose minors to unsuitable content by advertising pornographic sites. A 1998 study found

that spam messages constituted approximately 10% of the incoming messages to a corporate network (Cranor &

Lamacchia, 1998). The situation seems to be worsening, and without appropriate counter-measures, spam messages

could eventually undermine the usability of e-mail.

The proposed counter-measures have been either regulatory or technical, with regulatory measures having limited

effect so far.1 Technical measures are based on anti-spam filters, which attempt to discriminate between spam and non-

spam, hereafter legitimate, messages. Typical anti-spam filters currently in the market employ blacklists of known

spammers, and handcrafted rules that block messages containing specific words or phrases. Blacklists, however, are of

little use, as spammers often use forged addresses. Handcrafted rules are also problematic: to be most effective, they

need to be tuned to the incoming messages of particular users or groups of users, a task requiring time and expertise that

has to be repeated periodically to account for gradual changes in the characteristics of spam messages (Cranor &

Lamacchia, 1998).

The success of machine learning techniques in text categorization (Sebastiani, 2001) has recently led researchers to

explore the applicability of learning algorithms in anti-spam filtering.2 A supervised learning algorithm is fed with a

corpus of messages that have been classified manually as spam or legitimate, and builds a classifier, which is then used

to detect incoming spam messages. Apart from collecting separately spam and legitimate training messages, the

learning process is fully automatic, and can be repeated to tailor the filter to the incoming messages of particular users

or groups, or to capture changes in the characteristics of spam messages. Anti-spam filtering differs from other

electronic mail and news categorization tasks (Lang, 1995; Cohen, 1996; Payne & Edwards, 1997), in that spam

messages cover a very wide spectrum of topics, and hence are much less homogeneous than other categories that have

been considered in the past. Another difference is that anti-spam filtering is a case of cost-sensitive classification, an

area that has not been explored as intensively in text categorization as in other classification tasks.3 The cost of

accidentally blocking a legitimate message can be much higher than letting a spam message pass the filter, and this cost

difference must be taken into account during both training and evaluation.

Sahami et al. (1998) experimented with an anti-spam filter based on Naïve Bayes (Mitchell, 1997). In similar anti-

spam experiments, Pantel and Lin (1998) found Naïve Bayes to outperform Ripper (Cohen & Singer, 1999). Drucker et
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al. (1999) experimented with Ripper, Rocchio’s classifier (Rocchio, 1971; Joachims, 1997), Support Vector Machines

(Cristianini & Shawe-Taylor, 2000), and boosted decision trees (Quinlan, 1993; Schapire & Singer, 2000), with results

showing that Support Vector Machines and boosted decision trees achieve very similar error rates, both outperforming

Rocchio’s classifier. A direct comparison of these previous results, however, is impossible, as they are based on

different and not publicly available data sets. Furthermore, the reported figures can be misleading, since they are not

formulated within a cost-sensitive framework.

Research on text categorization has benefited significantly from the existence of publicly available, manually

categorized document collections, like the Reuters corpora, which have been used as standard benchmarks.4 Producing

similar corpora for anti-spam filtering is complicated by privacy issues. Publicizing spam messages does not pose a

problem, because spam messages are distributed blindly to very large numbers of recipients, and, hence, they are

effectively already publicly available; but legitimate e-mail messages cannot usually be released without violating the

privacy of their recipients and senders. There is, however, a type of anti-spam filtering where researchers can share

benchmark corpora without violating privacy constraints: constructing filters that will guard against spam messages sent

to mailing lists with public archives.5 In this case, rather than examining the messages that arrive at a user’s individual

mailbox, the anti-spam filter examines the messages that arrive at the server of the list, before sending the messages to

the subscribers of the list.

Mailing lists are often targeted by spammers, who either cannot distinguish between personal addresses and

addresses of mailing lists, or deliberately send their messages to lists to reach their subscribers. In either case, the result

can be a major waste of bandwidth and storage, especially in mailing lists with large numbers of subscribers. To avoid

this waste and other abuses, many lists are moderated, i.e., a person is assigned the task of reading each incoming

message before allowing it to be circulated to the subscribers. Lists with intense traffic, however, can overwhelm their

moderators, and in many cases there may be nobody willing to act as a moderator. Hence, a filter that would

automatically detect spam postings to mailing lists, or that would report suspicious postings to a moderator for further

inspection would be particularly useful.

Most mailing lists focus on particular topics. Hence, an anti-spam filter trained for a particular mailing list can use

features indicating that a message is off-topic (e.g., absence of particular terminology) as hints that the message is spam.

Assuming that the messages that most users receive are less topic-specific than the messages of a mailing list, it is

reasonable to expect that the performance of an anti-spam filter for a list will be better than the performance of an anti-

spam filter for a personal mailbox. One cannot, therefore, safely generalize conclusions drawn from experimenting with

mailing lists to anti-spam filters for personal mailboxes, although conclusions of the first kind can be seen as
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preliminary indications of the viability of anti-spam filtering in other settings, and, as already mentioned, anti-spam

filtering for mailing lists is valuable in its own right. We also note that in anti-spam filtering approaches that examine

only the content of the messages, as in our case, it makes no difference whether the messages are circulated via a list

server or a Usenet-like newsgroup. Hence the work described here applies equally well to newsgroups.

Along these lines, we have recently introduced Ling-Spam, a publicly available collection of spam messages and

legitimate messages from a mailing list on linguistics, as well as suitable cost-sensitive evaluation measures, which

were used to conduct a detailed evaluation of a Naïve Bayes anti-spam filter (Androutsopoulos, et al. 2000a).

Continuing that strand of work, this paper presents a thorough empirical evaluation of a memory-based anti-spam filter,

using Ling-Spam and the same evaluation framework as in our previous experiments, thus contributing towards

standard benchmarks. Memory-based classifiers are particularly promising for anti-spam filtering, on the grounds that

spam messages form a rather incoherent class in terms of topics. Hence, a classifier that predicts the class of a new

message by recalling similar already classified messages is likely to perform at least as well as classifiers that build a

unique model for each message class. A disadvantage of memory-based classifiers is that they can be computationally

expensive in their classification phase, due to their “lazy” character. Very efficient implementations of memory-based

classifiers, however, are available that address this issue (Daelemans, et al. 1997, 2000). Furthermore, our experiments

(Section 6.4 below) indicate that in many cases memory-based anti-spam filtering is viable with small training sets,

which can be handled efficiently even by less sophisticated implementations of memory-based classifiers.

