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Abstract
This paper presents hHDP, a hierarchical algorithm for representing a document collection as a hi-
erarchy of latent topics, based on Dirichlet process priors. The hierarchical nature of the algorithm
refers to the Bayesian hierarchy that it comprises, as well as to the hierarchy of the latent topics.
hHDP relies on nonparametric Bayesian priors and it is able to infer a hierarchy of topics, without
making any assumption about the depth of the learned hierarchy and the branching factor at each
level. We evaluate the proposed method on real-world data sets in document modeling, as well as
in ontology learning, and provide qualitative and quantitative evaluation results, showing that the
model is robust, it models accurately the training data set and is able to generalize on held-out data.
Keywords: hierarchical Dirichlet processes, probabilistic topic models, topic distributions, ontol-
ogy learning from text, topic hierarchy

1. Introduction

In this paper we address the problem of modeling the content of a given document collection as a
hierarchy of latent topics given no prior knowledge. These topics represent and capture facets of
content meaning, by means of multinomial probability distributions over the wordsof the term space
of the documents. The assignment of documents to latent topics without any preclassification is a
powerful text mining technique, useful among others for ontology learning from text and document
indexing.

In the context of this modeling problem, probabilistic topic models (PTMs) have attracted much
attention. While techniques for terminology extraction and concept identification from text rely
on the identification of representative terms using various frequency measures, such as the TF/IDF
(Salton and McGill, 1986) or C/NC value (Frantzi et al., 2000), PTMs aim to discover topics that
are soft clusters of words, by transforming the original term space into alatent one of meaningful
features (topics).
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Much work on PTMs focuses on a flat clustering of the term space into topics, while the cre-
ation of a hierarchical structure of topics without user involvement or pre-defined parameters still
remains a challenging task. The goal of discovering a topic hierarchy thatcomprises levels of topic
abstractions is different from conventional hierarchical clustering. The internal nodes of this type
of hierarchy reflect the topics, which correspond to the shared terminology or vocabulary between
documents. In contrast, hierarchical clustering usually groups data points, for instance documents,
resulting in internal nodes that constitute cluster summaries. Conventional techniques such as ag-
glomerative clustering, allow objects to be grouped together based on a similarity measure, but the
hierarchy is generally the result of hard clustering. This form of clustering limits the applicability
of the techniques, since a document is assigned to only one topic and may notbe retrieved upon a
search on a related topic.

Furthermore, conventional clustering models texts based explicitly on syntax. It tends to cluster
words that appear in similar local contexts. On the other hand, topic models attempt to capture
through syntax, latent semantics. They cluster words that appear in a similarglobal context, in the
sense that they try to generalize beyond their place of appearance in a text collection, in order to
reflect their intended meaning.

The role of hierarchical topic models regarding text modeling and natural language processing
(NLP) is very important. The hierarchical modeling of topics allows the construction of more
accurate and predictive models than the ones constructed by flat models. Models of the former
type are more probable to predict unseen documents, than the latter. In mosttext collections, such
as web pages, a hierarchical model, for instance a web directory, is ableto describe the structure and
organization of the document collection more accurately than flat models. This, however, ultimately
depends on the nature of the data set and the true generative process of the documents themselves.
Assuming that the higher levels of the hierarchy capture generic topics of aparticular domain,
while lower-level ones focus on particular aspects of that domain, it is expected that a hierarchical
probabilistic topic model would be able to “explain” or could have generated the data set. In other
words, the likelihood of such a model given the data set would probably behigher than the likelihood
of other flat models (Mimno et al., 2007; Li et al., 2007; Li and McCallum, 2006).

Despite recent activity in the field of HPTMs, determining the hierarchical model that best
fits a given data set, in terms of the structure and size of the learned hierarchy, still remains a
challenging task and an open issue. In this paper, we propose a method that deals with some of
the limitations of the current models, regarding the representation of input data as latent topics.
In particular, we aim to infer a hierarchy of topics and subtopics, such that each topic is more
general than its subtopics, in the sense that if a document can be indexed by any of the subtopics
it should also be indexed by the topic itself. Moreover, we demand to infer thehierarchy without
making any assumption either about the number of topics at any level of the hierarchy, or about
the height of the hierarchy. The proposed method, given a collection of text documents, produces
a hierarchical representation in the form of a topic hierarchy, adopting anonparametric Bayesian
approach. The resulting hierarchy specifies each topic as a multinomial probability distribution over
the vocabulary of the documents. Moreover, internal nodes are also represented as multinomial
probability distributions over the subtopics of the hierarchy. In addition to thebasic model, we also
present a variant that produces a topic hierarchy, by modeling the vocabulary only at the leaf level
and considering topics in the inner levels to be multinomial distributions over subtopics. Although
the evaluation of such models is also an open issue, we demonstrate the effectiveness of the model
in different tasks through an extensive evaluation, providing qualitativeand quantitative results.
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In what follows, we start by a quick review of the family of probabilistic topic models and
hierarchical models (Section 2). Section 3 presents the proposed method,namely topic hierarchies
of hierarchical Dirichlet processes (hHDP), along with its variant. Section4 provides an extensive
evaluation of hHDP, including comparisons to other models and applications to different tasks, while
Section 5 summarizes the paper and presents future directions.

2. Hierarchical Probabilistic Topic Models

Probabilistic topic models (PTMs) (Griffiths and Steyvers, 2002) are generative models for doc-
uments. Documents are assumed to be mixtures of topics and topics are probability distributions
over the words of some vocabulary. The vocabulary may comprise all the words that appear in the
documents or a part of them, for example excluding the stop-words. PTMs are based on the De
Finetti theorem (Finetti, 1931), which states that an exchangeable sequence of random variables
is a mixture of independent and identically distributed random variables. In the case of text data,
PTMs treat documents as “bag-of-words.” The words in the documents are infinitely exchangeable
without loss of meaning, and thus, the joint probability underlying the data is invariant to permu-
tation. Based on this assumption of exchangeability, the meaning of documents does not depend
on the specific sequence of the words, that is, the syntax, but rather ontheir “ability” to express
specific topics either in isolation or in mixture. Given the latent variables, (the topics), the words
are assumed to be conditionally independent and identically distributed in the texts.

Figure 1 represents the underlying idea of the generative nature of PTMs. Topics, represented
as clouds, are probability distributions over words (puzzle pieces) of a predefined vocabulary. Ac-
cording to the mixture weights that reflect the probability of a topic to participate ina document,
words are sampled from the corresponding topics, in order for documents to be generated.

Figure 1: The generative nature of PTMs: Documents are mixtures of topics. Topics are probability
distributions over words (puzzle pieces). The probability of participation of a topic in a
document is defined by the mixture weights. Inspired by Steyvers and Griffiths (2007).

In the rest of the paper, we will refer to the document collection asD, consisting ofd1, d2, ...,
dN documents. The set of the latent topics will be defined asT, consisting oft1, t2, ...,tK topics. We
will refer to the distribution of topics asθK , indicating the dimensionalityK of the distribution, and
finally, φV will stand for the distribution of the words of the vocabularyV.

