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Abstract

This paper presents hHDP, a hierarchical algorithm foraggmting a document collection as a hi-
erarchy of latent topics, based on Dirichlet process pribhe hierarchical nature of the algorithm
refers to the Bayesian hierarchy that it comprises, as veetbdhe hierarchy of the latent topics.
hHDP relies on nonparametric Bayesian priors and it is abiefer a hierarchy of topics, without

making any assumption about the depth of the learned higraned the branching factor at each
level. We evaluate the proposed method on real-world dasarselocument modeling, as well as
in ontology learning, and provide qualitative and quatititaevaluation results, showing that the
model is robust, it models accurately the training dataséisable to generalize on held-out data.

Keywords: hierarchical Dirichlet processes, probabilistic topicdels, topic distributions, ontol-
ogy learning from text, topic hierarchy

1. Introduction

In this paper we address the problem of modeling the content of a giv@nmamt collection as a
hierarchy of latent topics given no prior knowledge. These topicesgmt and capture facets of
content meaning, by means of multinomial probability distributions over the vadittie term space
of the documents. The assignment of documents to latent topics without eciagsification is a
powerful text mining technique, useful among others for ontology legrnom text and document
indexing.

In the context of this modeling problem, probabilistic topic models (PTMs) htikected much
attention. While techniques for terminology extraction and concept identificétion text rely
on the identification of representative terms using various frequencyunesasuch as the TF/IDF
(Salton and McGill, 1986) or C/NC value (Frantzi et al., 2000), PTMs aimigoayer topics that
are soft clusters of words, by transforming the original term space itateat one of meaningful
features (topics).
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Much work on PTMs focuses on a flat clustering of the term space intogopiaile the cre-
ation of a hierarchical structure of topics without user involvement ordpfened parameters still
remains a challenging task. The goal of discovering a topic hierarchgdngrises levels of topic
abstractions is different from conventional hierarchical clusteringe ifiternal nodes of this type
of hierarchy reflect the topics, which correspond to the shared terngyaolovocabulary between
documents. In contrast, hierarchical clustering usually groups dattspfmninstance documents,
resulting in internal nodes that constitute cluster summaries. Conventionaigeeh such as ag-
glomerative clustering, allow objects to be grouped together based on a gimmiiaasure, but the
hierarchy is generally the result of hard clustering. This form of cliregdimits the applicability
of the techniques, since a document is assigned to only one topic and miag regtieved upon a
search on a related topic.

Furthermore, conventional clustering models texts based explicitly on sythtards to cluster
words that appear in similar local contexts. On the other hand, topic modaispatte capture
through syntax, latent semantics. They cluster words that appear in a gjiollal context, in the
sense that they try to generalize beyond their place of appearance incaltegtion, in order to
reflect their intended meaning.

The role of hierarchical topic models regarding text modeling and naturglige processing
(NLP) is very important. The hierarchical modeling of topics allows the caostm of more
accurate and predictive models than the ones constructed by flat modetieldvbf the former
type are more probable to predict unseen documents, than the latter. ltextasillections, such
as web pages, a hierarchical model, for instance a web directory, imatdscribe the structure and
organization of the document collection more accurately than flat models.hibwever, ultimately
depends on the nature of the data set and the true generative prbttessl@cuments themselves.
Assuming that the higher levels of the hierarchy capture generic topicspaftecular domain,
while lower-level ones focus on particular aspects of that domain, it isa®d that a hierarchical
probabilistic topic model would be able to “explain” or could have generateddta set. In other
words, the likelihood of such a model given the data set would probaliligber than the likelihood
of other flat models (Mimno et al., 2007; Li et al., 2007; Li and McCallum,&00

Despite recent activity in the field of HPTMs, determining the hierarchicalehtitht best
fits a given data set, in terms of the structure and size of the learned higratitl remains a
challenging task and an open issue. In this paper, we propose a metha@alawith some of
the limitations of the current models, regarding the representation of inpaitagalatent topics.
In particular, we aim to infer a hierarchy of topics and subtopics, sudheiheh topic is more
general than its subtopics, in the sense that if a document can be indezeg bf the subtopics
it should also be indexed by the topic itself. Moreover, we demand to infdniérarchy without
making any assumption either about the number of topics at any level of tteedhig, or about
the height of the hierarchy. The proposed method, given a collectioxibbdléeuments, produces
a hierarchical representation in the form of a topic hierarchy, adoptimgnparametric Bayesian
approach. The resulting hierarchy specifies each topic as a multinomialplity distribution over
the vocabulary of the documents. Moreover, internal nodes are gisesented as multinomial
probability distributions over the subtopics of the hierarchy. In addition td#séc model, we also
present a variant that produces a topic hierarchy, by modeling théwaecg only at the leaf level
and considering topics in the inner levels to be multinomial distributions over @igbtoAlthough
the evaluation of such models is also an open issue, we demonstrate thigezfess of the model
in different tasks through an extensive evaluation, providing qualitatickquantitative results.
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In what follows, we start by a quick review of the family of probabilistic topicdals and
hierarchical models (Section 2). Section 3 presents the proposed me#moely topic hierarchies
of hierarchical Dirichlet processes (hHDP), along with its variant. Sediprovides an extensive
evaluation of hHHDP, including comparisons to other models and applicatioiffet@dt tasks, while
Section 5 summarizes the paper and presents future directions.

2. Hierarchical Probabilistic Topic M odels

Probabilistic topic models (PTMs) (Griffiths and Steyvers, 2002) arergéne models for doc-
uments. Documents are assumed to be mixtures of topics and topics areilgyobetributions
over the words of some vocabulary. The vocabulary may comprise alldhgsvthat appear in the
documents or a part of them, for example excluding the stop-words. PTéMisased on the De
Finetti theorem (Finetti, 1931), which states that an exchangeable seqoérandom variables
is a mixture of independent and identically distributed random variables.elndbe of text data,
PTMs treat documents as “bag-of-words.” The words in the documesisfinitely exchangeable
without loss of meaning, and thus, the joint probability underlying the data &iamt to permu-
tation. Based on this assumption of exchangeability, the meaning of docunoarstsdt depend
on the specific sequence of the words, that is, the syntax, but rathtbewrfability” to express
specific topics either in isolation or in mixture. Given the latent variables, (ihiesp the words
are assumed to be conditionally independent and identically distributed in the tex

Figure 1 represents the underlying idea of the generative nature o PTdpics, represented
as clouds, are probability distributions over words (puzzle pieces) oédefined vocabulary. Ac-
cording to the mixture weights that reflect the probability of a topic to participatedocument,
words are sampled from the corresponding topics, in order for dodsrteebe generated.
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Figure 1: The generative nature of PTMs: Documents are mixtures obtofpics are probability
distributions over words (puzzle pieces). The probability of participaticentopic in a
document is defined by the mixture weights. Inspired by Steyvers andti@&if2007).