A preliminary investigation of memory-based anti-spam filtering was presented in a previous article

(Androutsopoulos, et al. 2000b), where we experimented with a simplistic version of the k-Nearest Neighbor algorithm

(Mitchell, 1997) with promising results. Gomez Hidalgo et al. (2000) have reported similar experiments. The work that

will be presented here is much more detailed, in that it considers the effect of several extensions to the basic k-Nearest

Neighbor algorithm that have not been explored in previous anti-spam experiments, including different schemes for

attribute and distance weighting, as well as the effect of the neighborhood size, the size of the training corpus, the size

of the attribute set, and different cost scenarios. In all cases, we attempt to justify our observations, and thus increase

our confidence that similar behavior is likely to appear in other similar cost-sensitive applications. Overall, our results

indicate that memory-based anti-spam filtering for mailing lists is practically feasible, especially when combined with

additional safety nets. Compared to the Naïve Bayes filter, the memory-based filter performs on average better,

particularly when the misclassification cost for legitimate messages is high.

The rest of this paper is organized as follows: section 2 presents our benchmark corpus; section 3 describes the

preprocessing that is applied to the messages to convert them to training or testing instances; section 4 discusses the
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basic memory-based learner; section 5 introduces the cost-sensitive evaluation measures; section 6 presents our

experimental results, investigating separately the effect of each one of the extensions to the basic algorithm that we have

considered; section 7 concludes and suggests directions for further research.

2. Benchmark corpus

This section describes Ling-Spam, the corpus that was used in our experiments. Ling-Spam is a mixture of spam

messages, and legitimate messages sent via the Linguist list, a moderated mailing list about the science and profession

of linguistics.6 The corpus consists of 2893 messages:

• 2412 legitimate messages, obtained by randomly downloading digests from the list’s archives, breaking the digests

into their messages, and removing text added by the list’s server.

• 481 spam messages, received by one of the authors. Attachments, HTML tags, and duplicate spam messages

received on the same day have not been included.

Spam messages constitute approximately 16% of Ling-Spam, a rate close to those reported by Cranor and LaMacchia

(1998), and Sahami et al. (1998). The Linguist messages are less topic-specific than one might expect. For example,

they contain job postings, software availability announcements, and even flame-like responses.

The number of messages in Ling-Spam is small when compared to established benchmarks for text categorization,

such as the Reuters corpora (Section 1). As a partial remedy, we used 10-fold stratified cross-validation (Kohavi, 1995)

in all of our experiments, a technique that increases the confidence of experimental findings when using small datasets.

That is, Ling-Spam was partitioned in 10 parts, with each part maintaining the same ratio of legitimate and spam

messages as in the entire corpus. Each experiment was repeated 10 times, each time reserving a different part as the

testing corpus and using the remaining 9 parts as the training corpus. Performance scores were then averaged over the

10 iterations.

To the best of our knowledge, the only other publicly available collection of spam and legitimate messages is

Spambase (Gomez Hidalgo, et al. 2000).7 This is a collection of 4601 vectors (see Section 3 below), each representing a

spam or legitimate message, with spam messages constituting approximately 39% of the total. Each vector contains the

values of 58 pre-selected attributes, including the category. Spambase is much more restrictive than Ling-Spam, since

the original texts are not available. For example, unlike Ling-Spam, with Spambase one cannot experiment with more

attributes, different attribute selection algorithms, or attributes corresponding to phrases, rather than individual words.
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3. Message representation and preprocessing

For the purposes of our experiments, each message is converted into a vector nxxxxx ,,,, 321 K
r

= , where

nxx ,,1 K are the values of attributes nXX ,,1 K , as in the vector space model (Salton & McGill, 1983). All

attributes are binary: 1=iX if some characteristic represented by iX is present in the message; otherwise 0=iX .

In our experiments, attributes represent words, i.e., each attribute shows if a particular word (e.g., “adult”) occurs in the

message. To avoid treating forms of the same word as different attributes, a lemmatizer was applied to the corpora to

covert each word to its base form (e.g., “was” becomes “be”).8

It is also possible to use attributes corresponding to phrases (e.g., “be over 21”) or non-textual characteristics (e.g.,

whether or not the message contains attachments, or whether or not it was sent on a Sunday). Previous work (Sahami, et

al. 1998) indicates that using both word and phrasal attributes can lead to marginally better results than using only word

attributes. However, a separate, not yet published, strand of our work found no evidence that using phrasal attributes in

anti-spam filtering can lead to consistent improvements. The results of Sahami et al. (1998) also show that the inclusion

of non-textual attributes can be more beneficial. Using non-textual attributes, however, requires an additional manual

preprocessing stage to devise candidate attributes of this kind (e.g., one may observe that, unlike spam messages, the

legitimate messages of a particular mailing list are rarely sent over weekends, and rarely contain attachments, and hence

consider these characteristics as candidate attributes). As we are interested in anti-spam filters that can be trained fully

automatically, we did not investigate the use of non-textual attributes, though operational filters may indeed benefit

from attributes of this type.

To reduce the high dimensionality of the instance space, attribute selection was performed. First, words occurring in

less than 4 messages were discarded, i.e., they were not considered as candidate attributes. Then, the Information Gain

(IG) of each candidate attribute X with respect to variable C , denoting the category, was computed as in (1) below,

and the attributes with the m highest IG-scores were selected, with m varying in our experiments from 50 to 700 by 50.

The probabilities were estimated from the training corpora using m-estimates (Mitchell, 1997).