Following the principles of PTMs, the generative model of probabilistic latentsemantic analysis
(PLSA) (Hofmann, 2001) specifies a simple generative rule for the words in a documentdi , accord-
ing to which, each word of a training documentdi comes from a randomly chosen topicti . The
topics are drawn from a document-specific distribution over topicsθK , and there exists one such
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distribution for eachdi . Hence, the set of the training documentsD defines an empirical distribu-
tion over topics. In PLSA, the observed variabledi is actually an index into the training setD, and
thus, there is no natural way for the model to handle previously unseen documents, except through
marginalization (Blei et al., 2003).

The model of PLSA has been extended by latent Dirichlet allocation (LDA) (Blei et al., 2003).
The generative model of LDA, being a probabilistic model of a corpus, represents eachdi as random
mixture over latent topicsT. The mixture indicator is selected once per term, rather than once per
document as in PLSA. The estimated topics are represented as multinomial probability distributions
over the terms of the documents, while eachdi is represented as a Dirichlet random variableθ, the
dimensionality of which, is predefined and equal to the number of estimated latent topics. In contrast
to PLSA, LDA states that each word of both the observed and unseen documents is generated by a
randomly chosen topic, which is drawn from a distribution with a randomly chosen parameter. This
parameter is sampled once per document from a smooth distribution over topics.

A question that usually arises when using models like LDA is how many topics the estimated
model should have, given the document collection. The problem is harderwhen multiple parameters
are shared among documents, as in LDA. The problem is addressed by sharing a discrete base
distribution among documents. A hierarchical Dirichlet process (HDP) creates such a discrete base
distribution for the document Dirichlet processes (DPs) by sampling from another DP. In such a
Bayesian hierarchy, the root DP uses the Dirichlet distribution of the topicsas a base distribution
and each document samples from it.

Although LDA is a true generative probabilistic model for documents and HDPis a convenient
mechanism for inferring the number of topics, relations of any type or correlations between the
estimated topics are not taken into account. In fact, a flat and soft clustering of the term space of
the documents into topics is provided. Thus, there is a need for hierarchical models that are able
to capture relations between the latent topics in order to represent common shared structure, as
explained in Section 1.

A method for producing a tree-like structure of latent topics is presented in Gaussier et al.
(2002), as an extension of the PLSA model. According to hierarchical probabilistic latent semantic
analysis (HPLSA), the data setD is assumed to have been generated by a hierarchical model. For
eachdi , a document class is picked from a predefined number of classes, with some probability.
Then, adi is chosen based on the conditional probability of a document given the class. Again,
given the class, a topicti is sampled for thatdi . Finally, a word is generated given the sampled
topic ti . A class here represents a group of documents sharing some common thematicfeature.
According to this model, documents and words are conditionally independentgiven the class. In a
typical hierarchy, documents are assigned to classes at the leaves of thehierarchy, while words are
sampled from topics which occupy non-leaf nodes of the hierarchy. Thenumber of classes actually
defines the number of leaves of the hierarchy. The model extends PLSA inthe sense that if one
topic per class is sampled, then the result is the flat clustering of PLSA. If onthe other hand, a
single topic is sampled for more than one class, then it is placed on a higher level and represents
shared knowledge between these classes. However, the model inherits known problems of PLSA,
such as the large number of parameters that need to be estimated, which growlinearly with the size
of the corpus, a problem that LDA seems to deal with, since the latter treats thedistributionθK as a
hidden random variable, rather than a large set of individual parameters which are explicitly linked
to the training set.

2752



NON-PARAMETRIC ESTIMATION OF TOPIC HIERARCHIES WITH HDPS

Another approach to capturing relations between topics is the correlated topic models (CTM)
(Blei and Lafferty, 2006), an extension of LDA. The generative process of this model is identical to
that of LDA, with the exception that the topic proportions are drawn from a logistic normal distri-
bution, rather than a Dirichlet as in the case of LDA. The parameters of this distribution include a
covariance matrix, the entries of which specify the correlations between pairs of topics. Correlations
are introduced by topics that appear in the same context, in the sense that they appear together in
documents (or parts of documents). The advantage of this model is that the covariance matrix may
include positive covariance between two topics that co-occur frequentlyand negative between two
topics that co-occur rarely, while with the Dirichlet approach, we actually express the expectation of
each topic to occur, according to the weights of the mixture proportions, andhow much we expect
any given document to follow these proportions. In CTM only pairwise correlations between topics
are modeled. Hence, the number of parameters grows as the square of thenumber of topics.

The Pachinko allocation model (PAM) (Li and McCallum, 2006) deals with someof the prob-
lems of CTM. PAM uses a directed acyclic graph (DAG) structure to represent and learn arbitrary,
nested and possibly sparse topic correlations. PAM connects the words of the vocabularyV and
topicsT on a DAG, where topics occupy the interior nodes and the leaves are words. Each topic
ti is associated with a Dirichlet distribution of dimension equal to the number of children of that
topic. The four-level PAM, which is presented in Li and McCallum (2006), is able to model a text
collection through a three-level hierarchy of topics with arbitrary connections between them. How-
ever, PAM is unable to represent word distributions as parents of other word distributions and also
requires the length of the path from the root node to the leaves to be predefined.

The hierarchical latent Dirichlet allocation (hLDA) model (Blei et al., 2004) was the first attempt
to represent the distribution of topics as a tree-structure by providing at the same time uncertainty
over the branching factor at each level of the tree. In hLDA, each document is modeled as a mixture
of L topics defined byθL proportions along a path from the root topic to a leaf. Therefore, each
documentdi is generated by the topics along a single path of this tree. Hence, eachdi is about a
specific topic (a leaf topic) and its abstractions along the path to the root. Multipleinheritance, in the
sense of assigning more than one topic to a super-topic, is not modeled. When estimating the model
from data, for eachdi , the sampler chooses an existing or a new path through the tree and assigns
each word to a topic along the chosen path. Thus, both internal and leaf topics generate words
for new documents. In order to learn the structure of the tree, a nested Chinese restaurant process
(nCRP) is used as a prior distribution. Assuming that the depth (L) of the hierarchy is provided
a priori, the nCRP prior actually controls the branching factor at each level of the hierarchy. It
expresses the uncertainty about possibleL-level trees and thus, the problem of modeling the corpus
is reduced to finding a good, in the sense of maximum likelihood,L-level tree among them.

Aiming to support multiple inheritance between topics, and extending PAM to express word
distributions as parents of other word distributions, the work in Mimno et al. (2007) presents the
hierarchical Pachinko allocation model (HPAM), in which every node is associated with a distribu-
tion over the vocabulary of the text collection. There are actually two variants of the model. In the
first variant, each path through the DAG is associated with a multinomial distribution on the levels
of the path, which is shared by all documents. In the second one, this distribution does not exist, but
the Dirichlet distribution of each internal node has one extra “exit” dimension, which corresponds
to the event that a word is produced directly by the internal node, without reaching the leaf topics
of the DAG. The three-level model that is presented in Mimno et al. (2007) comprises a root topic,
a level of super-topics and a level of sub-topics and it uses (T +1) Dirichlet distributions to model
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the text collection. One distribution incorporates a hyper-parameterα0 and serves as a prior over
the super-topics. The remainingT distributions incorporate a hyper-parameterαT , which serves
as a prior over their sub-topics. The difference between the priorsα0 andαT is that they produce
different distributionsθ0 andθT over super-topics and subtopics respectively.

