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Abstract

During the last two decades� there has been a signi�cant research activity in
Machine Learning� which has mainly concentrated on the task of empirical concept
learning� This method of learning involves the acquisition of knowledge from a
set of examples� the training set� using generalisation techniques�

The task of empirical concept learning can be thought of as being equivalent
to the classi�cation task� previously performed by statistical techniques� Despite
the existence of a large number of problems which can be considered classi�cation
tasks� ML techniques have not been widely applied to real�world problems� One
of the possible reasons for this is that learning programs cannot handle large�scale
data� used in real applications�

Considering that possibility� the presented thesis examined the scalability of
�ve concept�learning algorithms� de�ning scalabilty by the e�ect that an increase
in the size of the training set has on the computational performance of the al�
gorithm� The programs that were considered are� NewID �Niblett� ��
��� C��
�Quinlan� ������ PLS� �Rendell� ��
�a�� CN� �Clark and Niblett� ��
�� and AQ�
�Michalski et al�� ��
���

The �rst part of the project involved the theoretical analysis of the algorithms�
concentrating on their worst�case computational complexity� The obtained results
deviate substantially from those previously presented �e�g� �O�Rorke� ��
�� and
�Rendell et al�� ��
���� providing over�quadratic worst�case estimates�

The second part of the work is an experimental examination� using real and
arti�cial data sets� Two large real data sets have been selected for that purpose�
one dealing with letter recognition and the other with chromosome classi�cation�
The experiments that were done� using those two sets� provide an indication
of the average�case performance of the programs� which is signi�cantly di�erent
from the worst�case one� The arti�cial data set� on the other hand� provides a
near�worst case situation� which con�rms the obtained theoretical results�

The results of the theoretical and experimental analyses show that� although
their worst�case computational complexity is over�quadratic� most of the exam�
ined algorithms can handle large amounts of data� Those which had di�culties

��



did not do so because of their order of complexity� but because of their standard
computational �unit�cost�� which a�ects signi�cantly their performance� The
size of the training set is only one of the parameters a�ecting scalability� The
examination of other factors �e�g� the complexity of the learning task� is equally
interesting�
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Chapter �

Introduction

During the last two decades� there has been a signi�cant amount of research
activity in ML� which has mainly concentrated on the task of empirical concept�
learning� This method of learning involves the acquisition of knowledge from a
set of examples� the training set� using several generalisation techniques� The pre�
sented thesis examines the scalability of �ve concept�learning algorithms� where
scalability is de�ned by the e�ect that an increase in the size of the training set
has on the computational performance of the algorithm� This chapter introduces
brie�y some important aspects of Machine Learning �ML� and outlines the aims
of the project�

��� De�nition of Learning

One of the sources of di�culty when trying to set the objectives of Machine
Learning �ML� is the de�nition of learning� The concept of learning is rather
abstract and those who have tried to de�ne it �philosophers� psychologists� AI
workers� etc�� have usually only managed to uncover one of the many �faces� of
the complicated process�

However� there are some aspects of learning which have been agreed upon
by most of the people who have dealt with the problem and these provide� for
many purposes� a good description of the process� Some of those aspects are the
following�

� There is always a system that is able to improve itself� manipulating infor�
mation� provided by its environment�

� The information provided to the system can usually take more than one
form and the system has more than one way of changing its current state

��
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�i�e� there is more than one type of learning��

� The system is usually able to remember and recall things that it has expe�
rienced�

This general description of learning however does not contain much informa�
tion about the way in which the process is achieved and the elements into which
it can possibly be decomposed� It is on those aspects of the learning process that
the opinions of di�erent researchers are diverge�

��� The objectives of ML

Bearing in mind the diversity of opinions as to what learning is and how it can
be achieved� one can understand the di�culty in de�ning the purpose of ML and
setting some clear�cut objectives for it� Thus� although the main idea is well�
de�ned �i�e� man�made systems that are able to learn�� di�erent groups of people
have approached ML di�erently� In doing that� they have each set their own
expectations about the outcome of ML�

Thus one can distinguish between the following views of ML�

�� The Philosophical view

The main concerns of philosophers about ML are�

whether arti�cial learning systems can be produced�

what is the purpose of learning in human beings

and what would be the consequences of developing learning machines�

�� The psychological view

Psychologists �Cognitive Scientists� are interested in the mental processes
involved in human learning� They would like to be able to model or mimic
them� using machines� in order to enhance their understanding of learning�

�� The neurophysiological view

Learning is one of the most complicated functions of the brain and phys�
iologists who are dealing with it are very interested in implementing their
ideas� using machines to produce brain�models and observe their behaviour�
A successful product of this research is Neural Networks �NNs�� which are
brain�model based learning systems�

�� The Arti	cial Intelligence �AI view

AI workers are interested in developing arti�cial learning systems� since
learning is one of the most important intelligent processes� The way in
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which they are trying to achieve their target is not limited to models of
human learning processes� although these provide good guidance for their
research�

� The engineering view

From an engineering �and�or business� point of view� learning machines
might prove to be the solution for some of the problems of current informa�
tion systems� One might expect that adaptive and self�improving systems
would increase the e�ciency and decrease the e�ort that has to be made
by humans� in several tasks �e�g� prediction� diagnosis� etc���

These views overlap in many ways� For example� work in AI incorporates
philosophical� cognitive and physiological ideas and at the same time its products
are sometimes business�engineering�oriented� Another example is the use of NNs
for practical applications�

��� Approaches taken so far

Due to the variety of objectives set for ML� a number of di�erent approaches
to learning systems have emerged� These approaches could be classi�ed in the
following three types�

�� Brain�modelling

This was one of the �rst approaches in ML� It was based on the theory of
cybernetics and neurobiological brain�models� producing highly�connected
�neural structures�� that interacted with each other in a near�random fash�
ion� similar to the way that the brain was thought to work�

Originally this approach was not successful� but recently similar approaches
have regained popularity� producing systems �NNs� that are much less am�
bitious than their predecessors �i�e� they are set to solve speci�c tasks�
rather than achieving general�purpose learning� and which have had some
positive results�

�� Learning algorithms

The bulk of the work in what is called symbolic ML� which is the classical
AI approach to learning� was done on individual algorithms� using many
di�erent methods� in order to achieve learning� Most of those algorithms
fall under one of the following categories�

� Learning by deduction�
This type of learning algorithm assumes a large amount of background
knowledge about the problem� which it analyses� deducing rules and
models that can be used later to solve speci�c problems�
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� Learning by analogy�
Algorithms falling into this category also assume some general back�
ground knowledge� which is usually provided in the form of example
situations� followed by corresponding explanations� The system struc�
tures this information in such a way as to be able to use it to explain
new experiences� In other words there is a mapping of new informa�
tion onto what is already available in the system� causing a continuous
extension of the system�s knowledge�

� Learning by induction�
This is the type of learning that has been paid the most attention�
Algorithms falling under this category learn by generalising on speci�c
examples �the training set�� using a number of di�erent generalisation
techniques� No initial knowledge is assumed as the system extracts
information from the training set in a near�statistical way� Empirical
concept learning� which will be further discussed in chapter �� belongs
to this category�

�� Application�oriented learning systems�
Some of the practical problems that have been attacked by ML are the
following�

� Knowledge Acquisition �KA for Expert Systems �ESs

KA is one of the most di�cult tasks in building an ES� due to the fact
that experts have large amounts of knowledge which they �nd di�cult
to transfer� On the other hand� in many cases large pools of past
data are available� which can be used for the extraction of information
about the problem� One way to acquire information in this case is to
use inductive learning systems�

� Adaptive and Self�improving Systems

There is a number of situations where a system is required to adapt
its knowledge according to new data that become available� This
means either an improvement in the system�s performance �e�g� self�
improving ESs� or adaptability of the system to changing circum�
stances �e�g� adaptive control systems�� The initial knowledge� in
this case is either directly provided to the system or induced from
examples by the learning program itself�

� Forecasting Systems

Forecasting systems that have been produced are mainly at an experi�
mental stage� they make use of learning systems that induce forecasting
rules based on past data� Examples of situations where such systems
could be used are� weather� economic and business forecasting�

� Pattern Recognition Systems

Pattern Recognition systems are also at an experimental stage and are
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mainly used in Machine Vision systems� where patterns and objects
need to be recognised in di�erent situations� NNs are the main method
used for this purpose� replacing traditional statistical classi�cation ap�
proaches�

Experience with ML applications has shown that in many cases a single learn�
ing algorithm cannot provide an adequate solution to the problem� As a result�
some of the recent research in ML has been oriented towards systems that com�
bine more than one learning method� This is what is called multi�strategy learning
and has become very popular lately�

��� Motivation for the project

The task of empirical concept learning can be thought of as being equivalent
to the classi�cation task �see section ����� previously performed by statistical
techniques� Since there is a large number of problems which can be considered
to be classi�cation tasks� one would expect ML techniques to be widely applied
to real�world problems� However this is not the case� There are only a few real�
world applications of ML and most of them are not large�scale ones� There are a
number of possible reasons why this happens�

�� ML techniques do not provide adequate solutions to real�world problems�

�� Statistical classi�ers achieve a better performance than the classi�ers gen�
erated by ML programs�

�� ML algorithms make assumptions about the structure of the problem and
the provided data that do not hold in real problems�

�� ML algorithms cannot be applied to large�scale data�

� The existing ML programs have not been designed to handle large�scale
data�

In the �rst few years of ML research� most of the above claims were true� However�
subsequent research has led to the improvement of learning systems� overcoming
most of these problems �see section ���� One problem to which little atten�
tion has been paid is the behaviour of learning algorithms on large�scale data�
There have been analyses and comparisons of ML algorithms in the past �e�g�
�O�Rorke� ��
��� �Gams and Lavrac� ��
	�� �Rendell et al�� ��
���� but none has
looked in detail at the scalability of the algorithms�

The aim of the project was to address this neglected issue� examining the truth
of the last two of the above list of claims about ML algorithms and programs�



CHAPTER �� INTRODUCTION ��

For this purpose �ve ML programs were selected� which perform similar types of
learning �i�e� empirical concept�learning� and their behaviour was analysed both
theoretically and experimentally� The theoretical analysis involved a thorough
analysis of the computational complexity of the programs� providing a worst�case
estimate of their performance on di�erent scales of data� The experimental in�
vestigation examined the behaviour of the programs when applied to data sets of
varying scale� Three data sets were used for this purpose� two real and one arti�
�cial� By combining the results of the theoretical and the experimental analyses
a complete picture of the scalability of the algorithms was formed�

��� The Structure of the Thesis

Following this brief introduction to ML and the objectives of the project� chap�
ter � takes a closer look at inductive learning concentrating on empirical concept�
learning� It �rst presents the supporting theory for this type of learning� linking
it to the problem of classi�cation� then gives a brief account of the di�erent ap�
proaches to classi�cation� ranging from statistical methods to genetic algorithms�
Following this account� two symbolic learning algorithms are examined� which
have been the centre of most of the research activity in the �eld� Finally� a brief
review of the work in Computational Learning Theory� a rapidly growing research
area in empirical concept�learning� is given�

Chapter � presents the theoretical analysis of the �ve algorithms� For each
of the algorithms the following information is provided�

�� A description of the algorithm� focusing on its peculiarities�

�� The design of the algorithm�

�� A detailed worst�case computational complexity analysis�

Chapter � describes the experiments and presents their results� The results
are also statistically analysed� to allow the comparison of the algorithms� relative
performance and the validation of the theoretical estimates� presented in the
previous chapter�

Finally� chapter � summarises the results presented in the thesis and draws
conclusions about their importance in the context of the scalability problem�
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Theory of Inductive Learning

��� Introduction

One of the main research areas in ML and the one that this thesis concentrates
on is inductive learning� Inductive learning involves the use of inductive infer�
ence for the acquisition of knowledge from experience� It has attracted most of
the research done in ML �see �Winston� ��	�� �Quinlan� ��
�a�� �Mitchell� ��		���
resulting in the development of many interesting techniques� Some of those tech�
niques will be described later in this chapter�

The task that is usually set in inductive learning is the acquisition of concepts
from examples �empirical concept�learning�� In empirical concept�learning� the
system is provided with a set of positive and negative examples of a concept� as
described by a set of features� which can take a range of values� For example� one
may describe the concept of a bird by the number of wings� the number of legs�
the size� the �ying ability� etc� In this case� some of the positive examples of the
concept will be the following �

no
 of wings no
 of legs size �y
� � small yes
� � big yes
� � big no

while some negative ones could be �

no
 of wings no
 of legs size �y
� � small yes
� � big yes
� � small no

��
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The outcome of concept�learning is a concept�description�concept�function�
which is able to discriminate between objects that are instances of the concept
and those which are not� based on their feature�values� This task is also called
object�classi�cation and it has been an active area of research in statistics� Its
�elds of application include diagnosis �e�g� medical�� forecasting� decision�making�
etc�

Real�world applications of learning systems are more demanding than the toy�
problem described above� As a result� a number of extensions have been made to
the basic model� in order to make it more widely applicable� The most common
extension is the use of multiple concepts �or non�binary classes�� In this case more
than one concepts need to be distinguished from the same data� while in some
cases a continuously�valued class is used �i�e� an �in�nite� number of concepts��
Examples of such learning problems is the diagnosis of di�erent types of diseases
and the forecasting of the closing price of a currency��

Another major extension to the basic concept�learning model is  unsupervised
learning�� In this case the objects that are provided for training are not preclassi�
�ed and the learning system is required to cluster them into groups which share
common features� This is a more di�cult type of learning �also called discovery��
because the selection of important classi�cation features is not aided by the pre�
classi�cation of the training instances� An application area where such problems
are common is  object identi�cation� in Machine Vision�

This thesis examines supervised learning techniques in multi�concept learning�

��� Induction as a Search

Provided a set E of positive and negative examples of a concept c� an inductive
learning system is required to form a hypothesis H �based on E�� that will contain
the main features of the concept and will correctly distinguish between instances
and non�instances of it� This process can be thought of as a search through a
state space� where the states are all the possible hypotheses that correspond to the
given attribute �feature� set and the goal is the hypothesis that best describes the
concept� The operators that lead the search through this space are the inference
rules incorporated in the learning algorithm�

�Notice that the term classi�cation suits better to those types of learning tasks� since there
is really one class that can take more than one values� rather than many di�erent concepts�
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����� The Goal� Hypothesis

The learning system is asked to induce a hypothesis that will be complete and
consistent with the example set� This means that it has to cover all the posi�
tive and exclude all the negative examples� Using Michalski�s �Michalski� ��
��
formulation� the following conditions have to hold�

�i � I� �Ei � Di� �the completeness condition�

�i� j � I� �Di � �Ej� if j �! i �the consistency condition�

where I corresponds to the number of class�values� Di is the induced hypothesis
for ith class and Ei is a description satis�ed only by the positive events of the
class�

In some cases there will be clashes between instances in the training set� caused
usually by noisy data� In that case either the completeness or the consistency
condition is relaxed� in order to resolve the contradiction� For most non�noisy
training sets however more than one hypotheses is expected to satisfy the two
conditions� The choice of the �nal hypothesis depends on the learning algorithm
and the search operators that it uses� In this respect there are two main types of
learning algorithms� which correspond to the two extreme cases �

� characteristic learning algorithms
� determinant learning algorithms

Algorithms falling under the former category search for a typical description of the
concept that will contain as much information as possible� This is called  maximal
characteristic descriptor�� These of the latter type aim at a hypothesis that will
correctly discriminate between positive and negative instances and will be of
minimal information content� This is called  minimal discriminant descriptor��
Between these two extremes there are a number of concept learning algorithms�
which also make use of other criteria in deciding for the �nal hypothesis� Such
criteria might be the simplicity of the hypotheses or the preference of certain
attributes against others�

����� The Search Space� Hypothesis Space

The nature �i�e� size and complexity� of the search space is determined by the
following two factors�

� The Attribute Set


� The Description Language
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The Attribute Set

Firstly� the type and the domain of the attributes that describe the concept a�ect
the size of the search space� One usually distinguishes between three types of
attributes�

� Nominal attributes
These are the ones that take nominal values�
�e�g� size ! big or normal or small��

� Numeric attributes
These take numeric values� which will usually be either integer or real
�e�g� length ! ��

� Tree�structured attributes
These are the ones that can be organised hierarchically�
�e�g� �gure ����

Polygon

Triangle Square Pentagon Ellipse Circle

Shape

Ellipsoid

Figure ���� An example of a tree�structured attribute� In this case shape can take
the values� polygon� triangle� square� etc�
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On the other hand� the domain of the attribute gives some information about
its �meaning� and can be used to restrict the search space� For example a range
can be speci�ed for a numeric attribute and�or the interval between the values
that it can take�

Moreover� the relevance of the attributes to the problem a�ects the complexity
of the learning task� The existence of many irrelevant attributes is a type of noise�
which will cause signi�cant deterioration to the performance of most inductive
learning algorithms� In most cases however the learning algorithm is able to dis�
card irrelevant attributes by examining the training data� This type of induction
is known as selective concept learning �examples can be found in �Michalski� ��
��
and �Quinlan� ��
�a�� and is the one most commonly met in the ML literature� A
di�erent type of learning� which requires a more complicated inductive procedure�
is constructive concept learning �see �Rendell� ��
�� �Hong et al�� ��
���� In this
type of learning� the attributes are assumed to contain less encoded knowledge
and better performance can be achieved by combining them in several ways� A
simple example of this would be the concept  right�angled triangle�� for which the
length of its sides is given� Although one cannot classify a shape as a  right�angled
triangle�� by considering the length of each side individually� one can calculate
the squares of the given lengths and compare the sum of the two shorter ones
with the third to decide whether the triangle is right�angled�

The Description Language

The language that is used for building hypotheses� by combining attributes� also
a�ects the size and the complexity of the space� The more expressive the language
is� the larger the number of hypotheses that can be induced and the larger the
search space� There are various di�erent representation schemes that have been
examined in concept�learning and classi�cation research� resulting from di�er�
ent approaches to the problem �e�g� Statistical Classi�cation� Neural Networks�
Symbolic Learning� etc�� see next section�� The �eld of Computational Learning
Theory examines the complexity of di�erent types of concepts and the extend to
which each of these is learnable �section �����

����� The operators

Inductive learning is mainly based on generalisation� In other words� the hypoth�
esis that will be induced is a generalisation of the positive examples of a concept
�which must� at the same time� be speci�c enough as to exclude the negative
examples�� The inductive process starts with an initial hypothesis� which is be�
ing modi�ed by specialisation and generalisation operators in order to achieve a
better �t to the training data� This search for a good �t is guided by one or
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more heuristic functions which are incorporated in the learning algorithm� The
construction of the initial hypothesis� the search operators and the heuristics that
are used di�er between approaches� Some of those will be examined in sections
��� and ����

��� Approaches

The problem of concept�learning�classi�cation has been approached from di�er�
ent perspectives� This section gives a brief overview of the most common of those
approaches�

� Statistical Classi�cation�

� Similarity Based Learning�

� Neural Networks�

� Genetic Algorithms�

For more detailed description of the methods that are discussed here� the reader
is referred to �Weiss and Kulikowski� ����� and �Nakhaeizadeh et al�� ������

����� Statistical Classi�cation

This �eld of research in statistics is the predecessor of concept�learning and has
contributed a number of interesting classi�cation methods� Some of the common
features of these methods are the following�

� Only numeric attributes are used�

� Each instance of a class must have a value associated with each of the
attributes �i�e� no  missing values� are allowed��

� The methods are grouped into parametric and nonparametric� The former
assume a speci�c type of discrimination function� which they try to �t to the
data� by adjusting its parameters� The latter do not make this assumption�

The following are some of the methods that are commonly used for statistical
classi�cation�
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�� Linear Discriminant

This method attempts to generate hyperplanes which will achieve good
discrimination between the classes� The number of hyperplanes that are
used depends on the number of classes� each separating one class from
the rest� The calculation of the parameters� specifying the location of each
hyperplane� is usually done by regression analysis� Figure ��� illustrates the
way in which a hyperplane �straight line in this case� is used to discriminate
between two classes� in a problem with two attributes� This is an ideal case�
where the classes can be discriminated perfectly� using a straight line�

�� Logistic Discriminant

This is an improved version of the linear discriminant method� which uses
a di�erent criterion for regression �i�e� maximising conditional likelihood�
instead of optimising a quadratic cost function��

�� Quadratic Discriminant

Real classi�cation problems are not always solvable by linear discriminants�
Figure ��� presents a situation which falls into that category� Because of
that� another parametric classi�cation method was developed which gener�
ates quadratic curves for discriminating between classes�

�� K�Nearest Neighbour
This is a simple non�parametric classi�cation method� which makes use of
the preclassi�ed instances� in order to classify new ones� It examines the K
closest neighbours of the new instance and classi�es it according to the most
common class amongst them� The most important feature of this method
is the formula which is used for calculating the distance between instances�
Some alternatives that have been used are the following�

� Absolute distance� The sum of the absolute di�erences between the
attribute values of the two instances�

� Euclidean distance


� Normalised distances
 For example� the number of standard devi�
ations from the mean of each feature�

Figure ��� illustrates the use of this method�

� Conceptual Clustering

This is a method which is very close to the symbolic ML approach to the
problem� According to that� instances which share common features and
common class are grouped together� forming clusters� which can be used
for classifying new instances� Clustering can also be used for unsupervised
learning� in which case instances are grouped according to their feature�
values and a class�label is attached to the generated clusters� One of the
algorithms examined in this thesis �PLS�� is a conceptual clusterer� it will
be described in detail in the following chapter�



Figure ���� A situation where linear discrimination cannot provide an adequate
solution�



Figure ���� Classi�cation using the K�Nearest Neighbour method� In this case
k ! � and the new instance is assigned to the negative class� because � out of the
� examined neighbours belong to that class�

����� Similarity Based Learning �SBL�

This is a symbolic approach to inductive learning� which is also the approach
taken in this thesis� Most of the methods developed under this paradigm produce
classi�ers which can be interpreted by a set of clusters� similar to the conceptual
clustering approach� There are however a number of di�erences between the SBL
and conceptual clustering methods�

� SBL methods can handle nominal and structured attributes� Early versions
of SBL algorithms could not handle numeric attributes at all� while more re�
cent ones usually discretise them and treat them in a similar way to nominal
ones� This approach imposes a substantial overhead on the computational
requirements of the algorithms �see chapter �� and does not make e�ective
use of the attributes �see �de Merckt� �������

� The clusters that are generated in SBL are usually orthogonal hyperrect�
angles formed by the introduction of dichotomising hyperplanes� which are
parallel to the feature axes �e�g� �gure ���� The conceptual clusterer that is
examined in this project is of the same type� but others use di�erent shapes



Figure ��� Orthogonal clustering in a binary�class problem with two attributes
�one nominal and the other numeric��

This restriction in the shapes of the clusters� imposed by SBL methods� has
recently been realised as an important problem and some work has been
done in order to overcome it �e�g� �Murthy et al�� ������� The restriction is
imposed by the description languages that are used� which limit the ways
in which attributes can be combined to simple conjunctions and disjunc�
tions between attribute�tests�� This makes sense when nominal attributes
are used� since their values cannot always be ordered� The situation how�
ever is di�erent with numeric attributes� between which there may be a
relationship� de�ned by a linear or other numerical function�

A number of di�erent conventions have been used in SBL research for de�
scribing the induced concepts� the most popular of which are decision trees and
decision lists� These representation schemes� together with the heuristics that are
used in some SBL algorithms are described in section ����

�An attribute�test is the association of a value or a range of values to an attribute�



Figure ���� Elliptic clustering�

����� Neural Networks

Neural Networks achieve a similar classi�cation result to the statistical classi�
�ers� using a di�erent representation scheme� The scheme contains a number
of �neurons�� arranged into several layers� Each of the neurons in one layer is
usually connected to all the neurons in the previous layer� from which it receives
input� and all the neurons in the next layer� to which it feeds its output �Figure
��	�� The �rst layer of neurons is used for input to the system� Neural Networks
accept only numeric input and for this reason nominal attributes are translated
into the set of all possible attribute�tests� each of which is binary valued� Follow�
ing this pre�processing stage� each input node accepts values for one attribute or
attribute�test� These values are fed to the next layer of nodes� which perform a
weighted summation and generate an output value� according to some function�
The output values are passed to the next layer of neurons �if it exists�� which
process them in the same way and continue the forward�feeding process until the
output layer is reached� At that stage� the generated output is compared to the
desired output�� provided by the preclassi�ed instance and their di�erence is fed
back to the previous layers� causing the adjustment of the connection weights and
other parameters that are used in the calculations taking place in each node�

�This is not the case for unsupervised learning�



Figure ��	� A two�layered fully�connected network� ai stands for the input neuron
which corresponds to the ith attribute�attribute�test and ci for the output neuron
which corresponds to the ith class�

The calculations involved in the forward�feeding and the weight�adjustment
stage di�er between di�erent types of networks� The following is a very brief
account of some commonly used networks�

�� Perceptron

This is a very simple type of network� invented by Rosenblatt
�Rosenblatt� ������ It consists of only two layers of neurons �an input and
an output one� and its behaviour is identical to the linear discriminant� with
the di�erence that it is a non�parametric method �i�e� it does not make any
assumptions about the shape of the class probability distributions�� The
generated value at each neuron in the output layer is given by the following
formula�

vj !

�
� if

P
iwjiIi � j � �

� otherwise
�����

where Ii is the ith input value� wji is the weight associated to the connection
between the ith input and the jth output neuron� and j is a threshold value
associated with the jth output neuron� There is a di�erent threshold value
for each output node� which gets updated at the weight�adjustment stage�



CHAPTER �� THEORY OF INDUCTIVE LEARNING ��

Another idea that is similar between the perceptron algorithm and the linear
discriminant is the use of the square di�erence for calculating the distance
between the generated and the expected output value� This calculated value
is used for updating the weights and the thresholds� With respect to the
weight�adjustment process� there are mainly two approaches�

� Batch Learning� All the examples in the set are examined before
any adjustment takes place� In that case the mean of square errors is
calculated and used in the adjustment�

� Incremental Learning� The adjustment takes place after each ex�
ample has been considered� The examples are either processed sequen�
tially or randomly� In this method the absolute di�erence is used in
the adjustment�

The former method is expected to give more reliable results� since an
overview of the whole training set is maintained� but it is computation�
ally more expensive than the latter�

�� Multi�layer Perceptron �MLP

As mentioned in the statistical approaches� there is a number of problems
which cannot be solved with linear discrimination� In order to overcome
this problem in neural networks� several perceptrons are combined together�
The result is a network with a number of hidden layers between the input
and the output ones� which can approximate non�linear functions�

In parallel to the introduction of more than one layer� the calculation of the
feed�forward values at each layer and the weight�adjustment method have
been improved� The output of each node is now calculated by the logistic
or sigmoidal function�

vj !
�

� " e�nj
�����

where e is the base of the natural logarithm and nj is the weighted sum
�including the threshold� involved in equation ��� also�
The output of this function is within the range ��� �� and can be used in
the calculation of the di�erence between actual and expected output value�
without being translated in a binary form as in equation ���� The result of
this is a smoother adjustment of the weights and the other parameters�

The adjustment of the weights is now done with the use of the Back Propa�
gation algorithm �Rumelhart et al�� ��
��� which is similar to the one used
in the simple perceptron� but incorporates more parameters� The aim is
still to minimise the sum of least square errors for the training set� but the
errors are now propagated more than one layers back� in order to adjust all
the weights and the thresholds in the network� The new update function is
given by the following equation�

w�
j ! wj � 	ej " ��wt�� �����
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where 	 is the learning rate or step�size� which controls the speed of learn�
ing� ej is the proportion of error propagated to node j� �wt�� is the last
change of the weight and � the momentum parameter� which controls the
e�ect of the previous weight�change�
The Back Propagation of errors and subsequent adjustment of the weights
continues until no substantial di�erence between the amount by which
weights change at step t and step t � � exists� This iterative error min�
imisation method is known as gradient descent� If the step�size �	� is too
large this method will lead to an oscillation around the desired minimum
error�value� This problem is solved by the inclusion of the most recent
weight�change in the calculation�

�� Radial Basis Function Networks �RBFN

This is a new type of network� the main characteristic of which is that it
does not use an iterative learning method� as in Back Propagation� The
RBFN is provided with a number of points in the feature space� each of
which is used as the centre of an interpolating function� The set of all those
functions can be used as a classi�er� A major problem in RBFNs is the
determination of the function centres� A number of methods have been
developed for solving that problem� which vary from arbitrary and random
approaches to unsupervised learning ones� For a detailed description of
RBFNs the reader is referred to �Nakhaeizadeh et al�� ������

�� Kohonen Networks

Kohonen�s network �Kohonen� ��
�� provides an unsupervised learning
method� using Neural Networks� Usually in unsupervised learning� the net�
work is provided with the number of desired clusters and associates a single
cluster with each output neuron� by adjusting only this neuron�s weights
when it achieves the highest output value �winner�takes�all network�� Ko�
honen�s network however updates also the weights of the output neurons
which are architecturally close to the �winner�� achieving an interpolation
e�ect� which arranges the clusters according to their arrangement in the
feature space� This e�ect is similar to that of a traditional statistical algo�
rithm� called the k�means clustering algorithm� which generates a partition
of the feature space into �patches�� called the Voronoi tesselation�

����	 Genetic Algorithms �GAs�

GAs are search methods� which are inspired by Darwin�s evolution theory about
the survival of the �ttest� Figure ��
 summarises the main elements of a genetic
algorithm�

Special interest has been shown in the following �ve elements of a GA �



Figure ��
� The process performed by GAs�



CHAPTER �� THEORY OF INDUCTIVE LEARNING �	

Representation scheme
 The main representation scheme� that has been used�
�proposed by Holland� who is one of the main contributors in the �eld� is
bit�strings� which are called  chromosomes�� Each chromosome represents
a rule or an example� which is encoded in a bit�form� Each attribute of an
example �or condition of a rule� is assigned a bit �or a group of bits� in the
chromosome� which will hold the values that the attribute �condition� takes
in speci�c examples �rules��

Initialisation
 The �rst stage of the evolutionary process involves the genera�
tion �or acquisition� of an initial set of rules� For research purposes� random
generation of those rules from the algorithm itself �e�g� by random assign�
ment of values in the bit strings� is favoured� The reason is that it is a good
test for the algorithm to start its evolution from a random population that
may have nothing to do with the desired optimal one� In this case� if the
algorithm manages to �nd its way to the optimal rule� it is considered to
have performed well in searching through the space�

In real�world applications however� where safety and processing time are
important� the initial population is usually supplied to the algorithm by
the user� In this case� the initial population may be derived from the user�s
personal experience� or from a di�erent learning algorithm�

Evaluation function
 The evaluation function is one of the most important
elements of a GA� Small changes to it can improve or worsen the algorithm
substantially� The objective of the evaluation function is to assign a worth to
each rule� according to its success in classifying examples from the training
set� In order to achieve that� there is a number of factors that can be taken
into account� For example�

� The classi�cation correctness of the rule�

� The complexity of the rule�

� The performance of the rule �in the past��

Genetic Operators There are three main reproduction operators �proposed by
Holland� that are used in GAs�

�� Crossover
This operator is inspired by the sexual reproduction of species in the
real world� It involves the recombination of the �genetic� information
of two rules� in order to produce new rules� The newly generated rules
do not contain any new �genetic� material� but they could be more
�or less� successful than their parents� because they contain di�erent
combinations of their �genetic information�� The following example
illustrates the way in which the operator works for binary strings�
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Rule� � �������
Rule� � �������

Applying crossover at the �th bit�
Rule� � ��������
Rule� � ��������

�� Mutation
This operator is used for the introduction of �new ideas� to the search�
avoiding thus the concentration of the search at local maxima� This is
done by moving �in a random way� the search to di�erent areas of the
search space� The way it operates is by altering the genetic information
of a rule at some random position� with a randomly generated value�

�� Inversion
This is a complementary operator to crossover but is applied rarely�
What it does is to rearrange the genetic information within a chromo�
some� by reversing a substring so that pieces of genetic information�
that were far from each other are brought together and can be used in
a substring selected by crossover� For example�

Rule� � �������
Reversing substring between the �th and the �th bit�

Rule� � ���������

Parameters
 There is a number of parameters used in various components of a
GA �e�g� the size of the population� the probabilities of selecting each of
the operators� the condition that will have to be satis�ed� in order for the
search to stop� etc��� Most of these parameters are highly dependent on
the application and are likely to a�ect substantially the performance of the
algorithm�

��� Two Popular SBL Algorithms

This section describes two algorithms� which have been the basis of most SBL
learning systems� Most of the systems that are used in the project are also
descendants of these algorithms�

��	�� The AQ Algorithm

AQ was one of the �rst successful algorithms in symbolic ML� It is based on
the STAR method �Michalski� ��
��� which was developed by Michalski in the
late �	�s� One of the interesting features of AQ is the comprehensibility of its
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concept�description language� Annotated Predicate Calculus �APC	�� In terms of
the APC formalism� examples and hypotheses are expressed� using the following
building blocks�

Selectors
 These are the elementary blocks of the language� They correspond
to attribute�tests� where an attribute is associated to one or a range of
its values� by means of some �relational predicates� �e�g� !� 	� �� etc���
Examples of selectors are the following�

�shape!sphere �
�weight �  �
�colour ! green �

Complexes
 A conjunction of selectors forms a complex� Instances are repre�
sented by complexes� The following are examples of complexes�

� �shape!sphere � 
 �weight �  � 
 �colour ! green � �
� �weight �  � 
 �weight 	 �� � 
 �colour ! red � �

Covers
 Covers are disjunctions of complexes and they are used for representing
the induced hypotheses� The following is a possible cover�

f � �shape!sphere � 
 �weight �  � 
 �colour ! green � � �
� �weight �  � 
 �weight 	 �� � 
 �colour ! red � � �
� �shape!pyramid � 
 �colour ! green � � g

The reason why these high�level structures are called covers has to do with
the inductive method adopted in the algorithm� AQ is considering each positive
example in turn� attempting to generalise it as much as possible� excluding at the
same time all the negative examples� During this process� it builds a cover� which
is a description that includes all positive examples and excludes any negative ones�
Each time the algorithm is examining a positive example� which is not �covered�
by the cover constructed so far� a new complex is added to the cover� This
complex is produced by the STAR algorithm and is potentially selected out of a
number of candidate ones� according to a number of criteria� e�g� �coverage� �i�e�
number of positive examples covered�� simplicity �usually measured by its size�
i�e� number of selectors�� In the end a disjunction of those best�complexes �i�e� a
cover� is induced� which covers all positive and excludes all negative examples of
the concept�� This is taken as the best approximation to the concept� Figures
��� and ���� describe the basic AQ and the STAR algorithm�

�APC is an improvement of the Variable Logic system � �VL��� which made use of proposi�
tional calculus expressions�

�Some versions of the algorithm allow for a misclassi�cation error� in order to handle noise
in the training set�
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Input� A set of examples E� a set of attributes A� a set of class values
C� user�de�ned criteria LEF for the selection of the best complexes�
user�de�ned star size m�
Output� A set of covers� one for each class in C�

For each class ci in C do�

�� Split E into positive POS and negative NEG examples of ci�

�� Set COV ER to empty set�

�� While POS is not empty do

�a� Randomly select a seed example E� from POS�

�b� Use the star generating algorithm STAR�E�� NEG�m�
to generate a set of complexes of size m �called the STAR��
which cover E� and exclude all examples in NEGa�

�c� Use LEF to select the best complex BEST�COMP in
STAR�

�d� Append BEST�COMP to COV ER� as a new disjunct�

�e� Subtract from POS all the examples covered by BEST�
COMP�

�� Return COV ER�

aNote that the algorithm assumes that no contradictions exist in the training
set�

Figure ���� Design of the basic AQ algorithm

The main idea underlying the algorithm is the generation of stars and covers�
Each of the positive examples acts potentially as a seed expanded against the
negative examples� Thus there is an initial generalisation stage� which produces
a star from the seed example� Following the selection of �the best� element of this
star� the algorithm performs a specialisation of this �best complex�� making use
of the subset of positive examples that is covered by it� In terms of space search�
this could be described by a brief �oscillation� within the space existing between
the seed and the negative examples� The resulting star� is �optimal� in the sense
that it covers completely and in a minimal way all the positive examples� which
are covered by the initial very general star� This type of search� which combines
a generalisation and a specialisation stage is called beam search�

�Note that the existence of noise� may render the generation of such a star impossible�
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STAR�E�� NEG�m�

�� Set STAR to contain the empty complex�

�� Randomly select a negative example E� from NEG� covered by
a complex in STARa�

�� Find the set EXTENSION of selectors� which cover E� and
exclude E��

�� Specialise STAR� by replacing it with its cartesian product with
EXTENSION �

� Trim STAR by removing�

�a� Nil complexes �i�e� complexes containing contradictions��

�b� Complexes subsumed by others in STAR�

�c� All but the m best complexes�

�� If STAR excludes all examples in NEG return STAR� Other�
wise continue at step ��

aAt the beginning the empty complex covers all the examples�

Figure ����� The STAR algorithm

Finally� an interesting aspect of the algorithm is the way in which it handles
completeness and consistency� It attempts to achieve completeness� main�
taining consistency at all times� Consistency is the primary goal and� at least
in this standard version of the algorithm� there is no tolerance of inconsistent
descriptions� making the algorithm incapable of coping with noise� The second
goal is completeness which must also be achieved in order for a valid concept
description to be generated� This is an absolute requirement too and must be
relaxed if noise in the training set is to be handled�

��	�� The ID� Algorithm

ID� makes use of a simple learning method� called the Concept Learning
System �CLS	 �Hunt et al�� ������ that was initially designed to perform single�
concept learning� This method uses a decision tree to represent the acquired
knowledge� Each node of the tree represents an attribute of the concept and
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Input� A set of examples E� a set of attributes A� a set
of class values C�
Output� A decision tree T �

Initially S ! E

Dichotomise�S�

�� If all the members of S belong to the same class
make current node a leaf node and stop dichotomi�
sation�
Else select attribute ai that does best in discrim�
inating between positive and negative examples in
S�

�� Create new node in the tree T �

�� For each value of ai� vij do�

�a� Dichotomise�Sij� where Sij is the subset of
examples corresponding to vij�

�� Return T �

Figure ����� Design of the basic CLS algorithm

each branch one value of the attribute� Each attribute�value� is examined as to
how well it does in discriminating between positive and negative examples of the
concept� Figure ���� describes brie�y the algorithm�

As an example of the process� assume the following training set� describing
the concept of a  ball��

Positive Examples�
Shape Size Bouncy
round small Y
round big Y
round small N

Negative Examples�
Shape Size Bouncy
square small N
round big N

triangular small N

�The original version of ID� allows only nominal attributes�



Figure ����� The second step of the generation of a decision tree� by CLS�

The only case in which discrimination is incomplete is when shape ! round�
If  bouncy� is selected as the next attribute then the tree will take the form of
�gure �����

Finally� if size is used perfect discrimination will be achieved ��gure ������

It is possible to fail to achieve perfect discrimination after having used all
the attributes� In this case� CLS cannot provide an accurate description of the
concept� This ine�ciency has been overcome in some versions of ID� by allowing



Figure ����� The decision tree �nally generated by CLS�

probabilistic answers �e�g� IF shape ! round THEN ball� by 	#��

Another source of ine�ciency� which can be detected from the previous ex�
ample� is that� although a fairly good discrimination has been achieved by the
�rst attribute that was selected� the quest for perfect discrimination has led the
algorithm to use all � attributes� This may not be a substantial problem in such
a simple situation� but it is bound to cause ine�ciency in large learning prob�
lems� Moreover� it forces the algorithm to make use of attributes that are not
characteristic of the concept �e�g� the  size��� making the algorithm very prone to
noise in the training set�

In order to choose the best discriminating attributes� an information theo�
retic criterion is used� namely Shannon�s entropy� which is given by the following
formula�

entropy ! �
nX
i	�

v�i log�
v�i

v�i " v�i
� " v�i log�

v�i
v�i " v�i

� �����

where n is the number of possible values that an attribute can take and v�i and
v�i are the number of positive and negative examples for each attribute�value
�
Chapter � presents several variations of this measure�

�Usually the notation pij is used for the proportion of instances of class j having the ith

value of the attribute� Note also that log is used for log� in the entropy calculations�
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To illustrate the use of entropy in calculating the discriminatory power of
di�erent attributes� assume that one wants to �nd the most discriminatory out
of the three attributes in the  ball� example used in the previous section �at the
beginning of the learning process�� The entropy for each one of them will be
calculated as follows�

entropy�shape� ��� log����� " � log������ � �� " � log������
��� " � log������ ! ��� " � " � ! ���

entropy�size� ��� log����� " � log������ � �� log����� " � log������
! ��
 " ��� ! ���

entropy�bouncy� ��� log����� " � log������ � �� log����� " � log������
! � " ��� ! ���

The attribute that will be selected is the one with the lower entropy� In this
case  shape� and  bouncy� have the same entropy and the algorithm will have to
choose between the two� based on other criteria �e�g� number of attribute values��

ID� is a greedy divide�and�conquer algorithm� performing a hill�climbing search�
which uses the entropy criterion as a search heuristic� This has proved an e��
cient method for inducing e�ective discrimination functions �i�e� the decision
trees� �Quinlan� ��
�a�� Since its birth� the algorithm has attracted much re�
search in ML and has been used in numerous learning systems� The original
version of the algorithm has a few problems �e�g� overspecialisation� only nom�
inal attributes and binary classes are used� etc��� Some of these problems have
been investigated� resulting in several improved versions of the algorithm� A few
of those extensions are discussed in the following section�

��� Extensions

The �rst SBL algorithms� like the ones described in the previous section� could
only deal with simple situations and did not perform very well on real data�
The research which followed that initial stage addressed some of those problems�
improving the standard versions of the algorithms� Some of the most important
extensions to the basic algorithms are the following�

� Handling numeric data� by discretisation�

� Prunning �i�e� reducing� the induced concept�description� in order to min�
imise the e�ect of noise�

� Incremental learning� in the presence of new information�

� Constructive induction� based on primitive features�
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This section discusses each of those extensions� describing the work done so far�

��
�� Handling Numeric Data

One of the basic problems of ID� and AQ was the fact that they could only deal
with nominal �and tree�structured� in the case of AQ� attributes� Since� most
of the real�world classi�cation problems involve numeric data� one of the early
changes to the algorithms was the handling of numeric attributes� The way in
which this is done is by discretisation of the attributes into value�ranges� which
makes it possible to process them as if they were nominal ones� Usually� only
two ranges are used� leading to binary attribute�tests� Some of the discretisation
methods� which are used in the algorithms that are examined in the project� are
described in chapter ��

A similar problem exists with the handling of numeric classes� Most of the
learning algorithms cannot handle numeric classes� which can take an in�nite
number of values� An exception to this are regression trees �Breiman et al�� ��
��
and the NewID algorithm� described in chapter ��

��
�� Over�ting and Pruning

One of the main de�ciencies with ID� is that it cannot handle noise in the training
set� It always tries to achieve perfect discrimination� resulting in very complicated
trees in the case where the examples do not provide clear�cut discrimination
points for the di�erent classes� In order to avoid this� several methods have been
proposed� which provide mechanisms for stopping the growth of the tree or for
pruning some of its already grown branches� when these do not seem to provide
any substantial increase in discrimination�

One of the early attempts to enhance decision trees by stopping the growth
�rather than by pruning�� was presented by Quinlan �Quinlan� ��
�b� and uses the
�� signi�cance test at each node of the tree� The way in which he approximates
this� is by means of the following formula�X

ij

�nij � eij�
��eij

where nij is the number of examples with class ci and attribute value vj� for
the attribute handled at the node� and eij is the expected number of examples�
under the null hypothesis that  the sub�populations of examples created when we
split E are drawn from the same population as E ��where E denotes the sub�set of
examples at the node� Under this hypothesis eij ! �

P
j nij �

P
i nij��n�

The problem with this method is that the proposed statistic is not a good ap�
proximation of �� for small training sets� �Niblett and Bratko� ��
	� propose an
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improvement to this measure� by examining the contingency tables of the exam�
ples� per attribute�value and class� at each node of the tree� The idea is to try
and calculate the sum of probabilities of possible distributions of examples� which
leads to the calculation of ���

Quinlan �Quinlan� ��
�b� has also presented some work in pruning� and pro�
posed  an optimisation criterion that o
sets the complexity of the tree against
its observed classi�cational accuracy on the training examples�� This is a simi�
lar approach to the one taken in �Niblett and Bratko� ��
	�� which is based on
a measure of the classi�cation error e�N� at each node N of the tree� Pruning
takes place when

e�N� 	
kX
i	�

p�vi�e�Ei�

where k is the number of possible classes� p�vi� is the probability of the ith value
of the attribute and e�Ei� the classi�cation error at the node corresponding to vi�
Note that the error estimates are associated to the number of examples falling
into a certain class�

For the calculation of e�N�� the following formula is devised� under the as�
sumption that the attribute can take only two values� and the prior distribution
of the k possible classes is uniform���

e�N� ! �n� nc " k � ����n " k�

which takes into account the number of classes k and the proportion of examples
nc corresponding to a class c�

The devised formula is used in a pruning algorithm� which can be split into
two parts� The �rst is a recursive calculation of the classi�cation error at each
node� starting from the roots and ending at the leaves� The second reconstructs
the decision tree� starting from the leaves and working its way to its root� At each
stage the algorithm uses the pruning criterion to decide whether a sub�tree should
be pruned or retained� Experiments with pruning methods have shown that a sig�
ni�cant increase in classi�cation accuracy is possible �Niblett and Bratko� ��
	��

A similar overspecialisation problem exists with AQ� which strives for com�
pleteness and consistency� One of the descendants of AQ �CN��� which is used
in this project and is described in chapter �� overcomes this problem by changing
the basic algorithm� in order to achieve �pre�mature� search�stopping� when no
signi�cant improvement is observed�

	�Niblett and Bratko� 	
�� claim that the extension to multiple values is straightforward�
�
The assumption of initial uniform class distribution is not true for internal nodes of the

tree and an extension to the basic calculation is proposed in �Niblett and Bratko� 	
�� �
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��
�� Incremental Learning

Another major problem with ID� is the fact that the decision tree cannot be
easily updated in the light of new data� This is necessary in incremental learning
situations �e�g� control learning�� where data is provided to the system continu�
ously� In such a situation� ID� would need to recalculate a new tree each time
new examples were provided� reconsidering all the previously examined examples�
This process is computationally expensive� especially as the training set increases�

The �rst attempt to develop an incremental version of ID� was made by
Schlimmer and Fisher �Schlimmer and Fisher� ��
��� who developed an algorithm
named ID�� The new algorithm practically rebuilds the decision tree each time�
but it has the advantage that it stores the class distributions at each node� which
can be used to calculate the new entropy�measures e�ciently without needing to
re�examine the training instances� The way in which ID� works is by updating
the probability distributions at each node� starting from the root and discarding
the subtree of a node� when a better discriminating attribute exists�

The main problem with ID� is that it does not always generate the same tree
as the pure ID� algorithm would generate� given the new and the old information�
This can happen when the scores of the attributes at some node are not substan�
tially di�erent and the instances are presented in such a way as to change the
ordering of the attributes each time� This may result in a repetition of deletion
and regeneration of subtrees� which does not converge to a stable situation�

In order to solve that problem� Utgo� has developed another incremental
version of the ID� algorithm named IDR �Utgo�� ��
��� The �rst important
feature of this algorithm is that it will always produce the same decision tree
as the original algorithm would generate� IDR maintains the same statistical
information as ID� at each node and it also looks for changes in the orderings
of the attributes� However� instead of replacing the old subtrees with new ones�
it restructures them� moving the new  best attribute� at the root of the subtree�
The main advantage though of IDR is that it maintains information about the
instances that it examines� at the leaf�nodes� This is done by storing those
attribute�tests that do not appear in the path to the node�

Recent versions of the AQ algorithm also perform incremental induction� For
example� the algorithm AQ� that is used in the project� stores the class prob�
ability distributions associated with each complex in the cover and accepts the
covers as input� together with the new instances� Starting with those covers as
the initial hypotheses and using the stored statistical information� the algorithm
generates the new set of covers�
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��
�	 Constructive Induction

As mentioned above� constructive induction is the process by which new features
are generated� based on the initially speci�ed feature set� There are two main
di�erent approaches to the problem�

�� Knowledge�driven feature construction

�� Data�driven feature construction

In knowledge�driven feature construction background knowledge is provided to
the learning system� determining the way in which features can be combined
to form new ones� This method is used in AQ� and is described in section
���� Data�driven feature construction is more di�cult and it makes use of sta�
tistical clustering techniques� for the discovery of new attributes� An example
of this approach is Rendell�s conceptual clustering system PLS�� described in
�Rendell� ��
��

In PLS� the inductive process is subdivided into a number of stages� which
lead gradually to the inductive goal� At each stage the system moves to a higher
level of abstraction�  imposing constraints� reducing complexity� extracting mean�
ing and increasing regularity�� All of these transformations are very important
for the inductive task� since they enable it to discover �hidden� information in
the training set and arrange it in a meaningful way� There are thus three levels
of abstraction involved in the feature construction that PLS� performs�

�� Subobject Relationships
In this �rst stage� the primitive�� space is arbitrary partitioned into sub�
spaces� for which the utility�� is calculated�

�� Pattern Classes
In this level� similarities are identi�ed between the calculated subspace �or
subobject� utilities� resulting in the construction of more general classes�
This is achieved by the extraction of common patterns� using the clustering
method�

�� Pattern Groups
At this �nal stage� some transformation operators are applied �e�g� rotation
of the pattern in pattern recognition� on primitive members of the classes�
in order for similar classes to be grouped together�

��The initial features are assumed to contain very little encoded knowledge about the char�
acteristics of the concept�

��The reader is referred to the description of PLS	 in section ��� for the de�nition of this
measure�
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Constructive induction has recently been realised as an important research
area� which can provide a solution to the �feature�acquisition bottleneck� of ML�

��	 Computational Learning Theory 
CLT�

����� Valiant�s Probably Approximately Correct �PAC�
Learning Model

In contrast with the large amount of work that has been done in formalising and
developing concept learning systems� very little has been done to measure the
complexity of the learning task� One of the �rst who attempted to do so� was
Les Valiant� who introduced a deductive method for automatic program acquisi�
tion �Valiant� ��
�b�� �Valiant� ��
�a�� The most important element of this work
is the analysis of the learning task� in order to assess the performance of the
method and explore the potential for improvement� This resulted in a measure
of the complexity of the learning task in terms of the number of examples that
an algorithm needs in order to induce a correct �i�e� complete and consistent�
hypothesis� This is called the sample complexity of the problem and� as Valiant
has proved� in the worst�case analysis it is exponential in nature� However� if one
assumes that there is a �xed �though unknown� relative frequency�� at which pos�
itive examples of the concept�� to be learned occur� one can calculate the number
of examples from which the algorithm can probably generate a hypothesis that
is a good approximation to the concept�

On this basis� a de�nition is proposed for a learnable concept�

a concept is learnable if and only if an algorithm can be developed�
which will be able� in polynomial time� to generate a hypothesis that
will correctly classify most �the error allowed is also speci�ed	 of the
instances of the concept�

What makes Valiant�s model especially interesting is the calculation of an up�
per bound for the number of examples needed to be considered by an algorithm�
in order to arrive to a correct �in the above probabilistic sense� hypothesis of a
learnable concept� This upper bound depends linearly on the size of the hypoth�
esis space and an independent parameter� which speci�es the acceptable error
limits�

��The assumption of a �xed probability distribution of examples is likely to hold for most
natural learning problems and since it is not required to be known� it is not expected to be a
real limitation�

��Valiant considers concept learning as a subset of his more general de�nition of learning as
an automatic program acquisition process�
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�Valiant� ��
�a� uses this model to analyse the performance of the learning
method on the following standard types of concepts�

� disjunctive concepts �DNF� containing only disjunctions of atoms���

� conjunctive concepts �CNF� containing only conjunctions of atoms�

� k�DNF� made of disjunctively connected blocks� which can contain up to k
conjunctively connected atoms�

� k�CNF �equivalent to k�DNF� and

� internally disjunctive concepts� conjunctively connected atoms� each of which
correspond to one attribute� but allows the assignment of more than one
value to it�

Assuming boolean attributes and a �nite hypothesis space� Valiant proves that
the method is able to learn the concepts e�ciently �i�e� in polynomial time�� This
assumption� however� limits substantially the applicability of this analysis and it
has been relaxed in later research�

����� Using the PAC Learning Model to Measure Induc
tive Bias

�Haussler� ��

� presents a method of using Valiant�s probabilistic framework to
show that simple inductive learning algorithms can perform near�optimally� At
the same time he relaxes Valiant�s assumptions restricting the structure of the
hypothesis space� using inductive bias to overcome the problems caused by this
relaxation� Inductive bias� in this context� stands for the restrictions to the
hypothesis space imposed by the nature of the learning algorithm �e�g� heuristics�
initial starting state� etc����� In order to quantify the strength of this bias and
measure the performance of the algorithms� he makes use of the  growth function��
introduced by �Vapnik and Chervonenkis� ��	��� The outcome is�

a measure that relates the strength of a bias to the performance of
learning algorithms that use it� so that it will be useful in analysing
and comparing learning algorithms �Haussler� ����

In contrast with Valiant�s analysis� Haussler allows for all three types of attributes
�i�e� nominal� numeric and tree�structured� he also assumes that nominal at�
tributes can be represented by corresponding tree�structured ones�� As a result�
in�nite hypothesis spaces are also allowed�

��Atom is a term used in CLT for attribute�tests�
��For a more detailed examination of inductive bias the reader is referred to �Utgo�� 	
���
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In order to expand the model to in�nite hypothesis spaces� the  growth func�
tion� of the hypothesis space is used� symbolised by �H�m�� where � 	 m 	jXj�
H is the hypothesis space� jXj the cardinality of the example set and m is the
cardinality of the subset of jXj that is being examined �i�e� the minimum size
of which is used for the determination of the sample complexity�� This function
measures the maximum number of dichotomies of a subset of the example set
using all hypotheses from the hypothesis space� The notion of  dichotomy� here is
similar to that used in decision trees� Examples �or instances� are labelled as  "�
or  �� according to whether their attribute�values adhere to a speci�c hypothesis�
For example� assume a numeric attribute �e�g� size� and three instances that take
the values �� ��  accordingly� The hypothesis� � � size � � will label all three
instances as  "� �in decision�tree terms� the three instances would �belong� to the
same node�� The hypothesis � 	 size 	 � however� labels the �rst instance as a
 �� and the other two as  "� �in a decision tree the �rst instance would belong to
a di�erent node than the other three��

Having three or more distinct attribute�values in the training subset� there
are a number of dichotomies which cannot be achieved by any hypothesis of the
hypothesis space� In the previous example there is no way to get the second
instance labelled as  �� and the other two as  "� �in decision�tree terms� one
cannot have instances � and � in the same node� without having the second one
too�� Thus the growth function �H�m� � �m for m � �� This leads to another
de�nition� that of the Vapnik�Chervonenkis dimension VCdim�H� of a hypothesis
space H� which is the cardinality of the largest subset of the example set that
can be  shattered� �i�e� all possible dichotomies can be achieved� by H� Thus� for
single�attribute� conjunctive concepts� VCdim�H� ! �� irrespective of the type
of attribute� allowing for an in�nite hypothesis space� Similarly� Haussler proves
that if the instance space is de�ned by n � � attributes and the concept to be
induced is conjunctive then

n 	 VCdim�H� 	 �n

and

�H�m� �
�

�

�
em�n

��n
� for all m � �n

where e is the base of the natural logarithm�
Note � Similar bounds hold for the other four types of concepts that are being
considered�
Based on this result� Haussler claims the following�

�Because it re�ects limitations on the power of discrimination and
expression inherent in the hypothesis space H� the growth function
�H�m� is a natural way to quantify the bias of learning algorithms
that use H� It is also a useful measure of the bias�� �Haussler� ����
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The �nal outcome of this work is a new measure of the maximum probability
of learning a hypothesis with an approximation error greater than � �where � �
� � ���

��HL
C
m���m����m��

where C is a class of target concepts
L is the learning algorithm
m is the number of examples in the random example set� m � �
and HL

C�m� is the  e
ective hypothesis space of L for target concepts
in C and sample size m�� denoting the set of hypotheses generated
by L for C and m�

The importance of this measure� as well as the ones derived from it� is that it
holds for any learning algorithm and it incorporates a measure of its inductive
bias� Thus� it limits the complexity upper bounds to more realistic and near�
optimal levels�

����� Criticisms and Extensions to the PAC Learning Model

There are a few problems with the basic PAC model� which make it unusable for
real problems� Some of these are the following�

�� The estimate of the sample complexity provided by the model is a worst�
case one�

�� Noise�free data are assumed�

�� The model cannot be readily applied to�

�a� Incremental learning systems�

�b� Learning problems with multi�valued functions�

�c� Systems that use background knowledge�

The realisation of these problems has led to a number of extensions to the
basic algorithm and the development of new theoretical learning models� The
following are a few examples of such models�

� Distribution speci�c model� The distribution on the instance space is taken
into account for the calculation of the sample complexity�

� �Probability to mistake� model� This model speci�cally refers to incremen�
tal algorithms� using as a performance measure the probability that the
algorithm will misclassify the nth randomly selected training example�
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� �Total mistake bound� model� This is another incremental learning model�
which uses as a performance measure the total number of misclassi�cations
that the algorithm will make in the worst�case �worst case mistake bound��

�Haussler� ����� gives a more detailed account of recent research in the �eld�
including a number of interesting new models�

��� Summary

This chapter has provided an overview of the work that has been done in the �eld
of empirical concept�learning� which is the type of learning used in this project�
Concept�learning has been an attractive and very active research area during the
last decade� mainly due to its applicability to real�world problems� In this type
of learning� the task of acquiring the description of a concept is seen as a search
problem� where the search space is the set of all possible descriptions and the goal
is the identi�cation of the one which best �ts the training data� In that context�
the learning algorithm provides the operators for moving between states in the
search space�

The problems that are being attacked with concept�learning methods �e�g�
prediction� diagnosis� etc�� have been approached with statistical methods before�
The �eld of statistics which deals with this type of tasks is called classi�cation
and its goal is the derivation of a function which �ts a set of given data� This
function provides a mapping between objects and the classes to which they belong�
Objects in statistical classi�cation are represented in terms of a set of features�
which are also used in the de�nition of the classi�cation function�

Empirical concept�learning bears a number of similarities to statistical classi�
�cation� examples of which are the following�

� The use of features�attributes to describe objects and de�ne concepts�

� The use of various statistical techniques �the heuristics used in the learning
algorithms� in order to identify similarities between objects and generalise
them into concept�descriptions�

� The correspondence between the search space used in learning and the fea�
ture space used for the de�nition of the classi�cation function�

Thus� the two approaches can be seen as equivalent� with the exception of the
types of attributes that they use� Statistical approaches have focused on numeric
attributes� while nominal ones are favoured in learning� This di�erence is a result
of the way in which classi�cation functions and concept�descriptions are de�ned�
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The former are mathematical expressions� while the latter tend to be represented
as rules� using a logic�like notation�

Most of the research done in empirical�concept learning has concentrated on
few algorithms� two of which have been described in this chapter� These two algo�
rithms have been very popular in ML research and form the basis of the learning
systems that will be described in the following chapter� In terms of classi�cation�
they both can be seen as conceptual clusterers� which divide the feature space
into orthogonal hyperrectangles� Each such rectangle contains examples of one
class and� together with the rest of the rectangles corresponding to the class� is
used as its de�nition�

Concept Learning Theory is an area� which deals with the complexity of the
concept�acquisition task and has recently become very popular� It attempts to
formulate mathematically the learning task and examines the learnability of dif�
ferent types of concepts� Learnability is de�ned in terms of sample complexity�
which determines the minimum number of instances that an algorithm will need
to examine in order to induce a reliable concept�description� Ideally� such an
analysis will result in a learning curve� showing the performance of the algo�
rithm� The models that have been developed so far however are not usable in
practice� for the reasons given above�

One �nal point that needs to be made here is that the algorithmic analysis
performed by computational learning models is di�erent from the regular compu�
tational complexity analysis� The former examines the sample� while the latter
the computational complexity of an algorithm� Chapter � uses the latter type of
complexity analysis� in order to derive a theoretical estimate of the performance
of the �ve learning algorithms that are used�
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The Algorithms

��� Introduction

The purpose of this chapter is to introduce the �ve algorithms that have been
examined in the project� These algorithms have been selected out of a large list
of available ones� for several reasons� The main one is the fact that they are
representative of a large portion of the work done in the �eld� As a result� they
have been very popular among the ML researchers� who have examined and im�
proved them substantially� Moreover� some of these algorithms �especially the
ones based on decision trees� have been favoured in applications which incorpo�
rate ML components� Finally� the versions of the algorithms acquired� are well
suited to the purposes of the project� both because they are all written in similar�
procedural programming languages �C and Pascal�� reducing thus the possibil�
ity of a language ine�ciency� and more importantly because being the original
versions provided by their developers� they are likely to be quite robust and com�
plete� These two features are very important for carrying out a fair comparison
of the algorithms�

The algorithms that are used in the project are all concept�learning ones� This
means that they induce a concept description �in the form of a decision�tree� a
cover or a hyperrectangle�� based on a set of positive and negative examples of
the concept� expressed in terms of a �xed number of features�attributes� The
domain �type and value�set� of each feature �including the class�concept� which
is treated as a special feature�� must usually also be speci�ed� As it will be shown
in the following sections of the chapter� this later requirement is important� as it
guides the algorithm to process the feature in a meaningful and e�cient way�

With respect to the distinction made in earlier chapters between generali�
sation� and specialisation�based inductive algorithms� this project is interested in

�See appendix A for a brief description of the available algorithms�

�
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both� The two algorithms which induce decision�tree concept descriptions �i�e�
NewID �Clark and Niblett� and C�
� �Quinlan�� and the conceptual clustering
one �PLS� �Rendell�� use specialisation techniques� while the ones which induce
covers �i�e� AQ�� �Michalski� and CN� �Clark and Niblett�� are based on gen�
eralisation� Previous comparisons �see �O�Rorke� ��
�� and �Rendell� ��
��� have
argued that specialisation algorithms are more e�cient than generalisation ones
and this is one of the issues that this work will revisit�

Finally� a major commonality of the �ve algorithms� which facilitates their
comparison� is the coverage of the concept description that they provide� Al�
though some of them �e�g� AQ�� use slightly more expressive schemes than
others� they all achieve orthogonal coverage �see section ������� similar to that of
a set of hyperrectangles� This is the result of assuming feature independence and
not considering the relation between them��

Following this introductory description of the algorithms� a separate section
of the chapter is devoted to each individual algorithm� These sections will adhere
to the following format�

$ A brief introduction� containing mainly historical and theoretical infor�
mation about the algorithm�

$ The description of the algorithm� This subsection will describe the
algorithm in detail� focusing on its peculiarities�

$ Analysis of the algorithm� Since the main interest of the project is time�
performance� this subsection will concentrate on the computational com�
plexity of the algorithm�

$ Concluding remarks� about the quality of the design and the implemen�
tation of the algorithm�

��� NewID

����� Introduction

The �rst of the examined algorithms is a fairly standard version of the popular
concept�learning algorithm� ID� �Quinlan� ��
�a�� �section ������ written in C�
NewID �Niblett� ��
��� �Boswell� ����b� was developed at the Turing Institute� by
Tim Niblett� and was incorporated in the Esprit Project MLT �Machine Learning
Toolkit�� Like ID�� it uses examples� in order to induce a decision�tree description
of the concept� However� NewID incorporates a number of features� which are
additional to the standard version of ID� and provide solutions to problems that

�This is a very important limitation of the algorithms� in comparison to some of the statistical
classi�cation methods�



CHAPTER �� THE ALGORITHMS 


have been identi�ed with the basic algorithm� This results to a more useful
system for solving real�world problems�

����� Description

The basis of NewID is the same as that of ID�� Figure ��� describes this basic
algorithm� as it appears in �Niblett� ��
�� and �Boswell� ����b��

Input� A set of examples E� a set of attributes ai� a class c� a termi�
nation criterion TE�S� where S is a set of examples and an evaluation
function IDM�a� S� where a is an attribute and S a set of examples�
The termination criterion is usually that all examples in S have the
same class value�
Output� a decision tree�

�� Set the current examples S to E�

�� If S satis�es the termination condition �TE�S�� halt and return
the tree�

�� For each attribute ai determine the value of the function
IDM�ai� S�� With the attribute aj that has the largest value
of this function divide the set S into subsets by attribute values�
For each such subset of examples Sk recursively re�enter at step
��� with E set to Sk� Set the subtrees of the current node to be
the subtrees thus produced�

Figure ���� The Basic ID� Algorithm

The Evaluation Function

Originally� it was suggested that more than one evaluation function be included in
NewID �Niblett� ��
��� The user would then have to choose one of those functions
to use� In practice this would mean that he�she would try more than one of them
out� in order to �nd the one that suits his�her problem best� The idea behind
this is that di�erent heuristics perform better than others on speci�c types of
problems�

One of the proposed choices was a mutual information measure� which is a
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small extension of the original entropy measure��

I�CjA� ! ev�C 
A�� ev�A� !
X
j

pj log pj �
X
ij

pij log pij �entropy� �����

I�C � A� ! I�A � C� ! ev�C� " ev�A�� ev�C 
A� !X
ij

pij log pij �
X
j

pj log pj �
X
i

pi log pi �mutual information� �����

where I�CjA� is the conditional information content of class attribute C� given
attribute A� I�C � A� is the mutual information between C and A� ev�M� is
the entropy value �measuring the information content� for message M � pi is the
probability of an example falling in class ci� pj the probability of an example
having the value vj for attribute A and pij is the combined probability� over the
subset at the parent node� The practical advantage of the mutual information
measure over the simple entropy one is that it solves the problem of favouring
attributes with many values��

The second choice was quasi�utility� introduced by Good and Card in
�Good and Card� ��	��� They propose the combination of a utility measure with
the informativeness one�

U ! maxj
X
i

qiu�i� j�

where qi is the probability of class ci and u�i� j� the utility of accepting class cj
when the correct class is ci� In the simple case where u�i� j� ! � if i �! j and
u�i� j� ! � if i ! j the goal is to maximise qi�

However� none of these alternatives were implemented in NewID� Instead the
standard entropy measure was used�

The Termination Criterion

The criterion that is usually used for terminating the growth of a branch� is that
the subset of examples corresponding to the leaf�node be in a single class� One
problem with this perfect�discrimination criterion is that it leads to over�tting of
the data� especially in the presence of noise� There have been several proposed
solutions to this problem �section ����� most of which fall under two categories�
pre�pruning �or growth�stopping� and post�pruning� In general� it is accepted
that post�pruning is more e�ective than growth�stopping �Breiman et al�� ��
���
Because of that� only a post�pruning method �described later in the section� is
implemented in NewID� keeping the termination criterion fairly standard� The
only minor addition to it� is a check as to whether a non�trivial split exists� A

�This measure appears also in �Quinlan� 	
��a� �Quinlan� 	
��a� �Quinlan� 	

��
�Refer to section ����� for a more detailed explanation�
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split on an attribute A is non�trivial if by splitting on that attribute non�empty
example subsets are generated��

Additional Features

NewID incorporates a number of features which do not appear in the standard
version of ID�� The most important of these are the following�

A� Attributes

The standard version of ID� uses only nominal attributes� NewID can also
handle real� integer and ordinal attributes� The idea of using numeric at�
tributes appears also in antecedents of NewID �e�g� ACLS
�Paterson and Niblett� ��
�� and CART �Breiman et al�� ��
���� The prob�
lem with this kind of attribute is that there is an in�nite set of potential
splitting points and thus the splitting process has to be changed� Ordinal at�
tributes on the other hand allow nominal attributes� of which the values can
be provided in some natural order �e�g� temperature �low� medium� high��
size �small� medium� large�� etc��� to be treated as integer ones� This has the
advantage of providing more compact and informative splits �i�e� ranges of
values instead of lists of them��

Another type of attribute that has been used in inductive learning pro�
grams is the tree�structured one �see section ������� In this type� the values of
the attribute can be naturally structured in a hierarchy� Common examples
where this is useful is the taxonomy of animals or the shape of a geometrical
object� Although not directly implementing it� NewID simulates this type�
using attribute ordering�� This simply means that some attributes will be
evaluated before others� when deciding for a split�

Finally� the class attribute is allowed to be numeric� Although this is very
useful for many classi�cation problems� there have been very few algorithms
which implement it �e�g� regression trees �Breiman et al�� ��
���� because of
the complications it imposes on the evaluation function and the termination
criterion� The �rst e�ect of that on NewID is the replacement of the standard
entropy measure with the sum of class variances corresponding to individual
values of an attribute�

X
j

variancee�fclass�e�jattval�A� e� ! jg� �����

�The criterion actually becomes slightly more complicated� with the use of weights on ex�
amples �explained further on in the section�� In that case the subsets produced from the split
have to contain at least one example of weight � 	�

�This is not exactly the same as having tree�structured attributes� where the relationship
between subtypes in the hierarchy is much stronger than in NewID�
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where e is an example with class value class�e� and value attval�A�e� for
attribute A�
Minimising this measure� one achieves maximum discrimination� similar to
that achieved using entropy� In addition to the modi�cation of the evaluation
function� NewID uses a special termination criterion for numeric classes�

��S� 	 ��k ��E�

where E is the initial set of examples� S the subset of examples at a speci�c
node� � the standard deviation in each of the two sets� with respect to the
class attribute� and k a user�de�nable parameter�

B� Examples

NewID provides two major extensions to the format of the examples han�
dled by the basic ID� algorithm� The �rst one is the use of the �unknown� and
�don�t care� attribute values�� If an attribute is given the value �unknown� in
an example� it means that its value is not available� The �don�t care�value on
the other hand� denotes the irrelevance of that attribute for the classi�cation
of the speci�c example� Examples with�unknown� and �don�t care� values are
handled specially at the evaluation and the splitting stage� The existence of
an �unknown� value causes the replacement of the example from fractional
examples �one for each attribute value�� based on the distribution of the ex�
amples which have known values for this attribute and belong to the same
class� �Don�t care� values on the other hand are handled by duplication of the
example in question� based again on the attribute�values found in the rest of
the examples�

The second idea introduced in NewID is the use of weighted examples� The
program allows the user to provide a weight for each of the training examples�
specifying thus how characteristic it is of its class� This feature can be quite
useful in cases where the user can judge the quality of the examples and use
that information in order to guide the learning process� acquiring thus better
classi�cation results� However� misconceptions or misunderstandings of the
user can have exactly the opposite e�ect�

C� Splitting

The use of numeric and ordinal attributes has a�ected the splitting part of
the decision�tree building process� Numeric attributes cannot be handled in
the same way as nominal ones� The solution adopted in NewID is to order the
examples in ascending order� based on the values of the numeric attributes�
and then look for the most appropriate value to split them into two subsets�
This binary�splitting approach has the following e�ects�

�� Numeric attributes can be used more than once in a branch of the decision
tree�

�Originally introduced in ACLS �Paterson and Niblett� 	
���
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�� In the presence of noise� over�tting may be facilitated by extensive use
of numeric attributes� near the leaves of the tree�

�� Near the root of the tree the evaluation function will favour nominal
attributes� although they may be poorer discriminators than the numeric
ones� because the later may need to be split into more than two ranges�
in order to give a substantial information gain�

Niblett has also mentioned the use of multiple�splitting for numeric at�
tributes �Niblett� ��
��� but this was not implemented�

Binary�splitting can optionally be used on nominal attributes also� In that
case� the value set of the nominal attribute is split into two subsets each time
the attribute is used� If one was to search exhaustively through all the subsets
of values for each attribute every time� this process would be very heavy
computationally �Breiman et al�� ��
��� In NewID� however� a heuristic search
takes place� which generates the two subsets by moving a single attribute value
at a time from one to the other� The attribute value selected each time is the
one which causes the largest increase in the entropy score of the attribute and
the process stops when there is no more gain in entropy�

D� Pruning

The user of NewID is given the choice to post�prune the generated tree�
The pruning method is a simple but e�ective one�

A subtree is pruned if the additional classi�cation accuracy that it
provides� in comparison to the classi�cation accuracy of its root node
on the majority class� is below a user�de�ned threshold�

More sophisticated pruning methods have been proposed by several research�
ers �e�g� �Kononenko et al�� ��
�� and �Niblett and Bratko� ��
	��� but they
have not been implemented in NewID� Pruning in NewID is also restricted to
nominal classes� This is a reasonable restriction since over�tting of numeric
classes can be avoided by appropriate setting of the termination threshold�

Evaluation of trees

Another useful facility provided by NewID is the evaluation of an induced tree on
a test set� Test examples are of the same format as the training ones� including
where necessary �unknown� and �don�t care� values� The output of the evaluation
process for numeric classes is a detailed count of all negative and positive misclas�
si�cations for each value of the class� In addition to that� averages for each class
value and the total classi�cation accuracy are given� Examples with �unknown�
and �don�t care� values are handled in a similar way as in the training process�
possibly producing fractional counts� The evaluation output for numeric classes
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is less detailed than for nominal ones� It provides a list of accuracy�levels and the
corresponding percentage of the test examples that were classi�ed correctly�

����� Analysis

Although NewID uses the basic design of the ID� algorithm unaltered� its addi�
tional elements make it substantially di�erent from its predecessor� This section
aims to incorporate these new elements� presenting an outline of the design of
NewID and analysing its behaviour� with respect to its worst�case computational
complexity�

The Design

Figure ��� presents in a schematic way the main module of the algorithm� This
is the same as the basic ID�� Examining further the three functions �i�e� the
termination� evaluation and splitting ones� further� some of the new elements
of NewID are introduced� However� only the design of the evaluation function
��gure ���� is substantially a�ected�

Figure ��� shows the e�ect that the introduction of numeric attributes and
classes has on the evaluation process� The other new features a�ect the algorithm
at a lower level �e�g� the use of �unknown� and �don�t care� values in the examples
a�ects the calculation of the entropy�class�variance measure�� which does not
in�uence its design�



Figure ���� The Main NewID Procedure�



Figure ���� The Evaluation Module�
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Worst�case Computational Complexity Analysis

Several people in the past have looked at the computational complexity of ID�
��O�Rorke� ��
��� �Quinlan� ��
�a�� �Quinlan� ��
�a�� �Clark and Niblett� ��
���
and have come to the conclusion that the basic algorithm is of order O�mjAjjEj��
where m is the number of non�leaf nodes in the �nal decision tree� Clark and
Niblett �Clark and Niblett� ��
�� have also included the use of numeric attributes�
with the additional requirement of sorting the examples in a subset� increasing
thus the order of complexity to O�mjAjjEj log jEj�� These results however are
based on a number of simpli�cations �e�g� that m is independent of jEj and jAj��
because their purpose was to give an indication of the complexity of ID�� rather
than a thorough analysis of it� This section takes a closer look to the algorithm�
adding the new features of NewID�

Based on �gure ���� one can de�ne the complexity of NewID� in terms of the
complexity of its components�

COMP �NewID� ! m� COMP �Dichotomise�S�� !

m� � COMP �TE�S�� " COMP �BEST�SPLIT�S�A�� "

COMP �SPLIT �S� amax�� � �����

where m is the number of non�leaf nodes in the tree and COMP �P � gives the
complexity of a process P �

Let us examine each individual component of this�

�� COMP�TE�S�

Depending on the type of the class attribute� the termination criterion
varies� For nominal classes class membership of the examples in S is tested�
which is of order O�jSj�� If the class is numeric on the other hand� the stan�
dard deviation of S is used� which can be derived from the class�variance
calculations which have taken place in the evaluation stage of the previ�
ous step
� An additional step� which has to be done is the  triviality�test�
�section ������� which in the worst case �i�e� when only trivial splits exist�
takes time O�jSjjAj�� because for each example each attribute value has to
be checked� Thus� the overall complexity of this step is O�jSjjAj��

�� COMP�BEST�SPLIT�S�A�

The complexity of the evaluation process� can be decomposed� according to
�gure ���� as follows�

COMP �BEST�SPLIT�S�A�� ! jAj�
�This will increase the space requirements of the program� as all the variances calculated

will need to be stored�
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�max� �COMP �SORT �S� ai�� " COMP �BEST�BINARY�S�� ai���

COMP �NOM�BINARY�S� ai�� � "

max�COMP �V ARIANCE�S� V ��� COMP �ENTROPY �S� V ����

Examining each component in turn�

�a� COMP�SORT�S�ai�

Assuming an e�cient sorting algorithm� the complexity of this step
is O�jSj log jSj�� It is possible to avoid doing this calculation all the
time� by storing an ordered list of the examples� according to each
numeric attribute� at the beginning of the learning process� However�
this would increase the space complexity of the algorithm substantially�
In the following analysis� it is assumed that the sorting process takes
place every time a binary split is examined�

�b� COMP�BEST�BINARY�S��ai�

What is done in practice at this step is that all the possible splits
�worst�case jS�j��  jSj� are considered at the entropy�class�variance
calculation and the best one is maintained� This is an exhaustive
search method� but can be done e�ciently� by minor adjustment of
the probability estimates� when moving from one splitting point to
the other� As a result� the complexity of the whole process is only
O�jSj�� This is still higher than the complexity of the process taking
place for nominal attributes and its results are not very satisfactory�
Recent work �e�g� �de Merckt� ������ has been considering di�erent
approaches� mainly by replacing entropy with other heuristics� which
are more suitable to numeric attributes�

�c� COMP�NOM�BINARY�S�ai�

If ai has the value�set Vai then� in the worst�case� the complexity of
this step is�

�jVaij�



�max�COMP �V ARIANCE�S� V ��� COMP �ENTROPY �S� V ���

because at most jVaij�� values have to be moved from one subset of
values to the other �only the best value is moved each time� and at
each iteration an average of jVai j � jVaij�� binary splits have to be
evaluated�

�d� COMP�VARIANCE�S�V�

Assuming that the variance is calculated e�ciently �complexityO�jSj���
the complexity of this step will be O��jSj�� in the case of a numeric
attribute and O�jVaijjSj�� in the case of a nominal attribute with a
value�set Vai� Thus� the overall complexity is O�jVai jjSj��
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�e� COMP�ENTROPY�S�V�

The complexity of calculating the entropy for a nominal attribute is
O�jVai jjVcjjSj�� as a result of the calculation of the sum of the proba�
bilities that an example will have a speci�c attribute value in Vai and
a speci�c class value in Vc�

As a result of the above� entropy gives the maximum complexity�

max�COMP �V ARIANCE�S� V ��� COMP �ENTROPY �S� V ��� !