In the rest of the paper, we will refer to the document collectio® asonsisting ofdy, do, ...,
dn documents. The set of the latent topics will be defined ,asonsisting oty, ty, ...,tx topics. We
will refer to the distribution of topics a8, indicating the dimensionalitl{ of the distribution, and
finally, @, will stand for the distribution of the words of the vocabulaty

Following the principles of PTMs, the generative model of probabilistic lstenmtantic analysis
(PLSA) (Hofmann, 2001) specifies a simple generative rule for the siord documend;, accord-
ing to which, each word of a training documeditcomes from a randomly chosen togic The
topics are drawn from a document-specific distribution over togigsand there exists one such
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distribution for eachd;. Hence, the set of the training documebtslefines an empirical distribu-
tion over topics. In PLSA, the observed varialjgs actually an index into the training st and
thus, there is no natural way for the model to handle previously unsemmaimts, except through
marginalization (Blei et al., 2003).

The model of PLSA has been extended by latent Dirichlet allocation (LB#I €t al., 2003).
The generative model of LDA, being a probabilistic model of a corpysesents eaath as random
mixture over latent topic¥. The mixture indicator is selected once per term, rather than once per
document as in PLSA. The estimated topics are represented as multinomatiitplistributions
over the terms of the documents, while eakls represented as a Dirichlet random varighl¢he
dimensionality of which, is predefined and equal to the number of estimatetitiagpes. In contrast
to PLSA, LDA states that each word of both the observed and unseemaods is generated by a
randomly chosen topic, which is drawn from a distribution with a randomlyemparameter. This
parameter is sampled once per document from a smooth distribution over. topics

A question that usually arises when using models like LDA is how many topicsstimated
model should have, given the document collection. The problem is hataer multiple parameters
are shared among documents, as in LDA. The problem is addressedtiggsh discrete base
distribution among documents. A hierarchical Dirichlet process (HDRtesesuch a discrete base
distribution for the document Dirichlet processes (DPs) by sampling froathar DP. In such a
Bayesian hierarchy, the root DP uses the Dirichlet distribution of the t@si@ base distribution
and each document samples from it.

Although LDA is a true generative probabilistic model for documents and BRRconvenient
mechanism for inferring the number of topics, relations of any type ortaifons between the
estimated topics are not taken into account. In fact, a flat and soft clustafrihe term space of
the documents into topics is provided. Thus, there is a need for hierdrockels that are able
to capture relations between the latent topics in order to represent comraed Structure, as
explained in Section 1.

A method for producing a tree-like structure of latent topics is presentechirssier et al.
(2002), as an extension of the PLSA model. According to hierarchicalgtmilistic latent semantic
analysis (HPLSA), the data sBtis assumed to have been generated by a hierarchical model. For
eachd;, a document class is picked from a predefined number of classes, with g@bability.
Then, ad; is chosen based on the conditional probability of a document given the chagin,
given the class, a topig is sampled for thatl;. Finally, a word is generated given the sampled
topictj. A class here represents a group of documents sharing some common thewtatie.
According to this model, documents and words are conditionally indepegdemt the class. In a
typical hierarchy, documents are assigned to classes at the leaveshd@rtrehy, while words are
sampled from topics which occupy non-leaf nodes of the hierarchynt@ioer of classes actually
defines the number of leaves of the hierarchy. The model extends PL®# gense that if one
topic per class is sampled, then the result is the flat clustering of PLSA. tifi@wther hand, a
single topic is sampled for more than one class, then it is placed on a highkatevespresents
shared knowledge between these classes. However, the model inherits groblems of PLSA,
such as the large number of parameters that need to be estimated, whidmgeoly with the size
of the corpus, a problem that LDA seems to deal with, since the latter trealssthibutionBx as a
hidden random variable, rather than a large set of individual parasngtéch are explicitly linked
to the training set.
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Another approach to capturing relations between topics is the correlatedtogels (CTM)
(Blei and Lafferty, 2006), an extension of LDA. The generativecpss of this model is identical to
that of LDA, with the exception that the topic proportions are drawn frongastiac normal distri-
bution, rather than a Dirichlet as in the case of LDA. The parameters of itr#bdtion include a
covariance matrix, the entries of which specify the correlations betweaengisopics. Correlations
are introduced by topics that appear in the same context, in the sense thapgtiear together in
documents (or parts of documents). The advantage of this model is thaivdrance matrix may
include positive covariance between two topics that co-occur frequentiynegative between two
topics that co-occur rarely, while with the Dirichlet approach, we actualbyess the expectation of
each topic to occur, according to the weights of the mixture proportionshamwdnuch we expect
any given document to follow these proportions. In CTM only pairwiseatations between topics
are modeled. Hence, the number of parameters grows as the squarawfiher of topics.

The Pachinko allocation model (PAM) (Li and McCallum, 2006) deals with sofike prob-
lems of CTM. PAM uses a directed acyclic graph (DAG) structure to retesnd learn arbitrary,
nested and possibly sparse topic correlations. PAM connects the wititls wocabularyy and
topicsT on a DAG, where topics occupy the interior nodes and the leaves arswBeth topic
t; is associated with a Dirichlet distribution of dimension equal to the number ofrehildf that
topic. The four-level PAM, which is presented in Li and McCallum (20@6xble to model a text
collection through a three-level hierarchy of topics with arbitrary cotioes between them. How-
ever, PAM is unable to represent word distributions as parents of otbret distributions and also
requires the length of the path from the root node to the leaves to be predlefi

The hierarchical latent Dirichlet allocation (hLDA) model (Blei et al., 2D@4s the first attempt
to represent the distribution of topics as a tree-structure by providinge atatime time uncertainty
over the branching factor at each level of the tree. In hLDA, eachmeat is modeled as a mixture
of L topics defined byg, proportions along a path from the root topic to a leaf. Therefore, each
documentd; is generated by the topics along a single path of this tree. Hencede&chbout a
specific topic (a leaf topic) and its abstractions along the path to the root. Multietance, in the
sense of assigning more than one topic to a super-topic, is not modeled.8ativeating the model
from data, for eacldl;, the sampler chooses an existing or a new path through the tree and assigns
each word to a topic along the chosen path. Thus, both internal and lées tgnerate words
for new documents. In order to learn the structure of the tree, a nestadsghestaurant process
(nCRP) is used as a prior distribution. Assuming that the ddptlof(the hierarchy is provided
a priori, the nCRP prior actually controls the branching factor at each téwthe hierarchy. It
expresses the uncertainty about posdiblevel trees and thus, the problem of modeling the corpus
is reduced to finding a good, in the sense of maximum likelihbeeéyel tree among them.

Aiming to support multiple inheritance between topics, and extending PAM taesgprord
distributions as parents of other word distributions, the work in Mimno et D2 presents the
hierarchical Pachinko allocation model (HPAM), in which every node soeiated with a distribu-
tion over the vocabulary of the text collection. There are actually two Variafithe model. In the
first variant, each path through the DAG is associated with a multinomial distnibatiaghe levels
of the path, which is shared by all documents. In the second one, this diitrildoes not exist, but
the Dirichlet distribution of each internal node has one extra “exit” dimensidwich corresponds
to the event that a word is produced directly by the internal node, witleaahing the leaf topics
of the DAG. The three-level model that is presented in Mimno et al. (200M)pcises a root topic,
a level of super-topics and a level of sub-topics and it u$es 1) Dirichlet distributions to model
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the text collection. One distribution incorporates a hyper-parantgtend serves as a prior over
the super-topics. The remainifgdistributions incorporate a hyper-parameter, which serves
as a prior over their sub-topics. The difference between the pripesadar is that they produce
different distribution®y and6t over super-topics and subtopics respectively.