While the models belonging in the PAM family provide a powerful means to describe inter-topic
correlations, they have the same practical difficulty as many other topic modelsin determining the
number of topics at the internal levels. For this purpose, a non-parametricBayes version of PAM has
been presented in Li et al. (2007). This model is actually a combination of thehLDA model, in the
sense of determining the number of topicsT at the internal levels, and of the four-level PAM (Li and
McCallum, 2006). Each topicti is modeled by a Dirichlet process and the Dirichlet processes at each
level are further organized into a hierarchical Dirichlet process (HDP), which is used to estimate the
number of topics at this level. Apart from this, the model follows the basic PAMprinciples. During
the generation of a document, after sampling the multinomial distributions over topics from the
corresponding HDPs, a topic path is sampled repeatedly according to the multinomials for each
word in the documentdi . The resulting hierarchy is limited to three levels and comprises the root
topic, the next level of super-topics and the final level of sub-topics, which are the ones that are able
to generate words.

Representing all topics as multinomial distributions over words is more appealing,than repre-
senting only the leaf topics. For this purpose, the work in Zavitsanos et al. (2008) uses the LDA
model iteratively to produce layers of topics and then establishes hierarchical relations between
them, based on conditional independences, given candidate parent topics. The branching factor at
each level is decided by the number of discovered relations, since topics that are not connected to
others are disregarded. The issue of the depth of the hierarchy is addressed in that work by measur-
ing the similarity of the newly generated topics to the existing ones. However, thenumber of the
generated topics at each level is predefined.

In summary, some topic models support a latent hierarchy of topics, but allowthe generation
of words only at the leaf level. Others are able to generate words at eachlevel, but depend on a
predefined depth of the hierarchy. In particular, hLDA is able to infer thebranching factor at each
level, but still requires the depth of the hierarchy to be known a priori. In addition, in contrast to
the simple LDA, in the case of hLDA, documents can only access the topics thatlie across a single
path in the learned tree. Hence, LDA, which places no such restrictions in the mixture of topics for
each document, can be significantly more flexible than hLDA. The models belonging in the PAM
family seem to be able to address these issues, especially the non-parametricBayes version of PAM
(Li et al., 2007) that exploits some of the advantages of hLDA. However,the fact that the resulting
hierarchy comprises three levels and produces words only at the leavesis limiting. It seems possible
to extend the hierarchy to more levels, but this would require the depth to be known a priori and
would impose an increase on the number of parameters to be estimated. Finally, parameters such as
the number of topics or the number of levels need to be estimated using cross-validation, which is
not efficient even for non-hierarchical topic models like LDA. Table 1 summarizes the properties of
the aforementioned models.

The evaluation of topic models is also an open issue. The majority of the work reviewed in
this section assesses the inferred hierarchy on the basis of how “meaningful” the latent topics are to
humans. In this spirit, new evaluation measures (Chang et al., 2009) have been proposed that try to
capture aspects of how humans evaluate topic models and especially the inferred hierarchy. Thus,
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Model Topic Infer number Infer number Multiple Generate words
hierarchy of topics of levels inheritance at all nodes

PLSA × × × × X

LDA × × × × X

HDP × X × × X

HPLSA X × × × X

CTM × × × × X

PAM X × × X ×

hLDA X X × × X

HPAM X × × X X

NPPAM X X × X ×

Table 1: Comparison of topic models. The first column is the acronym of the model. The second
column shows whether the model is able to organize the topics hierarchically. The third
and fourth columns depict the ability of the model to infer the number of topics and levels
respectively. The last two columns indicate whether the model’s topics sharesubtopics,
and whether the model produces words at all nodes.

the emphasis is on how topic models infer the latent structure of the input documents, rather than
on how well they generate documents. Based on this observation, we propose an algorithm that:

• Determines the depth of the learned hierarchy.

• Infers the number of topics at each level of the hierarchy.

• Allows sharing of topics among different documents.

• Allows topics to share subtopics.

• Allows a topic at any level of the hierarchy to be specified as a distribution over terms.

• Has a non-parametric Bayesian nature and thus exhibits all the advantagesof such techniques.

In addition, we present a variant that models only the leaf levels as probability distributions over
words and results in a hierarchical topic clustering of the text collection. The basis for the methods
proposed in this paper is the model of a hierarchical Dirichlet process (HDP).

3. Topic Hierarchies of Hierarchical Dirichlet Processes (hHDP)

In this section we present the hHDP method in two variants. The first variantresults in a hierarchy
whose internal nodes are represented as probability distributions over topics and over words. Thus it
performs a hierarchical vocabulary clustering (hvc). The second variant provides a hierarchical topic
clustering (htc) of the corpus, where only leaf nodes are representedas distributions over words. We
will refer to the first variant as hvHDP, and to the second as htHDP. We divide the section into two
subsections, providing insights about the proposed method and informationregarding the sampling
scheme.
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3.1 Stacking HDPs

Starting with the criteria that we posed at the end of Section 2, we want to be able to infer the
number of topics at each level. For this purpose we use the mixture model of hierarchical Dirichlet
processes (HDP) (Teh et al., 2006), which is illustrated in Figure 2.

Figure 2: The HDP mixture model. Assuming a text collection ofM documents, each of length
N, there is a DPG j for each document to draw word distributions. There is a global,
higher-level DP (G0) that maintains the global distribution of word distributions.

Figure 3: The association of the HDPs with the topic hierarchy. There is an HDP associated with
each level. There are as many DPs (G j ) as the documents at each level, connected to all
topics of the level. Each level also comprises a global DP (G0) that is connected to all the
G j in this level.

In the proposed method (Figure 3), at each level of the hierarchy, there is a DP (G j ) for each
document and a “global” DP (G0) over all the DPs at that level. Therefore, each level of the topic
hierarchy is associated with a HDP. An important characteristic of this approach is that the num-
ber of topics of each level is automatically inferred, due to the non-parametric Bayesian nature of
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the HDP. In addition, it allows the topics at each level to be shared among the documents of the
collection. Figure 3 depicts the DPs associated with different levels of the topic hierarchy.

Figure 4: (a) hvHDP. (b) htHDP. Topics are represented as circles, while word distributions as gray
boxes. hvHDP consists of topics that are both distributions over subtopicsand over words.
htHDP represents only leaf topics as distributions over words.

Therefore, at each level, a HDP is assumed, according to Figure 4, which is modeled as shown
in Figure 3. The HDP at each level is used to express uncertainty about the possible number of
mixture components, that is, the latent topics.

Among the models mentioned in Section 2, hPAM and hLDA are the closest “relatives” of
hvHDP in terms of the representation of the corpus through an inferred hierarchy. They both have
internal nodes containing words. However, in hLDA a topic is not allowed tohave more than one
parent, while in hPAM and hHDP this is allowed. On the other hand, while hPAM needs the number
of internal topics to be fixed a priori, hLDA and hHDP are able to infer the number of topics at each
level of the hierarchy, due to their non-parametric Bayesian nature. Moreover, while the model of
hLDA requires that each document is made of topics across a specific pathof the hierarchy, hPAM
and hHDP provide much more flexibility, since topics can be shared among super-topics. Overall,
hHDP combines the strengths of hPAM and hLDA, extending also the non-parametric approach
to include the estimation of the depth of the learned hierarchy, which is furtherexplained in the
following paragraphs.