)()(

),(
log),(),(

},{},1,0{ cCPxXP

cCxXP
cCxXPCXIG

legitspamcx =⋅=
==

⋅=== ∑
∈∈

(1)

Yang and Pedersen (1997) report that it is feasible to remove up to 98% of the candidate attributes using IG or other

similar functions, and preserve, or even improve, generalization accuracy. Table 1 shows the attributes with the highest

IG scores in the entire Ling-Spam corpus. They are mostly words that are common in spam messages (e.g., “remove”,

“free”, “your”) and rare in messages about linguistics, or words that are frequent in Linguist messages (e.g., “language”,
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“university”, “linguistic”) and uncommon in spam messages. Unlike typical text categorization tasks, punctuation and

other special symbols (e.g., “!”, “@”, “%”, “$”) were not discarded during preprocessing, but they were treated as

“words”. It can be seen from Table 1 that many of these symbols are among the best attributes in Ling-Spam, which is

not surprising given that these symbols are used much more frequently in spam messages than in normal text.

4. Memory-based learning

Memory-based, or “instance-based”, methods do not construct a unique model for each category, but simply store the

training examples (Aha, et al. 1991; Wilson, 1997). Test instances are then classified by estimating their similarity to

the stored examples. In its simplest form, memory-based learning treats instances as points in a multi-dimensional space

defined by the attributes that have been selected. Classification is usually performed through a variant of the basic k-

Nearest-Neighbor (k-NN) algorithm (Cover & Hart, 1967), which assigns to each test instance the majority class of its k

closest training instances (its k-neighborhood).

Various metrics can be used to compute the distance between two instances (Giraud-Carrier & Martinez, 1995;

Wilson & Martinez, 1997). With symbolic (nominal) attributes, as in our case, the overlap metric is a common choice.

This metric counts the attributes where the two instances have different values. Given two instances

iniii xxxx ,,, 21 K
r

= and jnjjj xxxx ,,, 21 K
r

= their overlap distance is:

),(),(
1

jrir

n

r
ji xxxxd ∑

=

δ≡
rr

(2)

where


 =

≡δ
otherwise,1

if,0
),(

yx
yx

In our experiments, we used the TiMBL memory-based learning software (Daelemans, et al. 2000). TiMBL

implements the basic k-NN classifier as above, except that the k-neighborhood is taken to contain all the training

instances at the k closest distances, rather than the k closest instances. As a result, if there is more than one neighbor at

some of the k closest distances, the neighborhood will contain more than k neighbors.

We have also experimented with different attribute-weighting and distance-weighting schemes. Unlike the basic k-

NN classifier, where all the attributes are treated as equally important, attribute-weighting extensions assign different

importance scores to the attributes, depending on how well they discriminate between the categories, and adjust the

distance metric accordingly (Aha, 1992; Wettschereck, et al. 1995). Distance weighting takes memory-based learning

one step further, by considering neighbors closer to the input instance as more important, assigning greater voting

weight to them (Dudani, 1976; Bailey & Jain, 1978; Wettschereck, 1994). This can reduce the sensitivity of the
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classifier to the k parameter, the neighborhood size. Attribute and distance weighting is considered in more detail in

Section 6 below.

5. Cost-sensitive classification and evaluation

In anti-spam filtering there are two types of possible error: blocking a legitimate message (classifying a legitimate

message as spam), and accepting a spam message (classifying a spam message as legitimate). Let SL → and

LS → denote the two error types, respectively. Previous work on anti-spam filtering (Sahami et al. 1998;

Androutsopoulos et al. 2000a, 2000b) has assumed that SL → is generally more severe an error than LS → . This is

based on the assumption that most users can tolerate a small percentage of mistakenly admitted spam messages, while

they consider losing legitimate messages much more damaging. Invoking a decision-theoretic notion of cost (Lewis,

1995), we assume that SL → is λ times more costly than LS → . More precisely, we use the cost matrix of Table 2,

where LL → and SS → denote the cases where the filter classifies correctly a legitimate or spam message,

respectively. Here cost is intended to reflect the effort that a subscriber of the list, or the moderator if there is one,

wastes to recover from the failures of the filter.9 Correctly classifying a message ( LL → or SS → ) is assigned zero

cost, since in this case there is no effort to be wasted. Misclassifying a spam message ( LS → ) is assigned unary cost,

and misclassifying a legitimate message ( SL → ) is taken to be λ times more costly. The value of the λ parameter

depends on the usage scenario of the filter, as will be discussed below; for example, whether the filter deletes messages

classified as spam, or simply flags them as low-priority.

Table 2

Let )(xWL

r
and )(xWS

r
be the degrees of confidence of the classifier that instance x

r
is legitimate or spam,

respectively. For the basic k-NN algorithm of the previous section, a suitable measure of the confidence that a test

instance belongs in a category (legitimate or spam) is the percentage of training instances in the k-neighborhood that

belongs to that category. We classify a test instance as spam iff the expected cost of classifying it as legitimate is greater

than the expected cost of classifying it as spam, i.e.,:

)()()()()()()()( SScxWSLcxWLLcxWLScxW SLLS →⋅+→⋅>→⋅+→⋅
rrrr

According to the cost matrix, this is equivalent to λ⋅> )()( xWxW LS

rr
, i.e., we use the following criterion:
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xW

xW
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S
r

r

(3)

)(xWL

r
and )(xWS

r
can be scaled to the [0,1] interval, so that their sum equals to 1. In this case, criterion (3) is

equivalent to (4), where t is the classification threshold. A message exceeding this threshold is classified as spam;

otherwise it is classified as legitimate.

Sx a
r

iff txWS >)(
v

, with
λ+

λ
=

1
t ,

t

t

−
=λ

1
(4)

If )(xWL

r
and )(xWS

r
are accurate estimates of the conditional probabilities )|( xXlegitCP

rr
== and

)|( xXspamCP
rr

== , respectively, criteria (3) and (4) achieve optimal results (Duda & Hart, 1973).

In the work by Sahami et al. (1998), which considered anti-spam filters for personal mailboxes, the threshold t was

set to 0.999, which corresponds to λ = 999, i.e., blocking a legitimate message was taken to be as bad as letting 999

spam messages pass the filter. This cost scenario introduces a very high bias for classifying messages as legitimate,

which may be reasonable when blocked messages are deleted automatically without further processing, because most

users would consider losing legitimate messages from their mailboxes unacceptable. For the sake of compatibility with

previously published work, we include this cost scenario (λ = 999) in our experiments, though alternative scenarios are

possible, especially in the case of anti-spam filtering for lists, where lower λ values are reasonable.