While the models belonging in the PAM family provide a powerful means to desitribr-topic
correlations, they have the same practical difficulty as many other topic madétsermining the
number of topics at the internal levels. For this purpose, a non-paramayrés version of PAM has
been presented in Li et al. (2007). This model is actually a combination ¢fLtb& model, in the
sense of determining the number of toplcat the internal levels, and of the four-level PAM (Li and
McCallum, 2006). Each topigis modeled by a Dirichlet process and the Dirichlet processes at each
level are further organized into a hierarchical Dirichlet process (H@Rich is used to estimate the
number of topics at this level. Apart from this, the model follows the basic PANtiples. During
the generation of a document, after sampling the multinomial distributions ovesttipim the
corresponding HDPs, a topic path is sampled repeatedly according to theamidtis for each
word in the documend;. The resulting hierarchy is limited to three levels and comprises the root
topic, the next level of super-topics and the final level of sub-topibg;tware the ones that are able
to generate words.

Representing all topics as multinomial distributions over words is more appetidargrepre-
senting only the leaf topics. For this purpose, the work in Zavitsanos 2G08] uses the LDA
model iteratively to produce layers of topics and then establishes hierarcalations between
them, based on conditional independences, given candidate pariest tbpe branching factor at
each level is decided by the number of discovered relations, since topicarthnot connected to
others are disregarded. The issue of the depth of the hierarchy issaddrin that work by measur-
ing the similarity of the newly generated topics to the existing ones. Howevenutimder of the
generated topics at each level is predefined.

In summary, some topic models support a latent hierarchy of topics, but tigeneration
of words only at the leaf level. Others are able to generate words atl@ahbut depend on a
predefined depth of the hierarchy. In particular, hLDA is able to infeibifamching factor at each
level, but still requires the depth of the hierarchy to be known a priori.dthteon, in contrast to
the simple LDA, in the case of hLDA, documents can only access the topidétiaatoss a single
path in the learned tree. Hence, LDA, which places no such restrictione mittiure of topics for
each document, can be significantly more flexible than hLDA. The modelsdirtpin the PAM
family seem to be able to address these issues, especially the non-parBeangtsc/ersion of PAM
(Li et al., 2007) that exploits some of the advantages of hLDA. Howgfrerfact that the resulting
hierarchy comprises three levels and produces words only at the igdiveiing. It seems possible
to extend the hierarchy to more levels, but this would require the depth todwenka priori and
would impose an increase on the number of parameters to be estimated. Faralfgepers such as
the number of topics or the number of levels need to be estimated using atmkstign, which is
not efficient even for non-hierarchical topic models like LDA. Table thsarizes the properties of
the aforementioned models.

The evaluation of topic models is also an open issue. The majority of the wadwed in
this section assesses the inferred hierarchy on the basis of how “midhiihg latent topics are to
humans. In this spirit, new evaluation measures (Chang et al., 2009) éenepboposed that try to
capture aspects of how humans evaluate topic models and especially thedrfierarchy. Thus,
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Model Topic Infer number| Infer number| Multiple | Generate words
hierarchy| of topics of levels inheritance| at all nodes

PLSA X X X X v

LDA X X X X v
HDP X v X X v
HPLSA v X X X v
CTM X X X X v

PAM v X X v X
hLDA v v X X v
HPAM v X X v v
NPPAM v v X v X

D

Table 1: Comparison of topic models. The first column is the acronym of theln®tie second
column shows whether the model is able to organize the topics hierarchicaklythird
and fourth columns depict the ability of the model to infer the number of topiddevels
respectively. The last two columns indicate whether the model’s topics shhtepics,
and whether the model produces words at all nodes.

the emphasis is on how topic models infer the latent structure of the input dotyyrmether than
on how well they generate documents. Based on this observation, waserap algorithm that:

e Determines the depth of the learned hierarchy.

¢ Infers the number of topics at each level of the hierarchy.

¢ Allows sharing of topics among different documents.

Allows topics to share subtopics.

Allows a topic at any level of the hierarchy to be specified as a distributientevms.

e Has a non-parametric Bayesian nature and thus exhibits all the advaotageh techniques.

In addition, we present a variant that models only the leaf levels as glivpdistributions over
words and results in a hierarchical topic clustering of the text collectioa.bHsis for the methods
proposed in this paper is the model of a hierarchical Dirichlet proceS®}{H

3. Topic Hierarchies of Hierarchical Dirichlet Processes (hHDP)

In this section we present the hHDP method in two variants. The first vagaalts in a hierarchy
whose internal nodes are represented as probability distributions gies gmd over words. Thus it
performs a hierarchical vocabulary clustering (hvc). The seconidntgrovides a hierarchical topic
clustering (htc) of the corpus, where only leaf nodes are represasidtributions over words. We
will refer to the first variant as hvHDP, and to the second as htHDP. Wealthe section into two
subsections, providing insights about the proposed method and informegiarding the sampling

scheme.
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3.1 Stacking HDPs

Starting with the criteria that we posed at the end of Section 2, we want toledcamfer the
number of topics at each level. For this purpose we use the mixture moderafdhical Dirichlet
processes (HDP) (Teh et al., 2006), which is illustrated in Figure 2.

Topic mix DP prior
a forg
H

DP for each doc
Gj

Prior for
new topics
Y

observationsy i
w

Figure 2: The HDP mixture model. Assuming a text collectiorivbfiocuments, each of length
N, there is a DRG; for each document to draw word distributions. There is a global,
higher-level DP Go) that maintains the global distribution of word distributions.

HDP 1

Go 3

HDP 3

...... . “..

Figure 3: The association of the HDPs with the topic hierarchy. There isCd#nh &sociated with
each level. There are as many DEg)(as the documents at each level, connected to all
topics of the level. Each level also comprises a global G that is connected to all the
G; in this level.

In the proposed method (Figure 3), at each level of the hierarchyg ther DP G;) for each
document and a “global” DR3p) over all the DPs at that level. Therefore, each level of the topic
hierarchy is associated with a HDP. An important characteristic of this appris that the num-
ber of topics of each level is automatically inferred, due to the non-paranBatyesian nature of
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the HDP. In addition, it allows the topics at each level to be shared amongthengnts of the
collection. Figure 3 depicts the DPs associated with different levels of thehayarchy.

HDP 1

HDP 1

HDP 2

HDP 3 HDP 3

Figure 4: (a) hvHDP. (b) htHDP. Topics are represented as circlte word distributions as gray
boxes. hvHDP consists of topics that are both distributions over sub@miosver words.
htHDP represents only leaf topics as distributions over words.

Therefore, at each level, a HDP is assumed, according to Figure 4 vemeodeled as shown
in Figure 3. The HDP at each level is used to express uncertainty alpb#sible number of
mixture components, that is, the latent topics.

Among the models mentioned in Section 2, hPAM and hLDA are the closest Vedatof
hvHDP in terms of the representation of the corpus through an inferreartiy. They both have
internal nodes containing words. However, in hLDA a topic is not alloweldbtte more than one
parent, while in hPAM and hHDP this is allowed. On the other hand, while hPédtis the number
of internal topics to be fixed a priori, hLDA and hHDP are able to infer thalper of topics at each
level of the hierarchy, due to their non-parametric Bayesian natureeder, while the model of
hLDA requires that each document is made of topics across a specifiofgathierarchy, hPAM
and hHDP provide much more flexibility, since topics can be shared amoeg-tpgics. Overall,
hHDP combines the strengths of hPAM and hLDA, extending also the n@megdric approach
to include the estimation of the depth of the learned hierarchy, which is fuettained in the
following paragraphs.