The PAM and the non-parametric PAM models are similar to the second version of hHDP
(htHDP). The topics of the PAM models generate words at the leaf level andthe models are based
on a fixed three-level hierarchy. The simple PAM model needs the number of internal topics to be
known a priori, while its non-parametric version uses the CRP to decide the number of super-topics
and sub-topics. The obvious advantage of htHDP is its full non-parametricnature that does not
impose restrictions on the depth and the branching factor at each level of the hierarchy.

3.2 Estimation of the Hierarchy

Regarding the estimation of the latent structure, exact inference of the hierarchy given a document
collection is intractable. For this purpose we use Gibbs sampling, which climbs stochastically the
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posterior distribution surface to find an area of high posterior probability and explores its curvature
(Andrieu et al., 2003). Although the method of Gibbs sampling lacks theoretical guarantees, it has
been proven to be appropriate for this type of data analysis and for inferring latent variables given
the distribution of the observations and the corresponding priors. More information about sampling
methods in machine learning can be found in Andrieu et al. (2003).

The sampling scheme of hHDP estimates both the number of topics at each level and the number
of levels of the learned hierarchy. As shown in Figure 5, starting at the leaf level, we use HDP to
infer the number of leaf topics as if no hierarchy is to be built. We then build the hierarchy bottom-up
until reaching a level with a single node (the root topic). Each level is modeledas a HDP, estimating
the appropriate number of topics.

Figure 5: Bottom-up probabilistic estimation of the topic hierarchy: Starting with a corpus ofM
documents, the leaf topics are inferred first. The word distributions for each leaf topic
make up the observations (“documents”) for the estimation of the next level up. The
procedure is repeated until the root topic is inferred.

Figure 5 presents the steps of the sampling scheme. We start with the text collection, which
provides the observations, that is, the words, for the estimation. The words constitute the term
space. At the first step that infers the leaf level, in a Chinese RestaurantFranchise analogy, we
assume that the documents correspond to restaurants and the words to customers. The next steps
differ for the two variants of hHDP.

In hvHDP, where topics are both distributions over subtopics and over words, the inference
of the non-leaf levels treats topics, instead of documents, as restaurants.Thus, each inferred leaf
topic maintains a distribution over the term space as its representation. Based on this distribution,
it is treated as an observation for the inference of the next level up. Having inferred the topics
at the leaf level, we know the mixture proportions that the documents of the collection follow.
Similarly, each inferred topic maintains a distribution over the term space and a distribution over the
subtopics below it, following the corresponding proportions inferred forthis topic. Therefore each
internal topic maintains a distribution over words and a distribution over subtopics. This procedure
is repeated until we infer a single topic, which serves as the root of the hierarchy. In other words,
at the leaf level we allocate documents to leaf topics, while at the intermediate levels we allocate
topics to super-topics. The sampling scheme that we propose for hvHDP is described in Algorithm
1.

Therefore, the main contribution of this sampling scheme is the estimation of the non-leaf topics
from “artificial” documents that correspond to estimated topics of lower levels. This procedure
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Data: Term - Document matrix of frequencies
Result: Estimated topic hierarchy
setM=number of documents
setV=vocabulary size
estimate leaf topicsK
setT = K
while | T |> 1 do

// transform document space
setM = K
set input=MxV matrix of frequencies
estimate topicsK of next level up
setT = K

end
Algorithm 1: Estimation of the topic hierarchy for the hierarchical vocabulary clustering hHDP
method (hvHDP).

supports the non-parametric inference of the depth of the hierarchy. Together with the use of the
HDP for the estimation of the number of topics at each level, it makes the estimation of the topic
hierarchy completely non-parametric.

Regarding the second variant of the model (htHDP), where the internal topics are distributions
only over subtopics and not words, the inference procedure differsin the modeling of non-leaf
topics. Leaf topics serve now as customers, changing the term space, maintaining at the same time
the restaurant space, which consists of the original documents. As observations for the inference of
the next level up, we use the distributions of topics at the lower level over the original documents.
Therefore, while in the first variant of hHDP, we had a topic - term matrix offrequencies as input
for the estimation of an intermediate level of the hierarchy, in htHDP, we have adocument - topic
matrix of frequencies for the sampling procedure. The hierarchy estimatedby htHDP is expected to
be shallower than that inferred by hvHDP. This is because the term spaceis reduced when moving a
level up. The procedure is repeated until we infer a single topic, which serves as the root topic. The
proposed sampling scheme is described in Algorithm 2.

The last step in Figure 5 shows the overall model that is estimated. A topic hierarchy is derived
from the corpus and a non-parametric Bayesian hierarchy is used at each level of the topic hierarchy.
The first hHDP variant satisfies the criteria that we set in Section 2: internal topics are represented
as distributions over words and over subtopics, topics can share subtopics at the lower level in the
hierarchy, and topics across any level of the hierarchy are shared among documents. The degree
of sharing topics across documents is expressed through the inferred parameters of the model, and
this sharing of topics reflects the sharing of common terminology between documents. The non-
parametric nature of this process is due to HDP that models each level of the hierarchy.

3.3 Level-wise Estimation

In hHDP, the estimation of each level is performed through posterior samplingof a HDP. At each
level we integrate out all the probability measuresGi , the base measuresG0 and the tables. The
metaphor of the “Chinese restaurant franchise” (CRF) is ofter used to illustrate the sampling scheme
of the HDP. According to that metaphor, there areD restaurants and each one has an infinite number
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Data: Term - Document matrix of frequencies
Result: Estimated coarse topic hierarchy
setM=number of documents
setV=vocabulary size
estimate leaf topicsK
setT = K
while | T |> 1 do

// transform term space
setV = K
set input=MxV matrix of frequencies
estimate topicsK of level up
setT = K

end
Algorithm 2: Estimation of the topic hierarchy for hierarchical topic clustering version of hHDP
(htHDP).

of tables. On each table the restaurant serves one of the infinitely many dishes that other restaurants
may serve as well. A customer enters the restaurant. The customer not only chooses a table (which
corresponds to topic sampling fromG j appearing inG0), but also chooses whether she may have a
dish popular among several restaurants (topic sharing among documents).

Based on the CRF metaphor, the collapsed sampling scheme includes only the sampling of the
dishes, and the calculation of the number of tables that serve a specific dishin each restaurant. Thus,
the sampling of an existing topicz at a specific level, given a wordw ji and the previous state of the
Markov chainz¬ ji uses Equation (1), or equivalently Equation (2). On the other hand, the sampling
of a new topicznew, given a wordw ji and the previous state of the Markov chainz¬ ji uses Equation
(3), or equivalently Equation (4).

p(zji = z | w ji ,z¬ ji ) ∝
n j·z+

αtz
t·+ γ

n j··+α
·φz(w ji ) (1)

p(zji = z | w ji ,z¬ ji ) ∝
n j·z+

αtz
t·+ γ

n j··+α
·

n·iz+H
n··z+VH

(2)

p(zji = znew | w ji ,z¬ ji ) ∝
αγ

(n j··+α)(t·+ γ)
·φz(w ji ) (3)

p(zji = znew | w ji ,z¬ ji) ∝
αγ

(n j··+α)(t·+ γ)
·

1
V

(4)

In Equations (1) to (4), besides the hyper-parametersα andγ, n j·z is the number of words in
documentj that are associated to topicz, n j·· is the number of words in documentj, tz is the number
of tables that serve the dishz, andt· is the total number of tables. The factorn j·z emulates the draw

of an existing dish of restaurantG j , while the factor
αtz

t·+ γ
emulates the draw of a dish from the base

restaurantG0 that maintains all the dishes. The factor
αγ

t·+ γ
emulates the draw of a new dish from
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the global DP with hyper-parameterH. Finally, φz(w ji ) stands for the word distributionp(w | z).
In addition,n·iz is the number of occurrences of wordi in topic z, n··z is the total number of words
assigned to topicz, and finally,H andV are the prior DP hyper-parameter for word distributions
and the total number of words respectively.