O�jVai jjVcjjSj�

Based on the above results� the complexity of the evaluation stage is�

jAj �O�jSj log jSj" jSj�

for numeric attributes�
jAj �O�jVai jjVcjjSj�

for nominal ones� in the case of multiple splitting and

jAj �O�
�jVai j�jVcjjSj



�

for binary splitting of nominal attributes� The latter case gives the worst
results for this stage�

�� COMP�SPLIT�S�amax�

At this stage� the splitting of the examples and the generation of new tree�
nodes is taking place� The complexity of this process is O�jVamax jjSj�� where
Vamax is the value�set of amax� In practice� however� this process may be
avoided� by incorporating it in the previous �evaluation� stage�

�� m

The growth of the whole tree� is done by recursive calls on the main
procedure� i�e� Dichotomise�S�� which will stop when all the branches
have stopped growing� This process is very much dependent on the learn�
ing problem� but as an indicative worst�case� one can think of a problem
where numeric attributes are used� the goal is perfect discrimination and
an extremely skewed tree is generated� In that case� there would be jEj
leaves in the tree� corresponding to m ! �jEj � �� calls of the procedure
Dichotomise�S�� and an average of jEj�� examples at each node�

Let as assume for example a simple problem� with one integer attribute�
which has a di�erent value for each example in the set �e�g� discriminating
between odd and even integers��
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Example id
 Attribute value Class value
� � "
� � �
� � "
� � �

This set will produce a complete tree with three non�leaf nodes� The same
would happen with any number of examples� so long as each has a di�erent
attribute value and class values follow the above pattern� Generating a
complete tree causes a near�worst case situation with jEj�� non�leaf nodes�
The number of examples examined per node ranges from log jEj in the case
of a balanced tree to jEj�� in the case of an extremely skewed one��

Thus in the extreme case the overall complexity of the NewID algorithm
would be���

jEj � �O�jAjjEj��� " jAj �O�jEj�� log�jEj���� � 
O�

jAjjEj�
�

log�jEj��� � ����

On the other hand� if only nominal attributes are used� the worst�case
situation is di�erent� If binary splits are used� a similar situation to the
binary splits of numeric attributes could occur� leading to the following
worst�case estimate�

O�
�jAjjVmaxj�jVcjjEj�

��
� �����

where Vmax is the largest value�set�
However� if multiple splits are used� the worst�case occurs when all at�
tributes are used at each branch of the tree� Thus� under the simplifying
assumption that all attributes have jVmaxj values� the largest number of
nodes is

m !
jAj��X
i	�

jVmaxji !
�� jVmaxjjAj

�� jVmaxj
and the average number of examples handled at each node is

jEjavg !
jAjjEj
m

In this worst�case situation� the complexity of the whole algorithm is�

m�O�jAj�jVmaxjjVcjjEj�m� ! O�jAj�jVmaxjjVcjjEj� ���	�

Out of the three estimates �equations ��� ���� eq�newid�compl��n�nom��
the one for numeric attributes gives a higher order of complexity �w�r�t� the
size of the training set� and thus it can be used as the overall worst�case
estimate of the algorithm�

	The shape of the tree is determined by the evaluation function�
�
The complexity of the splitting component is omitted from the estimate�
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����	 Conclusion

The above analysis has shown that the new features introduced in NewID make
a substantial di�erence in the worst�case computational complexity estimate of
the algorithm� Other things remaining constant� NewID seems to be of over�
quadratic complexity with respect to the number of examples in the training set�
This is very di�erent to the near�linear performance estimate of the standard
ID� algorithm� which has appeared in a number of previous papers� The factors
contributing to this increase are the following�

�� The use of numeric attributes� increases the complexity of the evaluation
stage� This is under the assumption that an exhaustive search for a binary
split is used� which is an expensive discretisation method� considering all
the values of the attribute in the training set� which in the worst�case is
equal to the number of examples� This estimate could be improved by the
use of a di�erent evaluation heuristic for numeric attributes�

�� Another property of numeric attributes is that they can cause over�tting to
the data� increasing the size of the tree and the complexity of the algorithm�
If only nominal attributes were to be used� the longest path of the tree would
be bound by the size of the attribute set� This is not the case with numeric
attributes� which can be used more than once in the same branch of the
tree�

�� Finally� the use of numeric class attributes could also facilitate over�tting�
in the case where the user�de�nable termination parameter is given a very
high a value� In the worst�case �i�e� when the parameter is given a very high
value and each example has a di�erent class value�� this would cause single�
example leaf�nodes� Combining this with the use of numeric attributes�
makes more likely the occurrence of a worst�case situation� similar to that
described in the computational analysis above�

The rest of the new features do not seem to a�ect the computational complexity
of the algorithm substantially�

However� one has to be very careful with the use of this worst�case estimate�
It assumes situations that do not arise in a typical problem� where the algorithm
would be used �e�g� classi�cation�� For example� the existence of ���# noise is
unrealistic� Thus� it is expected that an average case analysis or empirical tests
would give very di�erent results�

In general� NewID is a very interesting extension of the basic ID� algorithm�
introducing new features which make the algorithm usable in a larger variety
of real world problems� These features however� may have a negative e�ect on
the performance of the algorithm� More careful design and the introduction
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of e�cient heuristics in some of the elements of the algorithm could solve this
problem�

��� C���

����� Introduction

C�� is another algorithm based on ID�� It was developed by Quinlan
�Quinlan� ����� and incorporates most of the improvements that he has done
to the basic algorithm� The basic structure� however� remains the same and it is
similar to NewID� Because of that� this section will concentrate on the di�erences
of the two programs� mentioning in brief the new features of C��� C�� is also
written in C�

����� Description

The Evaluation Function

The �rst important di�erence of C�� from ID� and NewID is the evaluation func�
tion that is used� It has been noticed that the pure entropy and the mutual in�
formation measures favour attributes with many values �Kononenko et al�� ��
���
Such attributes decompose the training set into many small subsets which are
bound to have relatively uniform class distribution� The signi�cance� in terms of
classi�cation� of those attributes� however� may be very small� because many of
the generated subsets contain examples of the same class�

�Kononenko et al�� ��
�� have proposed as a solution to this problem the use
of binary splits� even for nominal attributes �see section ������� Quinlan� on
the other hand� proposes an additional adjustment of the evaluation function�
incorporating a measure of the signi�cance of the attribute �Quinlan� ��
�a��
�Quinlan� ������ He calls the new measure gain ratio �as opposed to the sim�
ple entropy gain criterion� which is the mutual information measure� �equation
��� �� and he de�nes it as follows�

gain ratio�A� ! gain�A��split info�A� �gain ratio criterion� ���
�

where A is the attribute that is being evaluated� gain�A� is the mutual informa�
tion measure and split info�A� is a measure of the signi�cance of the attribute�
which is nothing else but ev�A� �equation ����� being used once again� The re�
sulting criterion is thus�

ev�C�� ev�C 
A�

ev�A�
" �
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which reverses completely the initial use of the attribute information � �equation
����
As in the case of mutual information� the attribute which maximises this criterion
is selected at each stage ���

The new criterion seems to be insensitive to the number of attribute�values�
but it has been argued �Mingers� ��
�� that it favours unbalanced splits�

Examples

The �rst new feature of C��� with respect to the training set is windowing�
What this term means is that the program can be told to construct a tree on
a randomly selected subset of the initial training set and then use some of the
examples which are being misclassi�ed by this tree to generate a new one� This
process is repeated until all examples are correctly classi�ed� by the current tree�
The initial subset of examples is called window and its size can be speci�ed� The
number of misclassi�ed examples that are used each time to generate a new tree
is also user�de�ned� but in any case at least half of those examples will be used�
An additional option� allows the generation of a number of di�erent initial trees
and the selection of the best one�

Windowing must not be confused with incremental decision�tree building� as
performed for example by IDR �Utgo�� ��
��� The tree that is being built� each
time new misclassi�ed examples are considered� is built from scratch� C�� does
not have a facility for incrementally updating trees�

A �nal comment about the format of examples in C�� is the handling of
unknown attribute�values �which are not distinguished from  don�t care� ones��
These are handled in a similar manner to NewID� producing fractional examples�

Attributes

C�� can handle nominal� integer and real attributes� Binary�splits are used for
numeric attributes� while for the nominal ones there is an option of generating
value�groups� These are similar to the binary�splits used in NewID� but here
there can be more than � subsets of values� The calculation of value�groups takes
place separately at each node and is computationally heavy� As a solution to
this� Quinlan proposes post�grouping of values� based on the generated tree� An
additional problem with pre�grouping is that unnatural subsets of examples may
occur� The result of this is that more e�ort may have to be put in �nding a
su�cient discrimination function� If this problem can be avoided� which is the

��Due to instability of the estimate at near�trivial splits� in order for an attribute to be used�
its mutual information score has to be above the average�



CHAPTER �� THE ALGORITHMS 	�

case for post�grouping� value�groups can enhance the comprehensibility of the
tree�

C�� cannot handle ordinal and structured attributes� or numeric classes���
This is one of the major di�erences with NewID� which can handle ordinal at�
tributes and numeric classes and it can simulate structured attributes�

Pruning

After some initial experimentation with pre�pruning� using the �� criterion
�Quinlan� ��
�b�� Quinlan has adopted a post�pruning method� similar to� but
more sophisticated than the one used in NewID� He uses� what he calls a pes�
simistic pruning method� which estimates the additional classi�cation error� caused
by a branch of the decision�tree� This calculation involves the approximation of
the probability of error at each leaf� using a user�de�ned con�dence level CF �
What is interesting about this method is that it calculates the error probability
based on the training set itself� rather than by using additional test cases �e�g�
�Breiman et al�� ��
����

An additional feature of the pruning method employed by C�� is that a
subtree can be replaced by one of its subtrees� rather than by a single leaf�node�
This allows for removal of incorrectly selected tests and �exible simpli�cation of
the tree�

Rule Generation

Perhaps the most interesting feature of C��� however� is its capability of turning
decision�trees into production rules� very much like the ones produced by the CN�
algorithm �section ���� The advantage of this is that rules are more comprehen�
sible by humans� This� however� is not the case when each path through the tree
is used as a separate rule� Therefore� the initially generated rules have to pass
through a number of simpli�cation stages� including removal of non�signi�cant
conditions� restructuring of the rules and grouping them together according to
the class that they predict� The �nal product of C�� is thus an ordered set of
rules� each of which describes instances of one class� The reason why the rules
have to be ordered is that� due to the simpli�cations� clashes between the rules
are possible���

��For the latter� Quinlan has developed a di�erent algorithm �Quinlan� 	

�� which he has
not incorporated in C����

��See section ��� for a discussion on the comprehensibility of ordered and unordered rules�
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Evaluation Module

Usage

Finally� the classi�cation module of C�� incorporates some useful features�

� One can interactively provide test cases to the classi�er� potentially includ�
ing unknown attribute values� as well as probabilistic input� of the form�
v� � p�� v� � p�� ���� vn � pn� where v� ��� vn are some of the values of an
attribute and p� ��� pn their corresponding probabilities�

� C�� produces also probabilistic output� using certainty factors� similar to
the ones used by some expert systems �e�g� MYCIN �Shortli�e� ��	����

� Soft thresholds can be used� in addition to the �hard� ones for numeric at�
tributes� This feature allows for probabilistic classi�cation near the thresh�
old value� avoiding thus misclassi�cations caused by slightly erroneous in�
put�

����� Analysis

Design

The basic decision�tree building module of C�� is very similar to NewID� In terms
of design the main di�erence of the two is that C�� cannot handle numeric classes�
Thus� if one excludes the variance calculation from �gure ��� the two �ow�charts
used to describe NewID can be used for C�� also�

Worst�Case Computational Complexity analysis

In computational terms� however� the algorithms have a few more di�erences�

�� The gain ratio estimate involves more calculations than the simple entropy
one� which is employed by NewID� This however does not a�ect the order
of complexity of the evaluation process�

�� The optional splitting of nominal attributes into value groups is also much
more expensive than the binary�splitting used in NewID� Although a heuris�
tic is used� which looks at pairs of attribute�values rather than exhaus�
tively examining each combination of subsets of the attribute�s value�set
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V � fv�� ���� vng
continue� T
max�score � gain ratio�V �

While jV j � � � continue do
continue� F
For i ! � to jV j do

For j ! i " � to jV j do
vij � fvi� vjg
V � � fV � fvig � fvjgg" fvijg
If gain ratio�V �� � max�score

max�score � gain ratio�V ��
V � V �

continue� T
return V

where fv�� ���� vng is the value set of the attribute�

Figure ���� The value�grouping algorithm�

��gure ����� the worst�case computational complexity of the process is still
of order���

O��jVaj � � "
jVajX
i	�

�
i
�

�
�� jVcjjSj� !

O��jVaj � � "

� jVaj" �
�

�
�� jVcjjSj� !