The PAM and the non-parametric PAM models are similar to the second verkioHRP
(htHDP). The topics of the PAM models generate words at the leaf leveh@nchodels are based
on a fixed three-level hierarchy. The simple PAM model needs the nunhlremal topics to be
known a priori, while its non-parametric version uses the CRP to decide thbemof super-topics
and sub-topics. The obvious advantage of htHDP is its full non-parammetioce that does not
impose restrictions on the depth and the branching factor at each level loiEttarchy.

3.2 Estimation of the Hierarchy

Regarding the estimation of the latent structure, exact inference of trerdfigrgiven a document
collection is intractable. For this purpose we use Gibbs sampling, which climtisastiocally the
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posterior distribution surface to find an area of high posterior probabililyexplores its curvature
(Andrieu et al., 2003). Although the method of Gibbs sampling lacks thedrgtieaantees, it has
been proven to be appropriate for this type of data analysis and foringfdatent variables given
the distribution of the observations and the corresponding priors. Mfimemation about sampling
methods in machine learning can be found in Andrieu et al. (2003).

The sampling scheme of hHDP estimates both the number of topics at eackbtteé mumber
of levels of the learned hierarchy. As shown in Figure 5, starting at tlideesl, we use HDP to
infer the number of leaf topics as if no hierarchy is to be built. We then buildidratchy bottom-up
until reaching a level with a single node (the root topic). Each level is modaledHDP, estimating
the appropriate number of topics.

1Gj_(i+1)

Document Go 1
Collection T,
en & i,

Leaf topics k K_(i-1)

Iterate i times until root

Internal Topics Learned Topic Hierarchy

Figure 5: Bottom-up probabilistic estimation of the topic hierarchy: Starting witbrpus ofM
documents, the leaf topics are inferred first. The word distributions foin &saf topic
make up the observations (“documents”) for the estimation of the next lgvelThe
procedure is repeated until the root topic is inferred.

Figure 5 presents the steps of the sampling scheme. We start with the texti@o)l@dich
provides the observations, that is, the words, for the estimation. Thesveomstitute the term
space. At the first step that infers the leaf level, in a Chinese Restdtramthise analogy, we
assume that the documents correspond to restaurants and the word®toecss The next steps
differ for the two variants of h(HDP.

In hvHDP, where topics are both distributions over subtopics and ovedsythe inference
of the non-leaf levels treats topics, instead of documents, as restauféis, each inferred leaf
topic maintains a distribution over the term space as its representation. Bagigd distribution,
it is treated as an observation for the inference of the next level upinglanferred the topics
at the leaf level, we know the mixture proportions that the documents of thectiotiefollow.
Similarly, each inferred topic maintains a distribution over the term space asttiaation over the
subtopics below it, following the corresponding proportions inferredHis topic. Therefore each
internal topic maintains a distribution over words and a distribution over sigstophis procedure
is repeated until we infer a single topic, which serves as the root of tharbigt In other words,
at the leaf level we allocate documents to leaf topics, while at the intermediate Vevallocate
topics to super-topics. The sampling scheme that we propose for hvH@Rdsliked in Algorithm
1.

Therefore, the main contribution of this sampling scheme is the estimation of tHeafdtopics
from “artificial” documents that correspond to estimated topics of lower lev&lss procedure
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Data: Term - Document matrix of frequencies
Result: Estimated topic hierarchy
setM=number of documents
setV=vocabulary size
estimate leaf topick
setT =K
while| T |>1do
/I transform document space
setM =K
set inputMxV matrix of frequencies
estimate topic& of next level up

setT =K
end

Algorithm 1: Estimation of the topic hierarchy for the hierarchical vocabulary clugertaDP
method (hvHDP).

supports the non-parametric inference of the depth of the hierarclgetfier with the use of the
HDP for the estimation of the number of topics at each level, it makes the estiméatioa mpic
hierarchy completely non-parametric.

Regarding the second variant of the model (htHDP), where the intenpiaktare distributions
only over subtopics and not words, the inference procedure diffietise modeling of non-leaf
topics. Leaf topics serve now as customers, changing the term spac&imagat the same time
the restaurant space, which consists of the original documents. Asyatiges for the inference of
the next level up, we use the distributions of topics at the lower level oeeorilginal documents.
Therefore, while in the first variant of hHDP, we had a topic - term matriftefuencies as input
for the estimation of an intermediate level of the hierarchy, in htHDP, we haasament - topic
matrix of frequencies for the sampling procedure. The hierarchy estirbgiletHDP is expected to
be shallower than that inferred by hvHDP. This is because the term ispackiced when moving a
level up. The procedure is repeated until we infer a single topic, whiskesas the root topic. The
proposed sampling scheme is described in Algorithm 2.

The last step in Figure 5 shows the overall model that is estimated. A topicdiigria derived
from the corpus and a non-parametric Bayesian hierarchy is usecheiesal of the topic hierarchy.
The first h(HDP variant satisfies the criteria that we set in Section 2: intnpias are represented
as distributions over words and over subtopics, topics can share gshtdphe lower level in the
hierarchy, and topics across any level of the hierarchy are sharedgadocuments. The degree
of sharing topics across documents is expressed through the infamategters of the model, and
this sharing of topics reflects the sharing of common terminology betweembmts. The non-
parametric nature of this process is due to HDP that models each level aéthechy.

3.3 Level-wise Estimation

In hHDP, the estimation of each level is performed through posterior samgliadiDP. At each
level we integrate out all the probability measufgs the base measur€ and the tables. The
metaphor of the “Chinese restaurant franchise” (CRF) is ofter used $trédbe the sampling scheme
of the HDP. According to that metaphor, there Breestaurants and each one has an infinite number
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Data: Term - Document matrix of frequencies
Result: Estimated coarse topic hierarchy
setM=number of documents
setV=vocabulary size
estimate leaf topick
setT =K
while| T |>1do
/I transform term space
setV =K
set inputMxV matrix of frequencies
estimate topicK of level up
setT =K
end
Algorithm 2: Estimation of the topic hierarchy for hierarchical topic clustering versfdrHbP

(htHDP).

of tables. On each table the restaurant serves one of the infinitely maeg distt other restaurants
may serve as well. A customer enters the restaurant. The customer nohonbkes a table (which
corresponds to topic sampling fro@)j appearing irGp), but also chooses whether she may have a
dish popular among several restaurants (topic sharing among documents)

Based on the CRF metaphor, the collapsed sampling scheme includes onlsgngimgaf the
dishes, and the calculation of the number of tables that serve a specific dth restaurant. Thus,
the sampling of an existing topicat a specific level, given a wos; and the previous state of the
Markov chainz-ji uses Equation (1), or equivalently Equation (2). On the other handathplsg
of a new topiznew given a wordw;; and the previous state of the Markov chaiy uses Equation
(3), or equivalently Equation (4).

at,
njz+ T
nj..+a
not 2
Jz T .
t+y niz+H
p(Zji = Z‘ Wji7Lji> U n;.. +a ' n“ZIZ—l—VH (2)
o Covg— Y oW
ay 1
p(Zji = Znew‘ Wji>Lji) O (4)

(- +a)t+y) V

In Equations (1) to (4), besides the hyper-parameteandy, n;.; is the number of words in
documentj that are associated to togm,;.. is the number of words in documeptt; is the number
of tables that serve the dighandt. is the total number of tables. The factgr, emulates the draw

- , . at .
of an existing dish of restaura@;, while the factorﬁ emulates the draw of a dish from the base

L . a .
restaurang that maintains all the dishes. The fac%e% emulates the draw of a new dish from
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the global DP with hyper-parameter. Finally, @,(w;i) stands for the word distributiop(w | z).