For example, an anti-spam filter may be used as a preprocessor, to reduce the number of spam messages that the

moderator of a list has to consider. In this case, the moderator examines only messages that pass the filter. Rather than

being deleted, a message blocked by the filter can be returned to its sender, explaining the reason of the return and

asking the sender to repost the message to the moderator for manual approval (see also Hall, 1998). The reply of the

filter would not contain verbatim the address of the moderator (e.g., “Send the message to moderator*mylist+com,

replacing the star with an at-sign and the plus with a dot.”), to prevent the address of the moderator from being

harvested by spam robots that process the replies they receive. In this scenario, λ = 9 (t = 0.9) seems more reasonable:

blocking a legitimate message is penalized mildly more than letting a spam message pass, to account for the fact that

recovering from a blocked legitimate message is more costly (counting the senders’ extra work to repost it and their

possible frustration) than recovering from a spam message that passed the filter (which requires the moderator to delete

the message manually).

In a third scenario, the filter could simply flag messages it suspects to be spam (e.g., by adding a prefix like

“[spam?]” to their subjects), without removing them, to help the subscribers of the list or newsgroup prioritize the
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processing of their incoming messages. In this case, λ = 1 (t = 0.5) seems reasonable, since none of the two error types

is more significant than the other.

Apart from the classification threshold, cost must also be taken into account when defining evaluation measures.

Cost-sensitive measures have been employed in recent TREC text filtering tasks (Hull and Robertson, 2000), and were

recently introduced in anti-spam filtering (Androutsopoulos et al., 2000a, 2000b). In cost-insensitive classification

tasks, accuracy (Acc) and its complementary error rate (Err = 1 – Acc) are often used. In our context:

SL

SSLL

NN

NN
Acc

+
+

= →→

SL

LSSL

NN

NN
Err

+
+

= →→ ,

where ZYN → is the number of messages in category Y that the filter classified as Z , SLLLL NNN →→ += is the

total number of legitimate messages to be classified, and LSSSS NNN →→ += the total number of spam messages.

Accuracy and error rate assign equal weights to the two error types ( SL → and LS → ). To make these

measures sensitive to cost, each legitimate message is treated, for evaluation purposes, as if it were λ messages. That is,

when a legitimate message is blocked, this counts as λ errors; and when it passes the filter, it counts as λ successes. This

leads to the following definitions of weighted accuracy (WAcc) and weighted error rate (WErr = 1 – WAcc):

SL

SSLL

NN

NN
WAcc

+⋅λ
+⋅λ

= →→

SL

LSSL

NN

NN
WErr

+⋅λ
+⋅λ

= →→

In terms of cost, the numerator of WErr above is equal to the total cost incurred by using the filter on the SL NN +

messages, while the denominator is a normalizing factor equal to the incurred cost of the worst possible filter, which

misclassifies all the messages. WAcc is simply the complement of the normalized incurred cost.

When one of the categories is more frequent than the other, as in our case and especially when λ = 9 or 999, the

values of accuracy, error rate, and their weighted versions are often misleadingly high. To get a more realistic picture of

a classifier’s performance, it is common to compare its accuracy or error rate to those of a simplistic baseline approach.

We consider the case where no filter is present as our baseline: legitimate messages are (correctly) never blocked, and

spam messages (mistakenly) always pass. The weighted accuracy and weighted error rate of the baseline are:

SL

Lb

NN

N
WAcc

+⋅λ
⋅λ

=
SL

Sb

NN

N
WErr

+⋅λ
=

The total cost ratio (TCR) allows the performance of a filter to be compared easily to that of the baseline:

LSSL

S
b

NN

N

WErr

WErr
TCR

→→ +⋅λ
==
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Greater TCR values indicate better performance. For TCR < 1, not using the filter is better. If cost is proportional to

wasted effort, TCR expresses how much effort is wasted to delete manually all spam messages when no filter is used

( SN ), compared to the effort wasted to delete manually any spam messages that passed the filter ( LSN → ) plus the

effort needed to recover from mistakenly blocked legitimate messages ( SLN →⋅λ ).

We also present our results in terms of recall (R) and precision (P), which in our case are defined as below:

LSSS

SS

NN

N
R

→→

→

+
=

SLSS

SS

NN

N
P

→→

→

+
=

Recall measures the percentage of spam messages that the filter manages to block (intuitively, its effectiveness), while

precision measures the degree to which the blocked messages are indeed spam (intuitively, the filter’s safety). Despite

their intuitiveness, comparing different filter configurations using recall and precision is difficult: each filter

configuration yields a pair of recall and precision results, and without a single combining measure, like TCR, that

incorporates the notion of cost, it is difficult to decide which pair is better.10 In our experiments, the aim was to

optimize the filter’s performance in terms of TCR.

6. Experimental results

We now proceed with the presentation of our experimental results, providing at the same time more information on the

attribute-weighting and distance-weighting extensions to the basic k-NN classifier of Section 4 that we have considered.

We first investigated the impact of attribute weighting, using a weighting scheme based on Information Gain (IG,

Section 3). We performed two sets of experiments on Ling-Spam, with and without attribute weighting. In each set of

experiments, three different cost scenarios were tested, corresponding to three different values of λ, as discussed in

Section 5. In each scenario, we varied the number of selected attributes from 50 to 700 by 50, each time retaining the

attributes with the highest IG scores. Furthermore, each experiment was repeated with three different neighborhood

sizes (k = 1, 2, and 10); the results suggested that there was no need to try more values of k to conclude that attribute

weighting has a positive effect.

In the second set of experiments, we investigated the effect of distance weighting. Using the IG-based attribute

weighting scheme, various distance-sensitive voting schemes were examined, for each cost scenario (λ value) and

number of selected attributes, with the size of the neighborhood (k) now set to the maximum size of those considered

(10). In a third set of experiments, we examined the effect of dimensionality (number of selected attributes) and

neighborhood size (k), using the best-performing configuration in terms of attribute weighting and distance-weighting.
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Finally, in a fourth set of experiments, we examined the effect of the training corpus size, for each cost scenario, using

the best configuration of the previous experiments.

In all of the experiments, 10-fold stratified cross-validation was employed (Section 2). WAcc was averaged over

the 10 iterations, and TCR was computed as bWErr over the average WErr (Section 5).