Following the sampling of topic indicators, we calculate the number of tables that serve a spe-
cific dish at each restaurant, since we need that parameter for the samplingof topics. That is, we
calculate the factortz, which influences the likelihood of a new table in documentj via the factor
αtz

t·+ γ
. We estimate this number by simulating a DP with hyper-parameterα, since we are interested

in each document that is associated to a probability measureG j , and parameterα provides control
over the topic mixture. Algorithm 3 describes this process.

Data: n j·z, hyper-parameterα
Result: Number of tables in documentj serving topicz
// if no words exist then no tables are needed if n j·z = 0 then

return 0
end
// if only one word exists, one table is needed
if n j·z = 1 then

return 1
end
// if more words exist, simulate the DP
settz = 1
for all words w in[1,n j·z] do

drawrand from Random
setDPtable= α/(w+α)
if rand< DPtable then

settz = mt +1
end

end
Algorithm 3: Estimation of the number of tables that serve a specific dish (topic) in each restau-
rant. The parameterstz,n j·z are the ones used in Equations (1) to (4).

According to Algorithm 3, the estimation of the number of tables is performed foreach restau-
rant, for the customers that have been assigned to new tables, not present in the previous sampling
iteration. The factortz can only change when a word is assigned to a new topic. Due to the “rich
gets richer” property of the DP, some tables become unoccupied. Then, the probability that this
table will be occupied again in the future is zero, since this is proportional ton j·z, which will be
zero. Therefore, when estimating a new level bottom-up, the number of tables tends to decrease. In
addition, in hvHDP, at each level of the hierarchy we transform the inferred topics to documents.
This introduces a bound on the number of tables, since we decrease the restaurant space, which
in turn bounds the number of sharing components, that is, the topics. The same holds for htHDP,
where the term space is dramatically reduced at each level, placing in this waya stronger bound on
the number of sharing components. For this reason, the second variant of hHDP converges faster to
a single topic, producing smaller hierarchies.
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More formally, and according to Teh and Jordan (2010),tz ∈ O(αlog
n j..

α
). SinceG0 is itself a

draw from a DP, we have thatK ∈O(γlog∑ j
tz
γ
) =O(γlog(

α
γ ∑ j log

n j..

α
)). AssumingJ groups, each

of average sizeN, we have thatK ∈ O(γlog
α
γ

Jlog
N
α
) = O(γlog

α
γ
+ γlogJ+ γloglog

N
α
). Thus, the

number of topics scales doubly logarithmically in the size of each group and logarithmically in the
number of groups. In summary, the HDP expresses a prior belief that the number of topics grows
very slowly inN.

4. Evaluation and Empirical Results

In this section, we present experiments using real data sets in order to demonstrate and evaluate
the proposed method. We perform experiments on two different tasks, in order to obtain a good
overview of the performance of the model. The goal is to measure how well the estimated hierarchy
fits a heldout data set of a specific domain, given a training data set of thatdomain and to what extent
the proposed method can be used for knowledge representation and helpbootstrap an ontology
learning method. In particular, we divide the section into two subsections. The first one (Section
4.1) concerns document modeling and provides qualitative and quantitativeresults, while Section
4.2 applies the model to the task of ontology learning.

4.1 Document Modeling

Given a document collection, the task is to retrieve the latent hierarchy of topics that represents and
fits well, in terms of perplexity, to the data set. We fit hHDP and compare it with LDAand hLDA
on various data sets using held-out documents.

In particular, we use 10-fold cross validation and report perplexity figures for each method.
Perplexity is commonly used to evaluate language models, but it has also been used to evaluate
probability models in general (Blei et al., 2003; Teh et al., 2006). Better models that avoid overfitting
tend to assign high probabilities to the test events. Such models have lower perplexity as they are
less surprised by the test sample. In other words, they can predict well held-out data that are drawn
from a similar distribution as the training data. Hence, in our evaluation scenario, a lower perplexity
score indicates better generalization performance. Equation (5) definesthe perplexity on a test set
D consisting of wordsw1,w2, ...,wN.

Perplexity(D) = exp{−
N

∑
i=1

1
N

logp(wi)} (5)

As an example of the results obtained by hvHDP, Figure 6 presents part ofthe latent structure
that was discovered from the NIPS data set. The NIPS data set is a benchmark corpus that has
been used in related work (Blei et al., 2004). It contains abstracts of thecorresponding conferences
from 1987 to 1999. Specifically, the data set comprises 1732 documents and no pre-processing took
place before the learning of the hierarchy, resulting in an unrestricted vocabulary of 46873 terms.
The model ran for 1000 iterations of the Gibbs sampler with fixed hyper-parameters. In particular,
the Dirichlet process priorsH andγ were set to 0.5 and 1.0 respectively, while the parameterα of
the topic mixture was set to 10.0. The values selected for the hyper-parameters are similar to the
values selected for related tasks in the literature (Mimno et al., 2007).
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Figure 6: Part of the hierarchy estimated from the NIPS data set. The learned hierarchy contains
54 topics, inferred by the hHDP model without any user-specified parameters. Thick
lines represent edges of high probability, while thinner ones stand for edges of lower
probability.

As shown in Figure 6, the model discovered interesting topics from the field of the conference.
Stop words are first grouped together at the root node representing avery general “topic” that con-
nects equiprobably the two topics of the conference, signal processingand neural networks. Taking
into account the context of the NIPS conferences, we believe that we have discovered a rather real-
istic hierarchical structure of 54 topics that fits well the field in question.

Similarly, Figure 7 illustrates part of the hierarchy that was produced by mixing two corpora
together and running hvHDP on the resulting data set. In this experiment we wanted to investigate
how the mixing of documents of different domains affects the resulting hierarchy, and in particular to
see whether we can identify a sub-hierarchy of one domain inside the complete hierarchy that was
learned. For this reason, we used 100 documents from the tourism domain and 1000 documents
from the domain of molecular biology, resulting in a total of 1100 documents.

In Figure 7 only edges of high probability are shown for clarity reasons. The two separate sub-
hierarchies, corresponding to the different domains are evident. The sub-hierarchy that corresponds
to the tourism data set (inside the circle in the figure) is much smaller than that of the domain of
molecular biology.

In order to obtain a quantitative evaluation of the method on document modeling,we used five
different data sets. We also fitted the models of hLDA and LDA to the same data sets, as well as
two other baseline models that we have implemented. The first, based on a uniform model (UM),
is not trained and generates words following a uniform distribution, irrespective of the data set.
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Figure 7: Part of the hierarchy estimated from a data set containing 1000 articles regarding molec-
ular biology and 100 regarding tourism information.