In addition,n.; is the number of occurrences of warah topic z, n..; is the total number of words
assigned to topie, and finally,H andV are the prior DP hyper-parameter for word distributions
and the total number of words respectively.

Following the sampling of topic indicators, we calculate the number of tablesehat a spe-
cific dish at each restaurant, since we need that parameter for the sawiplopics. That is, we
calculate the factot,, which influences the likelihood of a new table in documgnta the factor

at . . . . . . .
" +Zy. We estimate this number by simulating a DP with hyper-paranseteince we are interested
in each document that is associated to a probability me#@3yrand parametex provides control

over the topic mixture. Algorithm 3 describes this process.

Data: nj.;, hyper-parametex
Result: Number of tables in documeijitserving topicz

/I'if no words exist then no tables are needed if nj.; = O then
| return O

end
/'if only one word exists, onetableis needed
if nj.; = 1then

| returnl
end
/I if morewords exist, smulate the DP
sett;=1
for all words w in[1,n;.;] do

drawrand from Random

setDRaple=0/(W+0)
if rand < DP,gpje then
| sett,=m+1
end
end
Algorithm 3: Estimation of the number of tables that serve a specific dish (topic) in estgure
rant. The parametetg n;.; are the ones used in Equations (1) to (4).

According to Algorithm 3, the estimation of the number of tables is performeddoh restau-
rant, for the customers that have been assigned to new tables, naitpnethe previous sampling
iteration. The factot, can only change when a word is assigned to a new topic. Due to the “rich
gets richer” property of the DP, some tables become unoccupied. Theprdbability that this
table will be occupied again in the future is zero, since this is proportionaj. towhich will be
zero. Therefore, when estimating a new level bottom-up, the number of tainlds to decrease. In
addition, in hvHDP, at each level of the hierarchy we transform theredetopics to documents.
This introduces a bound on the number of tables, since we decreasestiigraat space, which
in turn bounds the number of sharing components, that is, the topics. eehsads for htHDP,
where the term space is dramatically reduced at each level, placing in this stegnger bound on
the number of sharing components. For this reason, the second vdrddiDB converges faster to
a single topic, producing smaller hierarchies.
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More formally, and according to Teh and Jordan (201,03, O(alog%). SinceGy is itself a

draw from a DP, we have thit<c O(ylogy ; t;) = O(ylog(?/ Y Iog%)). AssumingJ groups, each

of average sizé&l, we have thaK € O(ylog(;Jlogg) = O(yiog?/ +y|ogJ+ongIogg). Thus, the

number of topics scales doubly logarithmically in the size of each group aadtagically in the
number of groups. In summary, the HDP expresses a prior belief thatithber of topics grows
very slowly inN.

4. Evaluation and Empirical Results

In this section, we present experiments using real data sets in order tosteate and evaluate
the proposed method. We perform experiments on two different tasksgdém t obtain a good
overview of the performance of the model. The goal is to measure how eadktimated hierarchy
fits a heldout data set of a specific domain, given a training data set ofathein and to what extent
the proposed method can be used for knowledge representation andooghrap an ontology
learning method. In particular, we divide the section into two subsections.fifldt one (Section
4.1) concerns document modeling and provides qualitative and quantitesivkts, while Section
4.2 applies the model to the task of ontology learning.

4.1 Document Modeling

Given a document collection, the task is to retrieve the latent hierarchy ioktthat represents and
fits well, in terms of perplexity, to the data set. We fit hHHDP and compare it with BD& hLDA
on various data sets using held-out documents.

In particular, we use 10-fold cross validation and report perplexityrdigidor each method.
Perplexity is commonly used to evaluate language models, but it has also sehouevaluate
probability models in general (Blei et al., 2003; Teh et al., 2006). Better mtiut avoid overfitting
tend to assign high probabilities to the test events. Such models have lowtxgras they are
less surprised by the test sample. In other words, they can predictelelobbt data that are drawn
from a similar distribution as the training data. Hence, in our evaluation soeadower perplexity
score indicates better generalization performance. Equation (5) défmegrplexity on a test set
D consisting of wordsvy, W, ..., Wy.

PerplexityD) = exp{—i;I logp(wi)} (5)

As an example of the results obtained by hvHDP, Figure 6 presents phe tHtent structure
that was discovered from the NIPS data set. The NIPS data set is antecborpus that has
been used in related work (Blei et al., 2004). It contains abstracts abtinesponding conferences
from 1987 to 1999. Specifically, the data set comprises 1732 documehi®gumme-processing took
place before the learning of the hierarchy, resulting in an unrestricteabutary of 46873 terms.
The model ran for 1000 iterations of the Gibbs sampler with fixed hypempeters. In particular,
the Dirichlet process priord andy were set to (b and 10 respectively, while the parameterof
the topic mixture was set to 1@ The values selected for the hyper-parameters are similar to the
values selected for related tasks in the literature (Mimno et al., 2007).
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Figure 6: Part of the hierarchy estimated from the NIPS data set. Theetbarararchy contains
54 topics, inferred by the hHDP model without any user-specified paeasaeThick
lines represent edges of high probability, while thinner ones stand fpgsedf lower
probability.

As shown in Figure 6, the model discovered interesting topics from the fielklea@onference.
Stop words are first grouped together at the root node representary general “topic” that con-
nects equiprobably the two topics of the conference, signal procemsthgeural networks. Taking
into account the context of the NIPS conferences, we believe that wveediscovered a rather real-
istic hierarchical structure of 54 topics that fits well the field in question.

Similarly, Figure 7 illustrates part of the hierarchy that was produced by miim corpora
together and running hvHDP on the resulting data set. In this experimenamwedvto investigate
how the mixing of documents of different domains affects the resulting loieyaand in particular to
see whether we can identify a sub-hierarchy of one domain inside the derhpearchy that was
learned. For this reason, we used 100 documents from the tourism dontaitD80 documents
from the domain of molecular biology, resulting in a total of 1100 documents.

In Figure 7 only edges of high probability are shown for clarity reasohs. tivo separate sub-
hierarchies, corresponding to the different domains are evident.ukhkisrarchy that corresponds
to the tourism data set (inside the circle in the figure) is much smaller than tha¢ dbthain of
molecular biology.

In order to obtain a quantitative evaluation of the method on document modekngsed five
different data sets. We also fitted the models of hLDA and LDA to the same éitaas well as
two other baseline models that we have implemented. The first, based on mrumitmel (UM),
is not trained and generates words following a uniform distribution, igebge of the data set.
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Figure 7: Part of the hierarchy estimated from a data set containing 0€l@sregarding molec-
ular biology and 100 regarding tourism information.