6.1. Attribute weighting

The basic k-NN classifier assigns equal importance to all the attributes. In real-world applications, however, irrelevant

or redundant attributes are often included in the representation of the instances. This causes the classification accuracy

of k-NN to degrade, unless appropriate weights are assigned to the attributes, corresponding to their relevance to the

classification task. The distance metric, that computes the distance between two instances, has to be adjusted

accordingly, to incorporate the attribute weights. Equation (2) becomes:

),(),(
1

jrir

n

r
rji xxwxxd ∑

=

δ⋅≡
rr

, (5)

where rw is the weight assigned to r-th attribute.

Attribute-weighting scheme

Information Gain (IG) was presented in Section 3 as our attribute selection function. The same function can be used for

attribute weighting. An equivalent expression of (1) in information theoretic terms is the following:

)|()()(),(
}1,0{

xXCHxXPCHCXIG
x

=⋅=−= ∑
∈

, (6)

where H(C) is the entropy of variable C, denoting the category. H(C) measures the uncertainty on the category of a

randomly selected instance, and is defined as:

)(log)()( 2
},{

cCPcCPCH
legitspamc

=⋅=−= ∑
∈

. (7)

H(C|X) is defined similarly, replacing P(C) in (7) by P(C|X). H(C|X) measures the uncertainty on the category given the

value of attribute X. Equation (6) subtracts from the entropy of the category (H(C)) the expected value of the entropy

when the value of X is known, averaged over all the possible values of X. IG is therefore a measure of how much

knowing the value of X reduces the entropy of C. The larger the reduction, the more useful X is in predicting C.

The TiMBL software that we used (Section 4) supports both IG and the standard no-weighting scheme (equal

weights for all attributes), hereafter EW. We also experimented with Gain Ratio (Quinlan, 1986), an attribute weighting

scheme intended to correct the bias of IG towards attributes with many uniformly distributed values. In our case,

however, where all attributes are binary, there is nothing to be gained from using Gain Ratio instead of IG, and the
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results that we obtained confirm this. Recent versions of TiMBL support two additional attribute-weighting measures,

namely chi-squared and shared variance. Although we did not explore these measures thoroughly, the experiments we

conducted on some randomly selected settings showed no significant difference from IG, in agreement with Yang and

Pedersen (1997).

Results of the attribute-weighting experiments

Figures 1 and 2 show the TCR of 10-NN (k = 10) for λ = 1 and λ = 999, respectively, for IG and EW and varying

numbers of attributes. The corresponding curves for λ = 9 are similar to those for λ = 1, and are omitted to save space.

For λ = 1 (as well as λ = 9), the conclusion is that 10-NN with IG outperforms 10-NN with EW (no attribute

weighting). The same pattern was observed in the experiments that we performed with k = 1 and k = 2. Another

interesting pattern is the dependence on the dimensionality: when using IG, the performance improved continuously as

we retained more attributes; in contrast, with EW the number of attributes does not seem to affect the performance.

Figure 1

For λ = 999 (Figure 2), the picture is quite different. The distinguishing characteristic of this scenario is the unstable

behavior of the filter, which was already noticed in our previous work with the Naïve Bayes classifier

(Androutsopoulos, et al. 2000a, 2000b). The reason is that SL → errors are penalized so heavily, that a single

blocked legitimate message causes the baseline to outperform the memory-based filter in terms of WAcc, and TCR to

drop below 1. Given this instability, the objective in this scenario is to select a reliable configuration, which maintains

TCR constantly above 1, even if that configuration does not achieve the highest TCR score.

Figure 2

Bearing the above goal in mind, the most reliable option for 10-NN when λ = 999 is to use no attribute weighting

(EW), since it attains consistently TCR > 1. However, its recall does not exceed 17%, which is a rather low

performance. On the other hand, IG seems to be less reliable, while its recall reaches 47%, blocking almost half of the

spam messages in this demanding scenario. Unlike 10-NN, 1-NN and 2-NN do not reach the baseline (TCR < 1) in this

scenario for any of the attribute-weighting schemes. The general impression formed by these results is that high

dimensionality and a large k-neighborhood provide more reliably TCR scores above the baseline, when λ = 999. This

impression is strengthened by the results presented in the following sections.
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Interpretation of the results of the attribute-weighting experiments

The first striking observation in Figure 1 is the poor performance of 10-NN when no attribute weighting is used (EW).

This may seem odd, as k-NN has been used successfully in many domains without attribute weighting. This

phenomenon can be explained by the fact that EW led to large numbers of instances at equal distances in the k-

neighborhood. (The reader is reminded that in our experiments the k-neighborhood comprises all the neighbors at the k

closest distances; see Section 4.) For example, 10-NN with 700 attributes and EW gave rise to k-neighborhoods of

typically 100-200 instances, while the respective number of instances for 50 attributes often exceeded 2000! Since the

vast majority of messages are legitimate, it is reasonable that within neighborhoods of hundreds or thousands of

instances, most of them will also be legitimate. This forces 10-NN to classify almost all of the messages as legitimate,

which is why its performance is very close to that of the baseline. A similar explanation can be given to the fact that for

λ = 999 (Figure2), the behavior of 10-NN with EW is closer to the behavior of the baseline, compared to the cases

where IG is used.

The question that arises is why there are so many instances in the k-neighborhood when EW is used. The answer lies

in the representation of the instances and the use of the overlap distance metric (Equation 2). As mentioned in Section 4,

the metric counts the number of attributes where the instances have different values. At the same time, the

representation results in sparse instance vectors, i.e., vectors with many zeros, indicating the absence of attribute-words

in the document. Thus, it is frequently the case that many messages differ in the same number of features, but not

necessarily the same features. With EW, all these messages are considered equally distant from an incoming new

message. On the other hand, IG and most attribute-weighting functions avoid this problem: since every attribute weighs

differently (Equation 5), two instances are equally distant from an incoming message practically only when they are

identical; and finding two different messages at the same distance from a new message becomes further unlikely as the

dimensionality increases.