The second that we call memory model (MM), memorizes the given data set and generates words
according to the multinomial probability distribution of each document of the data set.

The different evaluation data sets that we used are the following: (a) the Genia data set,1 from
the domain of molecular biology, (b) the Seafood corpus,2 comprising texts relative to seafood
enterprises, (c) the Lonely Planet corpus,3 consisting of texts from the tourism domain, (d) the
Elegance corpus,4 comprising nematode biology abstracts, and finally, (e) the NIPS data set5 that
includes abstracts from the corresponding conferences between the years 1987 and 1999. Table 2
summarizes basic statistics of the five data sets.

Data Set #Docs TermSpace Domain

Genia 2000 16410 Molecular biology
Seafood 156 13031 Seafood enterprises

Lonely Planet 300 3485 Tourism
Elegance 7300 35890 Nematode biology

NIPS 1732 46873 NIPS conferences

Table 2: Data Sets

In the specific experimental setup we used the same hyper-parameters forall data sets. As
mentioned above, for hHDP,H = 0.5, γ = 1.0 andα = 10.0. In the case of hLDA,η = 0.5 and
γ = 1.0, and we varied the number of levels, while in the case of LDA, we varied thenumber of
topics from 10 to 120. Figure 8 illustrates the behavior of the models in the different data sets

1. The GENIA project can be found athttp://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wik i.cgi .
2. The Seafood corpus can be found athttp://users.iit.demokritos.gr/ ˜ izavits/datasets/Seafood_

corpus.zip .
3. The Lonely Planet travel advise and information can be found athttp://www.lonelyplanet.com/ .
4. The Elegance corpus can be found athttp://elegans.swmed.edu/wli/cgcbib .
5. The NIPS data set can be found athttp://books.nips.cc .
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for different numbers of LDA topics. Specifically, the figures plot the perplexity of the various
models against the number of the discovered topics. In the case of hHDP thenumber of topics is
inferred automatically and cannot vary with the LDA or the hLDA parameters.The hLDA model is
parameterized by the number of levels. However, when changing the number of levels, the number
of topics also changes. The model itself decides the branching factor at each level, and thus the total
number of topics changes. A first observation in the results that we obtainedis that in all cases, the
simple UM results in very high perplexity values, between 2500 and 45000 that we do not depict
in Figure 8 for reasons of readability of the graphs. Moreover, the MM performs worse in general
than the rest of the models.

In order to interpret the different results obtained in the five different data sets, we measured
the heterogeneity between the training and the held-out data in each case. More specifically, we
measured the difference in the distribution of words between training and held-out data, using the
mean total variational distance (TVD) (Gibbs and Su, 2002), according toEquation (6). The higher
the TVD, the bigger the difference between the training and the held-out set. Table 3 presents the
results of this measure in terms of the mean TVD in a 10-fold cross measurement.Based on these
figures, the Genia data set seems to be the most homogeneous, while NIPS is the least.

TVD=
1
2 ∑

i

| p(i)−q(i) | . (6)

Data Set Mean TVD

Genia 1.2∗10−5

Seafood 3.5∗10−5

Lonely Planet 2.2∗10−5

Elegance 3.8∗10−5

NIPS 5.2∗10−5

Table 3: Mean Total Variational Distance between the training and the held-out parts of the data
sets.

Additionally, in order to validate the graphs of Figure 8, we measured the significance of the
results, using the Wilcoxon signed-rank test. This test is suitable for this kindof experiment, since it
is non-parametric and does not assume that the samples follow a specific distribution. In particular,
we performed the test for the mean perplexity values, for each value of thenumber of topics. Ac-
cording to the test, the perplexity of a model is significantly lower than that of another model, if the
output probability of the test is below 0.05, which is a threshold that is commonly used in statistical
analysis.

In all data sets, the most interesting comparison is that between hHDP and hLDA. Thus, Table 4
depicts the ranges of topics for which the proposed model performs significantly better than the
one of hLDA and the one of LDA. These ranges are also marked on thex axis of Figure 8 in all
diagrams.

Examining the results on the Genia data set (Figure 8a), the lowest perplexityis achieved by
hvHDP, while hLDA approaches the same perplexity for a number of topics around 60. LDA and
htHDP obtain higher perplexity.
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Figure 8: The behavior of the models on the five different data sets in terms of perplexity. The mod-
els: hvHDP, htHDP, hierarchical Latent Dirichlet Allocation (hLDA), Latent Dirichlet
Allocation (LDA), and Memory Model (MM). Diagrams (a)-(e) illustrate the perplexity
of the models for the Genia, Seafood, LonelyPlanet, Elegance and NIPS data sets respec-
tively. Topic ranges where statistically significant improvement over existingmodels is
achieved are marked on thex axis.
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Comparison Genia Seafood LP Elegance NIPS

hvHDP 1−120 1−40 1−50 1−20 1−30
hLDA 90−120 90−120 110−120 100−120
hvHDP 1−120 1−120 1−120 1−50 1−120
LDA 100−120

Table 4: Significant differences between hvHDP and hLDA and betweenhvHDP and LDA in all
corpora. Each cell presents topic ranges for which hvHDP performs significantly better
than hLDA or LDA.

The comparison between hLDA and hvHDP showed that for all the cases inthis data set, hvHDP
obtains significantly lower perplexity values (Table 4).

Regarding the Seafood data set (Figure 8b), hLDA and LDA catch up withhvHDP after 40 and
60 topics respectively. htHDP also achieves good performance in this case. Regarding the statistical
significance of the differences, Table 4 validates that hvHDP performs better than hLDA for a range
of topics between 1−40 and between 90−120.

In the LonelyPlanet data set (Figure 8c), only hLDA manages to approach the good performance
of hvHDP for a number of topics between 60−80 (Table 4). The LDA and htHDP models perform
worse. The htHDP is again much worse than the first variant of hHDP.

Concerning the Elegance data set (Figure 8d), all models, besides MM, achieve similar perfor-
mance within a specific range of topics (50 to 120). Furthermore, this is the only data set where
hLDA and LDA are observed to achieve better results than hvHDP, thoughnot statistically signifi-
cant and for a very small range of topics (around 80).

Finally, in the NIPS data set, (Figure 8e), hLDA and LDA manage to equal hvHDP for a certain
range of topics and present a better performance than htHDP in a large range of topics. For this data
set, the statistical test showed that hvHDP is better than hLDA in the range 10−30 and 100−120
topics and better than LDA in the whole range of topics, although for a certainrange both models
achieve similar perplexity values. On the other hand, the second version ofhHDP outperforms only
LDA between 10 and 20 topics.

The results illustrate clearly the suitability of hHDP for document modeling tasks. It discovers
a hierarchy that fits well the given data sets, without overfitting them, thus achieving low values of
perplexity. The competing models of hLDA and LDA manage only at their best toreach the per-
formance of the proposed model. Furthermore, the performance of thesemodels seems to be very
sensitive to the chosen number of topics (number of levels in the case of hLDA). This observation
makes the non-parametric modeling of hHDP particularly important. Comparing hLDA to the sim-
ple LDA, it is also quite clear that the hierarchical modeling of topics adds significant value to the
model.