The second that we call memory model (MM), memorizes the given data defemerates words
according to the multinomial probability distribution of each document of the @dta s

The different evaluation data sets that we used are the following: (a)¢h&a@ata set,from
the domain of molecular biology, (b) the Seafood corpummprising texts relative to seafood
enterprises, (c) the Lonely Planet corguspnsisting of texts from the tourism domain, (d) the
Elegance corpu$comprising nematode biology abstracts, and finally, (e) the NIPS d&tthsét
includes abstracts from the corresponding conferences betweepdale 3987 and 1999. Table 2
summarizes basic statistics of the five data sets.

| DataSet | #Docs| TermSpace Domain \
Genia 2000 16410 Molecular biology
Seafood 156 13031 Seafood enterprises
Lonely Planet] 300 3485 Tourism
Elegance 7300 35890 Nematode biology
NIPS 1732 46873 NIPS conferences

Table 2: Data Sets

In the specific experimental setup we used the same hyper-parametatt data sets. As
mentioned above, for hHDIP} = 0.5, y= 1.0 anda = 10.0. In the case of hLDAn = 0.5 and
y = 1.0, and we varied the number of levels, while in the case of LDA, we variedtigber of
topics from 10 to 120. Figure 8 illustrates the behavior of the models in thedliffelata sets

1. The GENIA project can be found kitp://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wik i.cqi
2. The Seafood corpus can be found fatp://users.iit.demokritos.gr/ ~ izavits/datasets/Seafood_
corpus.zip

3. The Lonely Planet travel advise and information can be fouhtpafwww.lonelyplanet.com/
4. The Elegance corpus can be foundtgt//elegans.swmed.edu/wli/cgcbib
5. The NIPS data set can be foundtip://books.nips.cc
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for different numbers of LDA topics. Specifically, the figures plot theppexity of the various
models against the number of the discovered topics. In the case of hHDRriteer of topics is
inferred automatically and cannot vary with the LDA or the hLDA paramefins.hLDA model is
parameterized by the number of levels. However, when changing the nairleeels, the number
of topics also changes. The model itself decides the branching faciactatevel, and thus the total
number of topics changes. A first observation in the results that we obtaitieat in all cases, the
simple UM results in very high perplexity values, between 2500 and 45000vthdo not depict
in Figure 8 for reasons of readability of the graphs. Moreover, the Mkgoms worse in general
than the rest of the models.

In order to interpret the different results obtained in the five differenié gets, we measured
the heterogeneity between the training and the held-out data in each case.spécifically, we
measured the difference in the distribution of words between training ddebbédata, using the
mean total variational distance (TVD) (Gibbs and Su, 2002), accordigguation (6). The higher
the TVD, the bigger the difference between the training and the held-outaele 3 presents the
results of this measure in terms of the mean TVD in a 10-fold cross measurebBaesetd on these
figures, the Genia data set seems to be the most homogeneous, while NP asth

TVD=2 5 Ipli)~ali) | ©

] Data Set \Mean TVD\

Genia 1.2x10°°
Seafood 35%10°°
Lonely Planet| 2.2+107°
Elegance | 3.8x107°
NIPS 52%10°

Table 3: Mean Total Variational Distance between the training and the heldaots of the data
sets.

Additionally, in order to validate the graphs of Figure 8, we measured théfisarce of the
results, using the Wilcoxon signed-rank test. This test is suitable for thiskiexpberiment, since it
is non-parametric and does not assume that the samples follow a specifibutitr In particular,
we performed the test for the mean perplexity values, for each value ofutheer of topics. Ac-
cording to the test, the perplexity of a model is significantly lower than thatathan model, if the
output probability of the test is below@b, which is a threshold that is commonly used in statistical
analysis.

In all data sets, the most interesting comparison is that between hHDP aid fhDs, Table 4
depicts the ranges of topics for which the proposed model performs sagttlff better than the
one of hLDA and the one of LDA. These ranges are also marked or #xé& of Figure 8 in all
diagrams.

Examining the results on the Genia data set (Figure 8a), the lowest perpteaithieved by
hvHDP, while hLDA approaches the same perplexity for a number of topazsnd 60. LDA and
htHDP obtain higher perplexity.
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Figure 8: The behavior of the models on the five different data sets in ténpesmexity. The mod-
els: hvHDP, htHDP, hierarchical Latent Dirichlet Allocation (hLDA), LateDirichlet
Allocation (LDA), and Memory Model (MM). Diagrams (a)-(e) illustrate therplexity
of the models for the Genia, Seafood, LonelyPlanet, Elegance and MiBSets respec-
tively. Topic ranges where statistically significant improvement over existindels is

achieved are marked on thexis.
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| Comparison| Genia | Seafood| LP | Elegance| NIPS |
hvHDP 1-120| 1-40 1-50 1-20 1-30
hLDA 90—-120| 90—-120| 110—-120| 100-120
hvHDP 1-120| 1-120 | 1-120 1-50 1-120
LDA 100-120

Table 4: Significant differences between hvHDP and hLDA and betwgeiDP and LDA in all
corpora. Each cell presents topic ranges for which hvHDP perfoigngisantly better
than hLDA or LDA.

The comparison between hLDA and hvHDP showed that for all the caigis imhata set, hvHDP
obtains significantly lower perplexity values (Table 4).

Regarding the Seafood data set (Figure 8b), hLDA and LDA catch uphwHbDP after 40 and
60 topics respectively. htHDP also achieves good performance in tlisRagarding the statistical
significance of the differences, Table 4 validates that hvHDP perfoettsrtihan hLDA for a range
of topics between 1 40 and between 990 120.

In the LonelyPlanet data set (Figure 8c), only hLDA manages to apiptbagood performance
of hvHDP for a number of topics between 6@0 (Table 4). The LDA and htHDP models perform
worse. The htHDP is again much worse than the first variant of hHDP.

Concerning the Elegance data set (Figure 8d), all models, besides ¢hiya similar perfor-
mance within a specific range of topics (50 to 120). Furthermore, this is flgedata set where
hLDA and LDA are observed to achieve better results than hvHDP, thoagstatistically signifi-
cant and for a very small range of topics (around 80).

Finally, in the NIPS data set, (Figure 8e), hLDA and LDA manage to equdDi/for a certain
range of topics and present a better performance than htHDP in a laggeagtopics. For this data
set, the statistical test showed that hvHDP is better than hLDA in the rang8Q@nd 100- 120
topics and better than LDA in the whole range of topics, although for a cedage both models
achieve similar perplexity values. On the other hand, the second verdibtlf® outperforms only
LDA between 10 and 20 topics.

The results illustrate clearly the suitability of hHDP for document modeling taskiisdovers
a hierarchy that fits well the given data sets, without overfitting them, thhis\dang low values of
perplexity. The competing models of hLDA and LDA manage only at their besgaoh the per-
formance of the proposed model. Furthermore, the performance ofriimdels seems to be very
sensitive to the chosen number of topics (number of levels in the case &)hIbis observation
makes the non-parametric modeling of h(HDP particularly important. Comparibg . the sim-
ple LDA, it is also quite clear that the hierarchical modeling of topics addsfiignt value to the
model.

Regarding the naive UM and MM models, these are only used as baselithdsey perform
poorly. The experiments show that an overfitted model, such as MM, has éwlictive performance
outside the training set. On the other hand, a uniform model is not able taipaédll the test set,
achieving the worst results.