A second issue to look into is the effect of dimensionality on the two weighting schemes. In the case of EW, the

large neighborhoods that are formed are also responsible for the stability of the curves with different numbers of

retained attributes (Figures 1 and 2): the majority class (legitimate) prevails most of the times, and the filter’s behavior

is very similar to that of the baseline, regardless of the selected attributes. With IG, there is an exponential decrease in

the weight of the last retained attribute, as more attributes are added; this can be seen in Figure 3. The overall marginal

increase in performance (Figures 1 and 2) as the number of attributes increases, suggests that the weights assigned to
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the attributes are appropriate. That is, using the IG weights, the classifier seems to be taking advantage of even inferior

attributes, by assigning them appropriately lower importance.

Figure 3

The main conclusion of the discussion above is that IG attribute-weighting has a positive effect. Hence, we use this

scheme in the experiments of the following sections.

6.2. Distance weighting

Having chosen to use the IG attribute-weighting scheme, we now examine the effect of distance-weighting. Distance-

weighting does not treat all the instances in a k-neighborhood as equally important, but weighs them according to their

distance from the incoming instance. The advantages of distance weighting, or else weighted voting, in memory-based

methods have been discussed extensively in the literature (Dudani 1976; MacLeod, et al. 1987). The main benefit is that

distance weighting reduces the sensitivity of k-NN to the choice of k. A k value that may be suitable for sparsely

populated regions may be unsuitable for dense regions, generating in the latter case neighborhoods that contain many

irrelevant instances. Weighted voting undervalues distant neighbors, without ignoring them completely, in order to

adapt the effective size of the neighborhood to the local distribution of instances.

Distance-sensitive voting schemes

Various voting schemes have been proposed for distance weighting. We experimented with simple voting schemes that

use a distance-sensitive function to weigh the vote of each instance in the k-neighborhood. The first scheme uses a

linear function to weigh the votes:

dddf −= max0 )( ,

where )(0 df is the weight assigned to a neighbor at distance d from the incoming instance, and maxd is the maximum

obtainable distance. The maximum distance occurs when two instances differ in every attribute; hence, it is equal to the

sum of all attribute weights. The other voting schemes use hyperbolic functions, as below:11

nn
d

df
1

)( = , n = 1,2,3,….

In all of the voting schemes mentioned above, when one or more neighbors are identical to the incoming instance (i.e., d

= 0), we classify the incoming instance to the majority class of the identical instances, ignoring all other neighbors.
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With distance-weighting, the confidence level )(xWc

r
that the incoming instance x

r
belongs to class c, is computed

by the following formula:

∑ ⋅=
i
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where ),(1),( yxyx δ−=δ , ix
r

ranges over the instances in the k-neighborhood, and )( ixC
r

is the class of neighbor

ix
r

. This formula simply weighs the contribution of each neighbor by its distance from the incoming instance. As in the

basic k-NN classifier, the confidence levels for the two categories can be scaled to the [0,1] interval, so that their sum

equals to 1 (Section 5).

Results of the distance-weighting experiments

Figure 4 shows the TCR of 10-NN for λ = 1. Each curve corresponds to one voting scheme, and there is an additional

curve for majority voting (i.e., no distance weighting). The selected value for k (k = 10) is the highest of those

considered in our experiments, because distance weighting is usually combined with a large value for k: one of the

principal reasons for employing distance weighting is the smoothing of the classifier’s performance for varying k, so

that the optimal selection of its value is less crucial. The corresponding figure for λ = 9 is similar to that for λ = 1, with

respect to the conclusions drawn, and is therefore omitted. Finally, for λ = 999 the curves are almost uninfluenced by

the use of distance weighting, and the corresponding figure is much like Figure 2.

Figure 4 shows clearly the improvement brought by distance weighting. The improvement is greater when distant

neighbors are mildly undervalued. TCR clearly improves when moving from )(1 df to )(2 df to )(3 df , where the

best results are obtained. However, the two highest curves, )(2 df and )(3 df , are quite close to each other,

suggesting that )(dfn functions for n > 3 will not lead to further significant improvements in performance. In fact, the

results obtained for )(16 df and )(32 df , as well as higher values of n that are not shown in Figure 4 for the sake of

readability, show a reduction in performance as distant neighbors get heavily undervalued.

Figure 4

Interpretation of the results of the distance-weighting experiments

The fact that performance improves as close neighbors are slightly overvalued suggests that local classification is

preferable in this task. It is interesting to note that an important contributor to the success of the distance-sensitive
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voting schemes that we explored is that when one or more neighbors are identical to the incoming instance, the

incoming instance is classified to the majority class of the identical instances, ignoring all the other neighbors; this

produces almost always the correct results. Even when there are no identical neighbors, functions that prioritize the

nearest neighbors reward the local minority class, if its members are closer to the incoming instance. (The good

performance of the IG attribute-weighting scheme helps further, by bringing the “right” instances closer to the incoming

instance.)

It should be stressed that mild distance-weighted voting differs from a reduction of the neighborhood size, in that it does

not ignore distant neighbors altogether. In other words, reducing the value of k does not improve performance. This is

also the reason for the reduced performance obtained by voting schemes that greatly undervalue distant neighbors. As

the value of n in the )(dfn function becomes very large, the behavior of the method approaches the effect of using 1-

NN, which is a suboptimal choice.

6.3. Neighborhood size and dimensionality

The results of the distance-weighting experiments have indicated a clear superiority of voting schemes that favor mildly

close neighbors. The question that arises is whether the value of the k parameter, which determines the size of the

neighborhood, can still affect the performance of the classifier when such voting schemes are employed. We continued

our investigation towards that direction, by examining the influence of k, in combination with the dimensionality of the

instance space. In all the experiments below, we used IG for attribute weighting and 3
3 1)( ddf = for distance

weighting, following the conclusions of the previous experiments.

Results of the neighborhood size and dimensionality experiments

Figures 5, 6 and 7 show some representative curves for various k-neighborhood sizes in each one of the cost scenarios

(λ = 1, 9 and 999), respectively. Although we carried out experiments for every k from 1 to 10, we present only some

representative curves, for the sake of brevity. The discussion below, however, refers to the whole set of results.

In Figure 5, a general trend involving the dimensionality and the performance of the classifier is observed: as the

number of retained attributes increases, so does TCR. The relationship between the size of the neighborhood and the

performance of the classifier is less clear: TCR seems to be improving as k increases, up to k = 8, when it starts to

deteriorate slightly. However, the extensive overlap of the curves does not allow any safe conclusions to be drawn.