Regarding the naive UM and MM models, these are only used as baselines and they perform
poorly. The experiments show that an overfitted model, such as MM, has lowpredictive performance
outside the training set. On the other hand, a uniform model is not able to predict at all the test set,
achieving the worst results.

A final important observation that is not evident in the numeric results, is thatfor a large num-
ber of topics, hLDA tends to construct a single path, rather than a hierarchy. Perhaps this can be
attributed to the difficulty of identifying sufficiently different topics at various levels of abstraction,
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when requesting a large depth for the hierarchy. By assigning all topics toa single branch, the model
becomes equivalent to LDA. When this happens, the perplexity value of thetwo models is also very
similar. The Wilcoxon statistical tests have indicated that in the Elegance data setand for a number
of topics around 80, hLDA does not perform significantly better than LDA, while in the NIPS data
set, the same situation holds for a number of topics between 50 and 100.

Perplexity has been criticized, since it is mainly used for the evaluation of language models. In
addition, recent advances in topic modeling evaluation suggest the use of unbiased assessment of
topic models. For this reason, we decided to conduct an additional experiment, measuring the log-
likelihood of these models using the left-to-right sequential sampler (Buntine, 2009). This sampler
improves on the algorithm proposed in Wallach et al. (2009), by providing unbiased estimates of
the model likelihood for sufficiently large sample sizes. Since hvHDP, hLDA and LDA achieve
the best results in terms of perplexity, we compare these models. Having the models trained on a
portion (90%) of the data sets, we calculate the log-likelihood of the models on theremaining 10%
that constitute the held-out data, using 10-fold cross validation. Figure 9 presents the results of this
experiment, in terms of the mean log-likelihood.

The main result shown in Figure 9 is the same as in Figure 8. hHDP outperformsthe other
methods with statistical significance in most cases. The other methods, especially hLDA, approach
the performance of hHDP if the right number of topics is chosen somehow. Therefore, the experi-
ment has confirmed the value of estimating the number of topics and the depth of the hierarchy in a
completely non-parametric way.

As an additional experiment on the task of document modeling, we assessedthe ability of the
method to estimate a known hierarchy, which is used to generate a set of documents. In particular,
based on the hierarchy inferred for the Seafood data set, we generated a set of documents with the
same average length as the original data set. Thus, we started at the root node of the hierarchy, and
traversed it stochastically, based on the parameters of the model, which arethe probabilities of each
subtopic. When reaching a leaf topic we chose a word to be generated according to the probability
distribution of that topic. In this manner, we generated a total of 156 documents, as many as the
original data set, exhibiting similar word distributions. Then, we ran hvHDP onthis “artificial” data
set, estimating a latent hierarchy, which we compared manually against the oneused to create the
data set. From this comparison we concluded that all the topics of the estimated hierarchy have been
correctly inferred. However, the estimated hierarchy comprises fewer topics, a fact that in terms of
quantitative results implies a drop in recall.

4.2 Ontology Learning

The aim of this experiment was to validate the suitability of the proposed method onthe task of
ontology learning. The vocabulary clustering version of hHDP (hvHDP)estimates topics that are
defined as distributions over words. It is, therefore, of particular interest to investigate how close
these distributions are to a gold-standard hierarchy, given the corresponding data set. Such an ex-
periment would highlight the potential of the method in other domains, such as automated ontology
construction, and would provide qualitative and quantitative results regarding the performance of
the method. In this experiment, we also compare hvHDP with hLDA.

Ontology learning (Gomez-Perez and Manzano-Macho, 2003; Maedche and Staab, 2003) refers
to the set of methods and techniques used for either building an ontology from scratch, enriching,
or adapting an existing ontology in an automated fashion, using various sources of information.
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Figure 9: The behavior of the models (hvHDP, hierarchical Latent Dirichlet Allocation (hLDA),
and Latent Dirichlet Allocation (LDA)) on the five different data sets in termsof log-
likelihood. Diagrams (a)-(e) illustrate the perplexity of the models for the Genia, Seafood,
LonelyPlanet, Elegance and NIPS data sets respectively.
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This task is usually decomposed into three steps: (a) identification of topics, (b) building of the
hierarchical backbone, and (c) enriching with further semantic relations. Regarding the sources of
information, we focus here on text collections.

Both hvHDP and hLDA can be used to perform the first two steps of the ontology learning
process, that is, identification of concepts and hierarchy construction,given the data set. Thus,
we merge the aforementioned two steps into one, and we assume that the estimatedlatent topics
correspond to ontology concepts. Therefore, in this task, we construct a topic ontology from scratch
that comprises only hierarchical relations, given a collection of text documents and we compare it
to a given gold standard ontology.

For this purpose, we use the Genia and the Lonely Planet data sets and the corresponding on-
tologies, which serve as gold standards for evaluation. The Genia ontology comprises 43 concepts
that are connected by 41 subsumption relations, which is the only type of relation among the con-
cepts. The Lonely Planet ontology contains 60 concepts and 60 subsumption relations among them.
For our experiments, the only pre-processing applied to the corpus was toremove stop-words and
words appearing fewer than 10 times.

The estimation of the hierarchy was achieved through 1000 iterations of the Gibbs sampler with
fixed hyper-parametersH = 0.5 andγ = 1.0 for the Dirichlet priors andα = 10.0 for the topic
mixture. The evaluation was performed using the method proposed in Zavitsanos et al. (2010). This
method is suitable for the evaluation of learned ontologies, since it represents the concepts of the
gold ontology as multinomial probability distributions over the term space of the documents and
provides measures in the closed interval of [0,1] to assess the quality of thelearned structure.

In particular, the evaluation method first transforms the concepts of the goldontology into prob-
ability distributions over the terms of the data set, taking into account the contextof each ontology
concept. In a second step, the gold ontology is matched to the learned hierarchy, based on how
“close” the gold concepts and the learned topics are. The final evaluationis based on the measures
of P andR that evaluate the learned hierarchy in the spirit of precision and recall respectively, as well
asF that is a combined measure ofP andR. The corresponding formulae are given in Equations
(7), (8) and (9).

P=
1
M

M

∑
i=1

(1−SDi)PCPi (7)

R=
1
M

M

∑
i=1

(1−SDi)PCRi (8)

F =
(β2+1)P∗R
(β2R)+P

(9)

In Equations (7) - (9),M is the number of matchings between learned topics and gold concepts
andSD is a distance measure between concepts, ranging in[0,1]. Specifically, the total variational
distance (TVD) (Gibbs and Su, 2002) of Equation (10) was used to assess the similarity between
topics and gold concepts.

TVD=
1
2 ∑

i

| P(i)−Q(i) | (10)
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In Equation (10),P(·) andQ(·) are multinomial probability distributions over words that repre-
sent a gold concept and a learned topic. The estimated topics are already represented as multinomial
probability distributions over the term space of the data set, while the conceptsof the gold ontology
are also transformed into multinomial probability distributions over the same term space. Thus, the
comparison between topics and gold concepts becomes straightforward.