A final important observation that is not evident in the numeric results, iddhatlarge num-
ber of topics, hLDA tends to construct a single path, rather than a higraRerhaps this can be
attributed to the difficulty of identifying sufficiently different topics at varsdevels of abstraction,
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when requesting a large depth for the hierarchy. By assigning all topicsitmle branch, the model
becomes equivalent to LDA. When this happens, the perplexity value biktheodels is also very
similar. The Wilcoxon statistical tests have indicated that in the Elegance datadstdr a number

of topics around 80, hLDA does not perform significantly better than | DAile in the NIPS data

set, the same situation holds for a number of topics between 50 and 100.

Perplexity has been criticized, since it is mainly used for the evaluation of égegonodels. In
addition, recent advances in topic modeling evaluation suggest the usbiabad assessment of
topic models. For this reason, we decided to conduct an additional experimeasuring the log-
likelihood of these models using the left-to-right sequential sampler (Buntd@®)2 This sampler
improves on the algorithm proposed in Wallach et al. (2009), by providirgased estimates of
the model likelihood for sufficiently large sample sizes. Since hvHDP, hLD@ [2DA achieve
the best results in terms of perplexity, we compare these models. Having thesniaihed on a
portion (90%) of the data sets, we calculate the log-likelihood of the models oertraning 10%
that constitute the held-out data, using 10-fold cross validation. Figuresgpts the results of this
experiment, in terms of the mean log-likelihood.

The main result shown in Figure 9 is the same as in Figure 8. hHDP outpertberather
methods with statistical significance in most cases. The other methods, dgpad®, approach
the performance of hHDP if the right number of topics is chosen somehberelore, the experi-
ment has confirmed the value of estimating the number of topics and the depghheétarchy in a
completely non-parametric way.

As an additional experiment on the task of document modeling, we assbgsealility of the
method to estimate a known hierarchy, which is used to generate a set ofielutsu In particular,
based on the hierarchy inferred for the Seafood data set, we gaharsé¢ of documents with the
same average length as the original data set. Thus, we started at thedeatfrthe hierarchy, and
traversed it stochastically, based on the parameters of the model, whitle am@babilities of each
subtopic. When reaching a leaf topic we chose a word to be generatedliagcto the probability
distribution of that topic. In this manner, we generated a total of 156 dodsmas many as the
original data set, exhibiting similar word distributions. Then, we ran hvHDiisfartificial” data
set, estimating a latent hierarchy, which we compared manually against thesethi¢o create the
data set. From this comparison we concluded that all the topics of the estinetdhy have been
correctly inferred. However, the estimated hierarchy comprises fewarstoa fact that in terms of
guantitative results implies a drop in recall.

4.2 Ontology Learning

The aim of this experiment was to validate the suitability of the proposed methtitkaask of
ontology learning. The vocabulary clustering version of hHDP (hvHEB$t)mates topics that are
defined as distributions over words. It is, therefore, of particularésteio investigate how close
these distributions are to a gold-standard hierarchy, given the conéisyy data set. Such an ex-
periment would highlight the potential of the method in other domains, such@asated ontology
construction, and would provide qualitative and quantitative results degpthe performance of
the method. In this experiment, we also compare hvHDP with hLDA.

Ontology learning (Gomez-Perez and Manzano-Macho, 2003; MaettwhStaab, 2003) refers
to the set of methods and techniques used for either building an ontolagysiatch, enriching,
or adapting an existing ontology in an automated fashion, using variousesoaf information.
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Figure 9: The behavior of the models (hvHDP, hierarchical Latent DetcAllocation (hLDA),
and Latent Dirichlet Allocation (LDA)) on the five different data sets in tewh$og-
likelihood. Diagrams (a)-(e) illustrate the perplexity of the models for the G&aiafood,
LonelyPlanet, Elegance and NIPS data sets respectively.
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This task is usually decomposed into three steps: (a) identification of topicbuilding of the
hierarchical backbone, and (c) enriching with further semantic relati@egarding the sources of
information, we focus here on text collections.

Both hvHDP and hLDA can be used to perform the first two steps of thdagydearning
process, that is, identification of concepts and hierarchy construgiieen the data set. Thus,
we merge the aforementioned two steps into one, and we assume that the edtitesitebpics
correspond to ontology concepts. Therefore, in this task, we conattapic ontology from scratch
that comprises only hierarchical relations, given a collection of text miecits and we compare it
to a given gold standard ontology.

For this purpose, we use the Genia and the Lonely Planet data sets amdrésponding on-
tologies, which serve as gold standards for evaluation. The Genia optwdogprises 43 concepts
that are connected by 41 subsumption relations, which is the only type tibretanong the con-
cepts. The Lonely Planet ontology contains 60 concepts and 60 subsomghittons among them.
For our experiments, the only pre-processing applied to the corpus wasave stop-words and
words appearing fewer than 10 times.

The estimation of the hierarchy was achieved through 1000 iterations ofthhs €&mpler with
fixed hyper-parameterid = 0.5 andy = 1.0 for the Dirichlet priors andx = 10.0 for the topic
mixture. The evaluation was performed using the method proposed in Zastsaal. (2010). This
method is suitable for the evaluation of learned ontologies, since it repsetbenconcepts of the
gold ontology as multinomial probability distributions over the term space of teardents and
provides measures in the closed interval of [0,1] to assess the quality lefitmed structure.

In particular, the evaluation method first transforms the concepts of theogtitbgy into prob-
ability distributions over the terms of the data set, taking into account the cariteath ontology
concept. In a second step, the gold ontology is matched to the learnecchyedaased on how
“close” the gold concepts and the learned topics are. The final evaliati@sed on the measures
of P andRthat evaluate the learned hierarchy in the spirit of precision and respkctively, as well
asF that is a combined measure BfandR. The corresponding formulae are given in Equations
(7), (8) and (9).

1 M
P~ 2 (1~ SD)PCR (7)
1 M
R= 2 (1~ SD)PCR (®)
_ (BP+1)P«R
"R P ©

In Equations (7) - (9)M is the number of matchings between learned topics and gold concepts

andSDis a distance measure between concepts, rangif@yih Specifically, the total variational
distance (TVD) (Gibbs and Su, 2002) of Equation (10) was used teadse similarity between
topics and gold concepts.

TVD= !

NI

S | P(i)—Q(0) | (10)
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In Equation (10)P(-) andQ(-) are multinomial probability distributions over words that repre-
sent a gold concept and a learned topic. The estimated topics are akepaelyented as multinomial
probability distributions over the term space of the data set, while the corafaptsgold ontology
are also transformed into multinomial probability distributions over the same texoe sphus, the
comparison between topics and gold concepts becomes straightforward.

The matching scheme compares the distributional representations of togigeldnconcepts
and finds the best matching in the sense that the most similar word distributiomsgy dheotwo
hierarchies will be matched. More details about how the matching is perfocaretbe found in
Zavitsanos et al. (2010). THeCP and PCR (probabilistic cotopy precision and recalfactors
in Equations (7) and (8) respectively, are influenced by the notionrofestc cotopy (Maedche
and Staab, 2002). The cotopy set of a con€s the set of all its direct and indirect super and
subconcepts, including also the conc€ptself. Thus, for a matching of a topicT in the learned
ontology and a conceftin the gold ontologyPCR is defined as the number of topics in the cotopy
set of T matched to concepts in the cotopy se€Cotlivided by the number of topics participating in
the cotopy set of . For the same matchingPCR is defined as the number of topics in the cotopy
set of T matched to concepts in the cotopy se€otlivided by the number of topics participating in
the cotopy set of.