Figure 5
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Figure 6 presents the two best and two worst curves for λ = 9. The behavior of the classifier is different here, in that

the best performance occurs for very small neighborhoods (k = 2, 3). As the neighborhood grows, TCR declines

gradually, but steadily. Interestingly enough, 1-NN performs the worst, which can be attributed to the fact that no

distance weighting can be used in this case.

Figure 6

Finally, in Figure 7, we observe the same steep fluctuations of TCR as in Figure 2, indicating transitions from below

baseline performance to above, and vice versa. One exception is k-NN for k < 4, which is always below the baseline.

Another interesting phenomenon is the fact that 4-NN achieves the highest TCR globally for 250 attributes, and yet it is

not useful, as its performance is not steadily above the baseline; in practice, it is not possible to predict accurately the

exact dimensionality of such a narrow peak. The general conclusion is that satisfactory performance is obtained reliably

using a high dimensionality and a large k-neighborhood.

Figure 7

Interpretation of the results of the neighborhood size and dimensionality experiments

The conclusions to be drawn here are less clear than those in the previous experiments. The optimal value of k depends

heavily on the selected scenario (λ parameter), and also correlates with the dimensionality in an unintelligible way. The

experiments showed that for a given scenario, there is no clear ranking of k-NN classifiers for various values of k.

Furthermore, the effect of the number of retained attributes does not follow a coherent pattern. For example, k1-NN may

be better than k2-NN for 50–250 retained attributes, k2-NN may outperform k1-NN for 300–400 attributes, and in a third

interval (e.g., 450–600 features) k1-NN may again be better than k2-NN. To some extent this confusing picture is

justified by the use of the distance-weighting function, which reduces significantly the dependence of the classifier on

the choice of k. It should also be stressed that the difference between the best and worst performing configuration is

much smaller in this set of experiments than in the previous two sets. The performance of the worst classifier in Figure

5 does not fall below TCR = 5, which is comparable only to the best classifier of Figure 1, where no distance weighting

was used.
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Best results overall and comparison to a naïve Bayes filter

It is interesting to translate these results into recall and precision, which are perhaps more intuitive than the combined

TCR measure. Table 3 summarizes the best configurations witnessed for each scenario. In every case, IG was used for

attribute weighting and 3
3 1)( ddf = for distance weighting. A recall around 89% and a precision of over 97%

attained for λ = 1 make a satisfactory, if not sufficient, performance. The gain from moving to the second scenario with

λ = 9 is, on the other hand, questionable. A small increase of precision by 1.4% is accompanied by a nearly five times

greater decrease in recall. However, this might be acceptable, as almost no legitimate messages are misclassified. In the

third scenario (λ = 999), the filter’s safety (not blocking legitimate messages) becomes the crucial issue, and therefore

precision must be kept to 100% at any cost. Ignoring abrupt peaks (e.g., the peaks at 250 attributes in Figure 7), which

do not correspond to stable configurations with respect to minor changes to the number of retained attributes, the

highest recall is approximately around 60% (with k = 7 and 600 attributes); this is notable though far from perfect.

Table 3

The results presented in Table 3 are directly comparable to the results of our earlier work with the naïve Bayes

classifier on the same corpus. Table 4 reproduces our earlier best results, as presented in (Androutsopoulos, et al.

2000c). The comparison of the two tables shows that the memory-based approach compares favourably to the naïve

Bayes classifier. In terms of TCR, the memory-based classifier is clearly better for λ = 1, slightly worse for λ = 9 and

slightly better again for λ = 999. In the strict scenario (λ = 999), it should be noted that the performance of the naïve

Bayes classifier is very unstable, i.e., the result shown in Table 4 corresponds to a very narrow peak with respect to the

number of retained attributes. Apart from that peak, the Naïve Bayes classifier never exceeded TCR = 1 for λ = 999. In

contrast, as already discussed, there are intervals where the memory-based classifier achieves TCR steadily above 1.

Examining recall and precision, it is clear that the memory-based classifier improves recall in all three scenarios, at a

small cost of precision for λ = 1 and λ = 9.

Table 4

6.4. Corpus size

Having examined the basic parameters of the classifier, we now turn to the size of the training corpus, which was kept

fixed to 2603 messages (90% of the whole corpus) in the experiments presented above. As before, in every ten-fold
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experiment the corpus was divided into ten parts, and a different part was reserved for testing at each iteration. From

each of the remaining nine parts, only x% was used for training, with x ranging from 10 to 100 by 10. For every cost

scenario, the best configuration was employed (as in Table 3), with IG attribute weighting and 3
3 1)( ddf = used for

distance weighting.

Figure 8 presents the resulting learning curves in terms of TCR. In all three scenarios, the diagram shows a clear

trend of improvement as the size of the training corpus increases. By studying the corresponding recall and precision

measures, we observed that the increase in performance is primarily due to an increase in recall. For example, the

transition from 80% to 100% of the training corpus for λ = 1 raises recall by nearly 10%, decreasing at the same time

precision by only 1.6%.

Figure 8

The increase of TCR in Figure 8 is generally mild, with the exception of a leap from 4.5 to 6.5 for λ = 1. There is no

indication that the learning curves have approached an asymptote for any size of the training set, which suggests that a

larger corpus might give even better results. This is particularly encouraging for the strict scenario (λ = 999), where

there is still a large scope for improvement. It is also notable that, when λ = 999, TCR remains above the baseline for all

the sizes of the training corpus. In contrast, the Naïve Bayes filter that we examined in previous work

(Androutsopoulos, et al. 2000a) had reached TCR > 1 only for 100% of the training corpus. These findings indicate that

a memory-based anti-spam filter for mailing lists may be viable in practice, even when absolute precision is required.