The matching scheme compares the distributional representations of topics and gold concepts
and finds the best matching in the sense that the most similar word distributions among the two
hierarchies will be matched. More details about how the matching is performedcan be found in
Zavitsanos et al. (2010). ThePCP and PCR (probabilistic cotopy precision and recall) factors
in Equations (7) and (8) respectively, are influenced by the notion of semantic cotopy (Maedche
and Staab, 2002). The cotopy set of a conceptC is the set of all its direct and indirect super and
subconcepts, including also the conceptC itself. Thus, for a matchingi, of a topicT in the learned
ontology and a conceptC in the gold ontology,PCPi is defined as the number of topics in the cotopy
set ofT matched to concepts in the cotopy set ofC, divided by the number of topics participating in
the cotopy set ofT. For the same matchingi, PCRi is defined as the number of topics in the cotopy
set ofT matched to concepts in the cotopy set ofC, divided by the number of topics participating in
the cotopy set ofC.

Values of theP, R andF measures close to 1 indicate that the resulting hierarchy is close to the
gold ontology, while values close to 0 indicate the opposite. Finally, we setβ = 1 in Equation (9),
hence using the harmonic mean ofP andR.

Figure 10 depicts a part of the gold ontology on the left and a part of the estimated hierarchy on
the right. The labels on the latent topics of the learned hierarchy correspond to the best TVD match
of each topic with a gold concept. As it is shown in the figure, hHDP estimated a hierarchy very
close to the gold standard. Thin edges between topics represent relationsof low probability, while
thicker edges carry higher probability.

Figure 10: Part of the Genia ontology on the left and part of the estimated hierarchy on the right.
The labels on the topics of the learned hierarchy correspond to the best match of each
topic to a gold concept, according to TVD.

Regarding the estimated hierarchy, it comprises 38 topics in total, while the gold ontology com-
prises 43. Recall from Section 3 that the method estimates a probability distribution for each topic
over all topics of the next level. Hence, we expect to learn a hierarchy comprising more relations
than the gold ontology. However, relations with low probability, as the ones depicted with thin lines
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in Figure 10, can be ignored. In addition, the way the hierarchy is estimated,through Gibbs sam-
pling, infers the probability distributions, based on the assignments of wordsto topics and topics to
subtopics. Through sampling, it is possible for fragments of documents notto be allocated to every
estimated topic, and for subtopics not to be allocated to every super-topic. This leads to some zero
values in the probability distributions of topics. Therefore, there exist cases where the probability
of an edge in the resulting hierarchy may be zero. This fact provides extra flexibility to the method,
since it permits the construction of unbalanced hierarchies and prunes edges that are definitely not
necessary.

In the general case though, the learned hierarchy is expected to have more edges than the gold
ontology has. Therefore, pruning mechanisms may be of particular importance for the task of
ontology learning.

In the case of the Lonely Planet data set, hvHDP estimated a smaller hierarchythan the gold
standard, achieving lower quantitative results in terms of P, R and F. The difficulty in estimating
a hierarchy of similar size to the gold standard is due to the nature of the data set and the gold
ontology. In particular, half of the gold concepts had only one instance and in general, most of the
concepts were insufficiently instantiated in the data set.

Regarding hLDA, in the case of the Genia data set, the best quantitative results were obtained
for an estimated hierarchy of depth equal to 6. In this case, hLDA performed similarly to hHDP in
terms of P, R and F. However, in the case of the Lonely Planet data set the performance of the model
was poor. In particular, the best quantitative results were obtained for an estimated hierarchy of 3
levels. However, these results are much lower than that of hvHDP for the same data set.

Table 5 presents the quantitative results of the experiments, in terms of P, R and F for both
hHDP and LDA. For the proposed method, two cases are foreseen. Thefirst case concerns the
evaluation of the learned hierarchy as is, without any post-processing.The performance of hHDP
is low, because the evaluation method is rather strict. The evaluation method does not take into
account the probabilities on the edges connecting a topic to all its sub-topics,but rather assumes
that all edges are of equal importance and penalizes the learned hierarchy for its high connectivity.

Therefore, through this first evaluation, we conclude that the original, highly connected hierar-
chy may not be usable as is. For this reason, we include another set of evaluation results in Table 5
that we call “pruned.” This is actually the same method without the low probabilityrelations be-
tween the topics. In particular, we keep relations with probability higher than 0.1. The pruned
hierarchy is significantly closer to the gold standard than the unpruned one.

Genia LonelyPlanet

Method P R F P R F
hHDP 0.65 0.60 0.624 0.22 0.15 0.17

hHDP-pruned 0.88 0.80 0.838 0.35 0.23 0.27
hLDA 0.62 0.55 0.58 0.07 0.01 0.017

Table 5: Quantitative results for the task of Ontology Learning.

In summary, we conclude that hvHDP can be applied to the task of ontology learning with
promising results. Its ability to identify topics and at the same time build the taxonomic backbone
can facilitate the learning of ontologies in a purely statistical way, providing a powerful tool that
is independent of the language and the domain of the corpus. The proposed method discovered
correctly the majority of the identifiable gold concepts in the experiment and constructed a hierarchy
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that is very close to the gold standard. Furthermore, it constructed the taxonomy and inferred the
correct depth without any user parameters (except the pruning threshold) in a statistical way and
without any prior knowledge.

5. Conclusions

We have introduced hHDP, a flexible hierarchical probabilistic algorithm, suitable for learning hi-
erarchies from discrete data. hHDP uses the “bag-of-words” representation of documents. The
method is based on Dirichlet process priors that are able to express uncertainty about the number of
topics at each level of the hierarchy. We have also presented a bottom-upnon-parametric discovery
method for the latent hierarchy, given a collection of documents. Since exact inference is known
to be intractable in such non-parametric methods, approximate inference wasperformed, using the
Gibbs sampling method, which provided accurate estimates.

An important contribution of this paper is the inference of the correct number of topics at each
level of the hierarchy, as well as the depth of the hierarchy. Its Bayesian non-parametric nature
requires no user parameters regarding the structure of the latent hierarchy. The Dirichlet process
priors, as well as the bottom-up procedure for the estimation of the hierarchy, provide a flexible
search in the space of different possible structures, choosing the onethat maximizes the likelihood
of the hierarchy for the given data set. Moreover, hHDP does not impose restrictions and constraints
on the usage of topics, allowing multiple inheritance between topics of different layers and modeling
the internal nodes as distributions of both subtopics and words.

We provided extensive experimental results for the proposed method in twodifferent evaluation
scenarios: (a) document modeling in five real data sets, comparing against state-of-the-art methods
on the basis of perplexity, and (b) applying the method to an ontology learningtask, comparing the
learned hierarchy against a gold standard. The evaluation showed thathHDP is sufficiently robust
and flexible. The proposed method discovered meaningful hierarchies and fitted well the given data
sets. Finally, we have concluded that such methods are suitable for the taskof ontology learning,
since they are able to discover topics and arrange them hierarchically, in away that is independent
of the language and the domain of the data set, and without requiring any prior knowledge of the
domain.

The very promising results that we obtained in this work, encouraged us to study and improve
hHDP further. One possible improvement is the use of Pitman-Yor processes, which are generaliza-
tions of Dirichlet processes and produce power-law distributions. Natural language text is known
to follow such distributions and therefore we may be able to model documents more accurately. In
addition, we intend to apply the method to different tasks, including the learningof folksonomies
from user-generated tags. Also, due to its statistical nature, it would be interesting to evaluate hHDP
on different types of data sets, including images, time series and events. Finally, another future di-
rection is to bootstrap hHDP from an existing ontology and infer the remaining parameters using
the corresponding data set.
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