Values of theP, RandF measures close to 1 indicate that the resulting hierarchy is close to the
gold ontology, while values close to 0 indicate the opposite. Finally, wg sel in Equation (9),
hence using the harmonic meanRandR.

Figure 10 depicts a part of the gold ontology on the left and a part of theaed hierarchy on
the right. The labels on the latent topics of the learned hierarchy comdd¢pahe best TVD match
of each topic with a gold concept. As it is shown in the figure, hHDP estimateerarthy very
close to the gold standard. Thin edges between topics represent retidtlonsprobability, while
thicker edges carry higher probability.

Part of Genia Ontology Part of estimated hierarchy

Compound

Amino_acia Nucleid_acid

compound

Peptide Protein

Amino_acid
monomere

DNA Nucleotide  Polynucleotide RNA

Peptide

Figure 10: Part of the Genia ontology on the left and part of the estimateakttiy on the right.
The labels on the topics of the learned hierarchy correspond to the bttt aiaach
topic to a gold concept, according to TVD.

Regarding the estimated hierarchy, it comprises 38 topics in total, while the grlthgy com-
prises 43. Recall from Section 3 that the method estimates a probability distnifoitieach topic
over all topics of the next level. Hence, we expect to learn a hierarcimpdsing more relations
than the gold ontology. However, relations with low probability, as the onpietdel with thin lines
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in Figure 10, can be ignored. In addition, the way the hierarchy is estimtedigh Gibbs sam-
pling, infers the probability distributions, based on the assignments of wotdpics and topics to
subtopics. Through sampling, it is possible for fragments of documents betallocated to every
estimated topic, and for subtopics not to be allocated to every super-tdpgleads to some zero
values in the probability distributions of topics. Therefore, there exiggcadere the probability
of an edge in the resulting hierarchy may be zero. This fact provides #exibility to the method,
since it permits the construction of unbalanced hierarchies and pruges ttht are definitely not
necessary.

In the general case though, the learned hierarchy is expected to hawedyes than the gold
ontology has. Therefore, pruning mechanisms may be of particular imperfan the task of
ontology learning.

In the case of the Lonely Planet data set, hvHDP estimated a smaller hiethachthe gold
standard, achieving lower quantitative results in terms of P, R and F. Theullif in estimating
a hierarchy of similar size to the gold standard is due to the nature of the daads¢he gold
ontology. In particular, half of the gold concepts had only one instanderageneral, most of the
concepts were insufficiently instantiated in the data set.

Regarding hLDA, in the case of the Genia data set, the best quantitatiles n@sre obtained
for an estimated hierarchy of depth equal to 6. In this case, hLDA paddrsimilarly to hHDP in
terms of P, R and F. However, in the case of the Lonely Planet data setrfoenpance of the model
was poor. In particular, the best quantitative results were obtainedfestamated hierarchy of 3
levels. However, these results are much lower than that of hvHDP foathe data set.

Table 5 presents the quantitative results of the experiments, in terms of B R fam both
hHDP and LDA. For the proposed method, two cases are foreseenfir§thease concerns the
evaluation of the learned hierarchy as is, without any post-processhmperformance of hHDP
is low, because the evaluation method is rather strict. The evaluation methsdhaotke into
account the probabilities on the edges connecting a topic to all its sub-tbpicsather assumes
that all edges are of equal importance and penalizes the learned hyef@aris high connectivity.

Therefore, through this first evaluation, we conclude that the origingth\nconnected hierar-
chy may not be usable as is. For this reason, we include another setlwhton results in Table 5
that we call “pruned.” This is actually the same method without the low probabdlgtions be-
tween the topics. In particular, we keep relations with probability higher than The pruned
hierarchy is significantly closer to the gold standard than the unpruned one

] | Genia |  LonelyPlanet |
Method P R F P R F
hHDP 0.65| 0.60| 0.624| 0.22| 0.15| 0.17

hHDP-pruned| 0.88| 0.80| 0.838| 0.35| 0.23| 0.27
hLDA 0.62| 0.55| 0.58 | 0.07| 0.01 | 0.017

Table 5: Quantitative results for the task of Ontology Learning.

In summary, we conclude that hvHDP can be applied to the task of ontologyirigawith
promising results. Its ability to identify topics and at the same time build the taxonomkbbiae
can facilitate the learning of ontologies in a purely statistical way, providingveegful tool that
is independent of the language and the domain of the corpus. The ptbpeethod discovered
correctly the majority of the identifiable gold concepts in the experiment arstreaed a hierarchy
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that is very close to the gold standard. Furthermore, it constructed theaiyoand inferred the
correct depth without any user parameters (except the pruning tidgsh a statistical way and
without any prior knowledge.

5. Conclusions

We have introduced hHDP, a flexible hierarchical probabilistic algorithiitalsle for learning hi-
erarchies from discrete data. hHDP uses the “bag-of-words” septation of documents. The
method is based on Dirichlet process priors that are able to expregsaimiyeabout the number of
topics at each level of the hierarchy. We have also presented a bottommgarametric discovery
method for the latent hierarchy, given a collection of documents. Sincd a¥arence is known
to be intractable in such non-parametric methods, approximate inferenqeeviasmed, using the
Gibbs sampling method, which provided accurate estimates.

An important contribution of this paper is the inference of the correct nuwi®pics at each
level of the hierarchy, as well as the depth of the hierarchy. Its Bayasa-parametric nature
requires no user parameters regarding the structure of the latentchierathe Dirichlet process
priors, as well as the bottom-up procedure for the estimation of the higrgrabvide a flexible
search in the space of different possible structures, choosing thbanmaximizes the likelihood
of the hierarchy for the given data set. Moreover, hHDP does not iew@ssrictions and constraints
on the usage of topics, allowing multiple inheritance between topics of difflerggrs and modeling
the internal nodes as distributions of both subtopics and words.

We provided extensive experimental results for the proposed method uiiffexent evaluation
scenarios: (a) document modeling in five real data sets, comparing bsfaitesof-the-art methods
on the basis of perplexity, and (b) applying the method to an ontology leataskgcomparing the
learned hierarchy against a gold standard. The evaluation showdtHbé is sufficiently robust
and flexible. The proposed method discovered meaningful hierarahieftid well the given data
sets. Finally, we have concluded that such methods are suitable for thef tastology learning,
since they are able to discover topics and arrange them hierarchicallway that is independent
of the language and the domain of the data set, and without requiring amkpawledge of the
domain.

The very promising results that we obtained in this work, encouraged usdp and improve
hHDP further. One possible improvement is the use of Pitman-Yor pragesheh are generaliza-
tions of Dirichlet processes and produce power-law distributions. Hamguage text is known
to follow such distributions and therefore we may be able to model documenésancurately. In
addition, we intend to apply the method to different tasks, including the leaaififglksonomies
from user-generated tags. Also, due to its statistical nature, it would lvestitey to evaluate hHDP
on different types of data sets, including images, time series and everadly,Famother future di-
rection is to bootstrap hHDP from an existing ontology and infer the remairangnpeters using
the corresponding data set.
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