7. Conclusions

In this paper, we presented a thorough empirical evaluation of a memory-based approach to anti-spam filtering for

mailing lists. In contrast to anti-spam filters for personal mailboxes, anti-spam filters for mailing lists, which apply

equally well to Usenet-like newsgroups, are more tractable in terms of evaluation, since publicly available archives can

be used as standard benchmarks without privacy violations. We introduced cost-sensitive evaluation measures, along

with indicative cost scenarios, discussing how these scenarios relate to additional safety nets that may be available in

mailing lists, such as using the filter as an aid to a moderator. Our experimental results show that the use of a memory-

based filter can be justified, even in the strictest scenario, where the blocking of a legitimate message is practically

unacceptable. Furthermore, our memory-based filter compares favorably to the probabilistic classifier that we used in

our earlier work on this problem. Overall, then, our work indicates that anti-spam filtering using text categorization
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techniques is feasible, at least for mailing lists and newsgroups, despite the fact that spam messages cover a very wide

spectrum of topics, and hence are much less homogeneous than other categories that have been considered in the past.

Further improvements may be possible by incorporating non-textual attributes, though this requires an additional

manual preprocessing stage to devise candidate attributes of this kind.

The most important contribution of this article is the exploration of various parameters of the memory-based

method, such as attribute weighting, distance weighting, and neighborhood size. Our experiments show that an

attribute-weighting scheme based on Information Gain has a positive effect, and that voting schemes that mildly

devalue distant neighbors are beneficial. We have also shown that by using the right attribute-weighting and distance-

weighting schemes, the size of the neighborhood of the incoming instances becomes less important. In addition to the

parameters of the classification method, we have explored two important parameters of the particular classification task:

the dimensionality and the size of the training corpus. Regarding the dimensionality of the task, which is determined by

the number of retained attributes after the initial selection, our results show that its effect on classification performance

is positive when using attribute-weighting, i.e., the performance improves as the number of retained attributes increases.

Similarly, the performance improves as the size of the training corpus increases, which is an indication that a larger

training corpus might lead to even better results.

The experiments presented here have opened a number of interesting research issues, which we are currently

examining. In the context of the memory-based classifier, we are examining non-binary representations of the

messages, by taking into account the frequency of a word within a message. The standard TFIDF weighting, with cosine

normalization to cope with variable document length, may be tried as well. Additionally, we would like to examine

other attribute-weighting functions and their relationship to the chosen representation of instances. Weighted voting can

also benefit from functions that do not depend on the absolute distance from the input instance, but take into account the

local properties of the neighborhood, as shown by Zavrel (1997). Finally, our main interest is in combining memory-

based, probabilistic, and other induced classifiers, within a classifier ensemble framework, such as stacking (Wolpert,

1992). Initial results (Sakkis et al., 2001) indicate that this can improve anti-spam filtering performance further.
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Figure 1: TCR of 10-NN for λ = 1 and two attribute-weighting schemes.
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Figure 2: TCR of 10-NN for λ = 999 and two attribute-weighting schemes.
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Figure 3: Information Gain scores of best word attributes in Ling-Spam.
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Figure 4: TCR of 10-NN for λ = 1 and different distance-sensitive voting schemes
(using IG for attribute weighting).
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Figure 5: TCR of k-NN for λ = 1 and different k values

(using IG for attribute weighting and 31 d for distance weighting).
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Figure 6: TCR of k-NN for λ = 9 and different k values

(using IG for attribute weighting and 31 d for distance weighting).
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Figure 7: TCR of k-NN for λ = 999 and different k values

(using IG for attribute weighting and 31 d for distance weighting).
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Figure 8: TCR for variable sizes of training corpus.
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1. language 26. linguistics

2. ! 27. internet

3. university 28. bulk

4. remove 29. company

5. free 30. %

6. linguistic 31. save

7. your 32. papers

8. you 33. conference

9. click 34. day

10. money 35. $

11. sell 36. mailing

12. english 37. win

13. @ 38. thousand

14. million 39. now

15. our 40. purchase

16. income 41. earn

17. today 42. best

18. market 43. de

19. advertise 44. buy

20. get 45. easy

21. business 46. dollar

22. product 47. com

23. just 48. every

24. edu 49. hundred

25. guarantee 50. customer

Table 1: Attributes with the highest IG scores in the entire Ling-Spam corpus, ordered by decreasing score
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classified as legitimate classified as spam

legitimate message 0)( =→ LLc λ=→ )( SLc

spam message 1)( =→ LSc 0)( =→ SSc

Table 2: Cost matrix used in this paper

λ k dimensionality recall (%) precision (%) ΤCR

1 8 600 88.60 97.39 7.18

9 2 700 81.93 98.79 3.64

999 7 600 59.91 100 2.49

λ dimensionality recall (%) precision (%) ΤCR

1 100 82.35 99.02 5.41

9 100 77.57 99.45 3.82

999 300 63.67 100 2.86

1 Consult http://www.cauce.org/, http://spam.abuse.net/, and http://www.junkemail.org/ for further information on UCE

and related legal issues.
2 See http://www.esi.uem.es/~jmgomez/spam/index.html for a collection of resources related to machine learning and

anti-spam filtering.
3 An on-line bibliography on cost-sensitive learning can be found at http://home.ptd.net/~olcay/cost-sensitive.html.
4 See http://about.reuters.com/researchandstandards/corpus/.
5 An alternative path is to share suitably encrypted mailboxes, which will allow different representation and learning

techniques to be compared, while still maintaining privacy. We have recently started to explore this path as well

(Androutsopoulos, et al. 2000c).
6 The Linguist list is archived at http://listserv.linguistlist.org/archives/linguist.html.
7 Spambase was created by M. Hopkins, E. Reeber, G. Forman, and J. Suermondt. It is available from

http://www.ics.uci.edu/~mlearn/MLRepository.html.

Table 3: Best configurations per usage scenario and the corresponding performance.

Table 4: Best results of the naïve Bayes filter.
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8 We used morph, a lemmatizer included in the GATE system. See http://www.dcs.shef.ac.uk/research/groups/

nlp/gate/.
9 An alternative analysis, e.g., from the view-point of an ISP provider, could also take into account the cost of the

bandwidth that is wasted by mistakenly admitting spam messages.
10 The F-measure, which is often used in text classification to combine recall and precision (e.g., Riloff & Lehnert,

1994), cannot be used here, because it is unclear how its weighting factor (β parameter) relates to the cost ratio of the

two error types (λ) in our experiments.

11 )(1 df was proposed by Dudani (1976). )(0 df is a simplified version of a similar function also proposed by Dudani

(1976). )(dfn , where n > 1, are our own stricter versions, that follow naturally from )(1 df .