O��jVaj � � "
�jVaj" ��%

�jVaj � ��% �%
�� jVcjjSj� 

O�
�

�
jVcjjVaj�jSj�

where jVaj is the number of values of attribute a� jVcj the number of classes
and jSj the number of examples at the current node���

�� The �nal di�erence lies in the maximum number of non�leaf nodes that the
�nal decision tree can have� In NewID the conclusion was that in the worst
case the number of non�leaf nodes is jEj � � with jEj�� examples per node�
The same applies to C��� since the only requirement is the use of numeric
attributes�

��Note that for each subset of values only the entropy of the new pair has to be calculated�
��Refer to the calculation of the complexity of the entropy measure in section ������
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Summarising the above� the complexity of the main element of C��� in the
case where numeric attributes are use� is of similar order to NewID �eq� ����

O�
jAjjEj�

�
log�jEj��� � �����

In the case of nominal attributes� if value grouping is used� the complexity esti�
mate is�

O� jAjjVmaxjjVcjjEj � �
�

�
jVcjjVmaxj�jEj� � !

O�
�

�
jAjjVmaxj�jVcj�jEj� � ������

On the other hand� if the standard splitting method is used� the estimate will be�

O�jAj�jVmaxjjVcjjEj� ������

As for NewID� the worst estimate is the one using numeric attributes� How�
ever� using value�grouping is also very expensive and in the average case� it is
expected to cost more than binary�splitting of numeric attributes�

����	 Conclusion

C�� is a very interesting program� which incorporates much of the research done
on decision�tree induction� What is especially interesting is the ability to trans�
form decision�trees into meaningful and compact sets of rules� which is a very
innovative idea�

However� the main structure of the program does not di�er substantially from
its predecessors and� as shown above �equation ����� its worst�case computational
complexity is of the same order as for NewID� According to that� the complexity
of the algorithm is of over�quadratic relation to the number of examples in the
training set� This result has been based� however� on a very extreme and atypical
situation�

Apart from that� there are a few features which are either not well founded
or could be improved� One of them is the new evaluation criterion� which seems
like a patch on the old one� rather than a proper solution� Another problem is
the heavy calculations involved in the process of value�grouping� the worth of
which is actually questionable� Post�grouping may prove to be a solution to this
problem�

In addition to those problems� there are a few additions to C��� which would
make it applicable to a larger range of problems� Namely the ability to handle
numeric� as well as nominal classes and the incremental updating of decision�trees�
are two of those desirable features�
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��� PLS�

��	�� Introduction

PLS� �Probabilistic Learning System �� �Rendell� ��
�b�� �Rendell� ��
	� is a
conceptual clustering algorithm� developed at the same time as ID�� Although it
uses a more statistical representation scheme than the other algorithms� examined
in the project� its behaviour is very similar to that of ID�� Their major di�erence
is in the way that they handle di�erent types of features and this results to a
di�erent computational complexity�

��	�� Description

The representation used by PLS� is that of a hyperspace� de�ned by the features
used in the problem� Each feature thus corresponds to an axis of the space� along
which its values vary� Based on that idea� the main process taking place is an
iterative dichotomisation of the space into smaller regions �hyper�rectangles�� by
the use of hyperplanes� which are parallel to the axes and are selected according
to a heuristic evaluation function� similar to ID��s entropy measure� Figure ��
describes the main PLS� algorithm�

Examining this description� one can see the similarity of the learning process
to the basic ID� algorithm� Regions correspond to nodes in a binary decision tree
and hyperplanes to the feature values�

The Evaluation Function

One important di�erence between PLS� and ID� is that the splitting process
is taking place individually for each class� producing a separate set of regions�
This results to a simpler evaluation function� which considers the training set as
positive and negative examples of each class� The function is based on a purity
measure for each region �its utility�� provided by the proportion of positive
examples covered by the region� Thus the utility of a region ri is de�ned as�

u�ri� ! pi�ti ������

where pi is the number of positive and ti the total number of examples in ri�

In order to evaluate a split� the distance of the two generated regions r� and
r� is calculated� This measure is de�ned as�

d�r�� r�� ! j log�u�r��� � log�u�r���j � c� log�e�r��e�r��� ������
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Input� A set of examples E� a set of attributes A� a set of class values
C� user�de�ned termination thresholds and con�dence factor�
Output� One set of regions� for each class in C�

For each class ci in C do�

Separate E to E� �positive� and E� �negative� examples of ci�

De	ne Ri as the region covering the whole of E�

While �non�terminal regions�a remain do�

Select one of those regions r�

Let dbest be ��

Build the set H of hyperplanes� horizontal to the axes� which
split r into subregions�

Initialise hbest�

For each hyperplane h in H do�

Split r into r� and r�� using h�

Compute their dissimilarity d�r�� r���

If d�r�� r�� � dbest
Let dbest be d�r�� r���
Let hbest be h�

If dbest � �
Replace r by the corresponding r�� r� in Ri�

Return Ri�

aRegions which can be split further�

Figure ��� Design of the basic PLS� algorithm
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where e�ri� is an estimate of the error of the probability calculations� Usually�
the main source of error is assumed to be the �nite number ti of examples covered
by ri and thus the error is estimated as e�ri� ! � " ��

p
ti� c is a user�de�ned

con�dence factor� which determines the signi�cance of the split�

The distance function is an estimate of the dissimilarity between the examined
regions� The higher the result the more dissimilar the regions are said to be and
the better the split� This has a similar e�ect to the entropy measure of a single
attribute�value� as used in ID��

The Termination Criterion

The splitting process for a region terminates when none of the candidate splitting
hyperplanes generates two subregions which are dissimilar enough �i�e� have a
distance � ��� In this context� the con�dence factor c� can be thought of as a stop�
ping criterion� similar to the ��� used at some versions of ID� �Quinlan� ��
�b��
Apart from the con�dence factor� however� there are two more parameters� which
can cause the splitting process to terminate� These de�ne the minimum number
of positive and the total number of examples a region must contain� in order to
be split further into subregions�

The e�ect of all those stopping parameters is that the algorithm can be set to
exhibit di�erent levels of noise resistance� The higher the values of the parameters�
the less complete discrimination� the algorithm is aiming at�

Attributes

The initial version of the algorithm could handle only �ordered� �integer� at�
tributes� This restriction is imposed by the hyperspace representation that is
used� The values of nominal attributes cannot be ordered along an axis of the
space and cannot be binary�split in a meaningful way� Later versions of PLS�
allow the use of nominal attributes� the values of which are then ordered� in terms
of the proportion to which they appear in the training set� Thus� attribute values
that appear in many examples are placed near each other� aiming at producing
pure regions� by discriminating between these �important� values� This method
of handling nominal attributes is obviously unsatisfactory� as important infor�
mation contained by the attribute values is being lost� Moreover� PLS� cannot
handle continuous numeric features� The reason for that is not clear� as it seems
possible that only a minor extension to the algorithm is su�cient for handling
this type of attribute�

Another interesting feature of PLS�� is that it does not require an initial
de�nition of the attributes and their domain� The reason for this is that all the
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attributes are treated in a similar manner and thus their values can be collected
by the training set itself� Only in the case where nominal attributes are used� a
parameter has to be set to signal this� in order for the initial ordering of their
values to take place�

One �nal point to be made about the way in which PLS� handles the at�
tributes� is a user�de�ned stepping value� which determines the values� examined
as potential splitting points� In other words� the user de�nes how many values�
along each axis will be examined and at what interval� The result of this is that
not all the values of an integer attribute� appearing in the training set� can be
used as splitting points �which is the case for NewID and C���� Thus� low values
of the stepping factor can reduce classi�cation accuracy signi�cantly� while they
can also increase the resistance of the algorithm to noise�

Other Programs

Concluding� one has to mention� that the clustering algorithm of PLS� has been
used in many programs� produced by Rendell� which perform more complicated
induction tasks���

� There is an incremental version of PLS�� which� in addition to the clustering
algorithm� uses a normalisation and a regression procedure� producing non�
linear approximations of the discrimination function�

� There is a parallel algorithm� called PLS� �Rendell� ��
�a�� which uses a
Genetic Algorithm to chose between a population of region sets�

� There is a program� called PLS� �Rendell� ��
�� which performs feature
construction from elementary data� achieving thus more substantial data
compression�

��	�� Analysis

Design

The core of the PLS� algorithm is the iterative dichotomisation process which
takes place for each class separately� generating a set of regions for it� Figure ���
describes this process�

��A comprehensive description of those programs is given in �Rendell� 	
���



Figure ���� The PLS� clustering Procedure�
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Worst�Case Computational Complexity Analysis

The process described in �gure ��� is the main element and the main contributor
to the complexity of the PLS� algorithm� According to �Rendell et al�� ��
�� this
process has a linear relationship to the number of training instances and is of order
O�mjEjjAj�� where jEj is the number of training examples� jAj is the number of
attributes and m the number of times the dichotomisation process takes place�
The following analysis will examine the validity of this estimate�

Based on �gure ��� the overall complexity of the algorithm is�

COMP �PLS�� ! jCj � �m� COMP �Dichotomise�r�� " �jEj� ������

where �jEj corresponds to the complexity of the initialisation process �de�ning
Ri and separating E into E� and E���

The complexity of the dichotomisation process ��gure ����� however� can be
further decomposed as follows�

COMP �Dichotomise�r�� ! COMP �TE�r�� " COMP �Build�planes�r� "

jHj � � COMP �Split�r� hj�� " COMP �d�r�� r��� � �����

Let us examine each component in turn�

�� COMP�TE�r�
As described in section ������ this process involves calculating the number
of positive and the total number of examples in the region and comparing
them to user�de�ned thresholds� Thus� if S is the subset of the training set
covered by r� the complexity of this process is of order O�jSj��

�� COMP�Build�planes�r�
This process generates the set of hyperplanes� which subdivide r into two
smaller regions� The hyperplanes are generated at speci�c interval values�
determined by the user�de�ned step factor� Assuming that� irrespective
of the step factor� only one hyperplane is generated between two successive
values of an attribute in S� in the worst case jHj ! jAj��jSj��� hyperplanes
will be generated� Thus the complexity of this process is of order O�jAjjSj��

�� COMP�Split�r�hj�
This procedure compares the attribute value of each member of S with the
value corresponding to the hyperplane hj� forming thus two subsets of r�
Thus the complexity of the process is O�jSj��

�� COMP�d�r��r��
The calculation of the distance between the two regions �equations �����
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������ includes the calculation of probabilities for the positive and total
number of instances in each region� as well as the error estimate for each
one� Assuming that the necessary totals are calculated at the previous stage�
the contribution of this process to the overall complexity is insigni�cant�

Thus� according to equation ��� the complexity of the dichotomisation pro�
cess is�

COMP �Dichotomise�r�� ! O�jSj�"O�jAjjSj�"O�jAjjSj��  O�jAjjSj�� ������

This estimate could be improved by ordering the instances in S� before examining
the hyperplanes along each axis� The complexity of the process would then be
O�jAjjSj log jSj�� Since this is not included in the description of the algorithm�
however� one cannot assume that this is the case�

The �nal �piece� missing from the complexity analysis of the algorithm is the
number of times �m� the dichotomisation procedure has to be used� Since each
region�dichotomisation corresponds to a node of a binary decision tree� the worst
case situation is similar to that described for C�� �section ������� Thus� in the
worst case� m ! jEj�� and jSj ! jEj��� Using this result� the overall worst�case
complexity of the algorithm is�

COMP �PLS�� ! jCj � � �jEj � ���O�
jAjjEj�

�
� " �jEj � !

O�jCjjAjjEj�� ����	�

which is almost an order of magnitude higher than the estimate for the ID��based
programs �C��� equation ��� and NewID� equation ���� but becomes almost
identical to it if it is reduced to O�jCjjAjjEj� log jEj��

��	�	 Conclusion

The result of the above analysis is signi�cantly di�erent from the complexity
estimate� which appears in �Rendell et al�� ��
��� As for the other algorithms as
well� the reason for this is that highly atypical situations are assumed� in order
to obtain the extreme case� Moreover� the number of dichotomisations �m� that
take place is shown to be bound by the number examples� something which has
not been attempted in previous estimates�

In general the behaviour of the algorithm is very similar to that of the ID��
based ones� especially in the case where only integer attributes are used� resulting
to a binary decision tree� The algorithm searches exhaustively the space of binary
splits� applying the evaluation function at each candidate splitting point���

��This is true under the assumption that the step factor does not limit the number of
hyperplanes�
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Concluding� PLS� is an interesting algorithm� which handles the problem
of concept�learning in a similar manner to ID�� taking a more statistical ap�
proach� In doing that it seems to uncover the principles underlying the iterative
dichotomisation process� The major limitation of the algorithm is the way in
which it handles nominal attributes� which cannot be expressed sensibly� using
the hyperspace representation� The solution to this problem seems to be the use
of a di�erent representation scheme for those attributes�

��� CN�

��
�� Introduction

CN� �Clark and Niblett� ��
�� �Clark� ��
�� �Clark and Boswell� �����
�Boswell� ����a� is another algorithm� developed by the Turing Institute as part
of the MLT project� It is an improved version of the basic AQ �Michalski� ��
��
algorithm� incorporating ideas from ID� �Quinlan� ��
�a�� The program is writ�
ten in C and has a similar interface to the one used by the NewID algorithm
�section �����

��
�� Description

CN� is based on AQ and has inherited its basic structure� AQ uses a beam search�
in order to induce a set of covers �see section ������� which can then be used as
discrimination functions between a number of concepts�classes� �gure ���� �����
Beam search combines a generalisation and a specialisation stage� Generalisation
takes place in the main algorithm ��gure ����� as one moves from a speci�c pos�
itive seed example to a general discrimination function� the cover for the class�
However� this generalisation is achieved through an iterative specialisation pro�
cess� taking place in the  star� algorithm ��gure ������ This process of specialising
the complexes of a star� can be thought of as a set of m �maximum star size�
hill�climbing searches� taking place in parallel�

The main problem with the AQ algorithm is that it is very dependent on
individual training examples �i�e� the selected seeds �Clark and Niblett� ��
����
As a result it is di�cult to adjust the algorithm in order to handle noise in the
training set� in a similar manner to tree�pruning in the ID�family of algorithms
�e�g� �Kononenko et al�� ��
���� Thus� �Clark and Niblett� ��
�� suggested sub�
stantial changes to the algorithm� leading to the development of CN�� which is
aimed to provide the �exible design of the AQ algorithm� combined with noise
handling mechanisms�
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Let E be a set of classi�ed examples�
Let SELECTORS be the set of all possible selectors�

Procedure CN��E	
Let RULE�LIST be the empty list�
Repeat until BEST�CPX is nil or E is empty�

Let BEST�CPX be Find�Best�Complex�E	�
If BEST�CPX is not nil�
Then let E� be the examples covered by BEST�CPX�

Remove E� from E�
Let C be the most common class of examples in E��
Add the rule  If BEST�CPX then the class is C�
to the end of the RULE�LIST�

Return RULE�LIST�

Procedure Find�Best�Complex�E	
Let STAR be the set containing the empty complex�
Let BEST�CPX be nil�
While STAR is not empty�

Specialise all complexes in STAR as follows�
Let NEWSTAR be the set�
fx 
 yjx � STAR� y � SELECTORSg�

Remove all complexes in NEWSTAR that are either in STAR
�i�e�� the unspecialised ones� or null�
For every complex Ci in NEWSTAR�

If Ci is statistically signi�cant and better than
BEST�CPX by user�de�ned criteria when tested on E�
Then replace the current value of BEST�CPX by Ci�

Repeat until size of NEWSTAR 	 user�de�ned maximum�
Remove the worst complex from NEWSTAR�

Let STAR be NEWSTAR�
Return BEST�CPX�

Figure ��	� The CN� algorithm
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Thus� although it maintains the basic ideas� CN� is di�erent from AQ� Figure
��	 describes the algorithm as it appears in �Clark and Niblett� ��
���

The �rst change is the form of the output� Instead of inducing a set of covers�
CN� generates an IF � � �THEN � � �ELSEIF � � �THEN � � � � � �ELSE � � � construct�
which was named rule list �Rivest� ��
	�� The main feature of this is that the
semantics of each individual rule� depend on the previous ones� In other words�
in order for a rule to �re� all the previous rules must have failed� This feature of
the rule list excludes the possibility of a clash during the classi�cation process�
but makes it di�cult to be interpreted by humans�

Rule lists were the result of a more important change in the algorithm� the
evaluation of complexes is no longer restricted to the use of the set of negative
examples of a speci�c class� The selection of a complex at each iteration of the
Find�Best�Complex�E	 procedure� is no longer dependent on seed positive and
negative examples but on its classi�cation performance on the whole training
set� as estimated by a user�de�ned heuristic� This new feature makes the algo�
rithm more tolerant to noise� since each BEST�CPX selected does not have to be
complete and consistent with the training set� but just �predictive and reliable�
�Clark and Niblett� ��
���

The issue of reliability introduces the third major change in the algorithm�
the pruning �or  search stopping�� mechanism� This is achieved by the use of a
heuristic� which measures the signi�cance of each newly generated complex�

�
nX
i	�

fi log�fi�ei� �Likelihood Ratio Statistic� ����
�

where n is the number of classes� fi is the number of examples belonging to the
ith class� in the set of examples covered by the complex and ei is the total number
of examples belonging to the class� scaled to the coverage of the complex �i�e�Pn

i	� fi��
The likelihood ratio �Kalb�eish� ��	��� measures the signi�cance� in terms of clas�
si�cation� of the complex� based on the distance between the resulting class dis�
tribution and the default one� In order for the rule generation process to continue
the result of this measure has to be above a user�de�ned threshold� similar to the
cut�o� threshold in some ID�based systems �Kononenko et al�� ��
���

The �nal important di�erence between AQ and CN� is the criteria used in the
evaluation of complexes� The most common criterion� used in AQ�based systems
is the coverage of the complex �i�e� how many examples it covers�� CN� however
uses entropy to measure the quality of the complex�

�
nX
i	�

pi log�pi� �Entropy� ������

where n is the number of classes and pi is the probability of the ith class� in the
set of examples covered by the complex�
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The main argument for using entropy �applying similarly to ID�based systems�
is that it gives an informative estimate of the classi�cation accuracy of the com�
plex� based on its overall performance� rather than its performance on a single
class� Entropy however has not proved the ideal choice and it was replaced by
the  Laplacian error estimate �Clark and Boswell� ������ described later in this
section�

Based on some experiments done by the developers of CN�
�Clark and Niblett� ��
��� the algorithm seemed to provide similar classi�cation
accuracy to that of a simple implementation of AQ and an ID�based algorithm
�ASSISTANT �Kononenko et al�� ��
��� in relatively �noiseless� domains� The
advantages of the algorithm� however� become apparent with the introduction of
noise� In those cases CN� did substantially better than the AQ algorithm�

These experiments� however� showed that the algorithm could be improved
further� The main problem was that in some cases insigni�cant rules would gain
a high enough score to pass the signi�cance threshold� The reason for that is
that entropy does not take into account the overall coverage of the rules� favour�
ing thus rules which achieve a high accuracy on a small number of examples�
The signi�cance test would eliminate some of those rules� but those which just
�survive�� would be preferred over more signi�cant rules which are less accurate�

The solution to this problem �Clark and Boswell� ����� was to use the  Lapla�
cian error estimate� to evaluate the quality of the complexes�

� � �fi " ��

�
Pn

j	� fi " n�
�Laplace Error Estimate� ������

where fi and n are de�ned as in equation ���
�
Using this function� the quality of a complex is estimated under the assumption
that the complex predicts the class with the highest frequency fi in the set of
examples that it covers� The complex with the lowest error estimate is then said
to be the best one�

The main advantage of this evaluation function over the entropy one is the
it takes into account the total coverage of the complex�
� rather than its perfor�
mance on individual classes� In other words� it does not pay attention to the
discrimination power of the complex� concentrating on its overall signi�cance� In
this respect� the signi�cance test is incorporated in the evaluation function� The
likelihood ratio statistic was maintained� however� acting now as a pure search
stopping criterion���

��Note the importance of the constant elements of the function which provide an indication of
the scale at which the complex covers the training set� The choice of these constants� however�
has not been justi�ed in any of the cited papers�

�	Alternatively� the result of the evaluation function could have been used as a termination
criterion�
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In order to illustrate the behaviour of the two heuristics� assume the following
simpli�ed cases�

CASE �� �Clark and Boswell� �����
Assume a binary classi�cation task and the complexes A�������� and B�����
covering the former ���� examples of the �rst and � example of the second
class and the later  and � respectively� In that case the entropy measure
would select complex B� because it achieves perfect discrimination� ignoring
the fact that A covers a lot more examples and is thus more reliable� The
new evaluation function resolves that problem� providing a much better
score for complex A than for B�

CASE �� Assume a similar situation to the previous case� but this time com�
plexes A���������� and B��������� Entropy would give the same score to
both those complexes� while the Laplace error estimate would favour the
former�

CASE �� Assume a problem with three classes and complexes A�������������
and B������������� This is a situation where the new evaluation function
cannot choose between the two complexes� while entropy would chose A�
because the examples are concentrated in two of the three classes�

Empirical results �Clark and Boswell� ����� have shown that the Laplacian Error
Estimate results to substantially higher accuracy than the Entropy evaluation
function� especially in noisy domains�

Another addition that was done to the CN� algorithm� was the ability to gen�
erate unordered rules �Clark and Boswell� ������ similar to the covers produced
by the basic AQ algorithm� This modi�cation resulted to an algorithm very sim�
ilar to AQ �i�e� carrying out a beam search individually for each class�� with two
major di�erences� inherited from the �ordered� version of the algorithm�

� There are no seed positive and negative examples selected� The algorithm
searches for �reliable and signi�cant� complexes� rather than �complete and
consistent� ones�

� The  Laplace Error Estimate� heuristic is used for the evaluation of com�
plexes�

The main advantage of producing unordered rule lists is that they are more com�
prehensible than the ordered ones� However� contradictions between the rules
are now possible� This problem was solved� by tagging each rule with its corre�
spondent class�frequency distribution in the training set� Using that� an unseen
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example which causes a clash will be classi�ed according to the sum of the dis�
tributions of the rules that �re� For example� assume the following rules�

IF cond� THEN C� ���� �� �Rule��

IF cond� THEN C� �� ��� �Rule��

where ���� �� is the class�frequency distribution for rule �� Assume also an ex�
ample which satis�es both cond� and cond�� In that case� the total frequency
distribution would be ��� ��� and the example will be classi�ed as C�� Exper�
imental results �Clark and Boswell� ����� showed that unordered rules provide
also slightly higher prediction accuracy� than ordered ones� which may be the
result of tolerance to noise� due to the clash resolving mechanism� An additional
feature of unordered rule lists is that they tend to be much larger than the ordered
ones�

Finally� in terms of its interface� CN� is very similar to NewID� The only
di�erences are the following�

�� Only nominal class values can be used�

�� An example which includes a  don�t care� value for some attribute is not
duplicated as in NewID�

�� In the case of an unordered rule list� single rule can be evaluated as well as
the whole list�

�� Nominal attributes cannot be handled as binary�

Another interesting feature of the unordered list produced by CN� is that the
class predicted by a rule does not have to be the one with the highest value in
the frequency distribution� This is usually the case for classes which are not
represented with many examples in the training test�

��
�� Analysis

Design

As described in the previous section� there are two versions of CN�� producing
ordered and unordered rules� Although� they have the same underlying structure�
the design of the controlling element is di�erent for each of them ��gures ��
� �����

The search procedure� however is the same for both versions� with the excep�
tion of the calculation of the signi�cance and evaluation heuristics ��gure ������
These are class speci�c for the unordered version of CN�� Moreover� the  Laplace
Error Estimate� is used� instead of the  Entropy��



Figure ��
� The Control Module �Ordered��



Figure ���� The Control Module �Unordered��



Figure ����� Find Best Complex �CN���
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Worst�Case Computational Complexity Analysis

According to �Clark and Niblett� ��
��� the computational complexity of �or�
dered� CN� is O�jAjMAXSTAR�jEj" log�jAjMAXSTAR���� where A� E cor�
respond to the attribute and the training set and MAXSTAR is the maximum
size of a star �user�de�nable�� This estimate however corresponds only to the
search element of the algorithm and is done under the assumption of binary class
and attributes� which a�ects signi�cantly the calculation� The analysis done here
examines the algorithms in more detail� aiming at a worst�case estimate�

According to �gure ��
 the complexity of the �ordered� version of CN� can
be broken down as follows�

COMP �ORD�CN��E�� !

n� � � COMP �Find�Best�Cpx�E	� "

COMP �Covered�BEST�CPX� E�� "

COMP �E � E �� " COMP �Most�Common�E��� � ������

where n� is the number of iterations before the �nal rule list is constructed�
Similarly for the �unordered� ��g� ���� version of the algorithm�

COMP �UNORD�CN��E	� !

jCj � n� � � COMP �Find�Best�Cpx�E�Ci�� "

COMP �Covered�BEST�CPX� E�Ci�� " COMP �E � E�� � ������

where n� is similar to n� but for an individual class�

Let us examine each individual component�

�� COMP�Find�Best�Cpx�E��Ci��
This can be decomposed further according to �gure �����

COMP �Find�Best�Cpx�E�� Ci��� !

m � � COMP �Multiply�STAR�SELECTORS�� "

COMP �Reduce�NEWSTAR�STAR�� "

jNEW j � � COMP �Signi�cant�CPXj�� Ci��� "

COMP �Evaluate�CPXj��� Ci��� � "

COMP �Trim�NEW � � ������

where m stands for the number of iterations to be done during the process�

The complexity of each of those components is�

�a� COMP�Multiply�STAR�SELECTORS�
The complexity of this process is clearly O�jSTARjjSELECTORSj��
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since each possible selector is added to each complex of the star�
jSTARj ! MAXSTAR� while in the worst case� where all the at�
tributes are numeric and have di�erent values for each example�
jSELECTORSj ! jAj � jEj��� assuming that their values are rep�
resented in ranges� Thus� the total complexity of this process is�
O�MAXSTAR�jAj�jEj���� In the equivalent worst�case for nominal
attributes� the complexity of the process is O�MAXSTARjAjjVmaxj��
where Vmax is the largest value�set� The later case is clearly less ex�
pensive than the former���

�b� COMP�Reduce�NEWSTAR�STAR�
For this process one needs to compare each of the newly added selectors
with the ones already existing in each complex of STAR and discard
the new complex if it is subsumed by the old� or if it contains a con�
tradiction� This will usually be done in parallel to the multiplication
and costs �MAXSTAR�jAj� jEj���� CPX�LENGTH� where CPX�
LENGTH is the length of the old complex� which in the worst case
could contain an average of jAj�� selectors� One could argue at this
point that NEWSTAR should be reduced further� by checking whether
any of the newly generated complexes is subsumed by other new ones�
Although this case is not mentioned in the literature about the algo�
rithm� it seems unlikely to take place at this stage� because it would
result in a combinatorial explosion� It can be done more e�ciently af�
ter the trimming of the new star� Thus the overall complexity of this
step is� O�MAXSTAR� jAj�jEj���� Similarly for nominal attributes
the worst�case is O�MAXSTARjAj�jVmaxj����

�c� jNEW j �COMP �Signi�cant�CPXj�� Ci��
The main requirement� in terms of computations� at this stage is the
calculation of the class frequencies �equation ���
� for each complex
�and their summation in the �ordered� version�� Since we have ac�
cepted jAj�� as the maximum number of selectors per complex� in
the worst case� this process takes time O�jAj�� � jEj�� The maxi�
mum size of the star �jNEW j�� after the reduction stage� is jNEW j !
jAj�jEj��� because that is the maximum number of distinct complexes
that can be produced� Multiplying that to the complexity of the sig�

ni�cance calculation� gives an overall complexity of O� jAj�jEj�

�
� for the

�unordered� and O�jCj � jAj�jEj�

� � for the �ordered� one� The corre�
sponding complexities for nominal attributes are O�jAj�jVmaxjjEj���
and O�jCjjAj�jVmaxjjEj����

�d� COMP�Evaluate�CPXj��Ci� �
Both the evaluation functions used� involve the calculation of class

�
The assumption that the number of distinct values for a nominal attribute is � jEj�� is
reasonable for large training sets where the complexity of the algorithm becomes important�
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frequencies and probabilities �equations ����� ����� with the di�erence
that entropy includes a summation of the results for each di�erent
class�� Thus� the complexity for each version is exactly the same as in
the previous step�

�e� COMP�Trim�NEW�
This �nal step requires the complexes to be sorted according to their
scores and only the MAXSTAR best ones to be kept� The cost of sort�
ing� assuming an e�cient sorting routine� is O�jAjjEj���log�jAjjEj�����

�f� m� Since the complexes in STAR get more specialised each time� m is
upper bound by the maximum size of a complex� Thus the maximum
number of iterations that can take place is jAj�

Thus� according to equation ����� the overall complexity of the search pro�
cess for the �unordered� version is�

COMP �Find�Best�Cpx�E�� !

jAj�
� O�MAXSTAR� jAj� � jEj��� "

O�
jAj�jEj�

�
� "

O��jAj � jEj�� � log�jAj � jEj���� � 
jAj�jEj� ������

and for the �ordered� one�

COMP �Find�Best�Cpx�E�Ci�� ! jCjjAj�jEj� �����

Similarly� the worst�case complexity for nominal attributes is�

O�jAj�jVmaxjjEj�

for the �unordered and

O�jCjjAj�jVmaxjjEj�

for the ordered version of the algorithm�

One has to note at this point that due to the MAXSTAR restriction not
all of the �jAjjEj����� potential complexes are examined� MAXSTAR� thus
determines the exhaustiveness of the search�

��Entropy calculations are signi�cantly more expensive in terms of machine time due to the
calculation of logarithms�
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�� COMP�Covered�BEST�CPX�E��Ci��
This process�� requires that each selector of the complex is compared to the
corresponding selector of each example� Assuming that the selectors are
ordered according to the attributes and attribute values� this process takes
time O�jAjjEj��

�� COMP �E�E�� This step does not add to the computational complexity
of the process� because it can be carried out during the previous step�

�� COMP�Most�Common�E��
In the worst case E� ! E and the computational complexity of this step is
O�jCjjEj��

� n��
In the worst�case of extreme over�tting to the data� jEj complexes will be
generated� Thus n� ! jEj��� If nominal attributes are used� the correspond�
ing maximum value of the parameter is n� ! jVmaxjjAj�

�� n��
In average� the number of examples belonging to each class is jEj�jCj� In
the worst case of over�tting� described above� this number corresponds also
to the number of complexes generated at each iteration� Thus� in a similar
way� we assume that n� ! jEj�jCj� For nominal attributes n� ! n��

Based on the above analysis� the worst�case complexity of the �unordered�
version of the algorithm is�

COMP �UNORD�CN��E�� !

jCj � � jAj�jEj� " jAjjEj� � !

O�jCjjAj�jEj�� ������

while for the �ordered� version the complexity is�

COMP �ORD�CN��E�� !

jCjjAj�jEj� " jAjjEj� " jCjjEj !
O�jCjjAj�jEj�� ����	�

In other words� both versions are of the same order of complexity�

Similarly for nominal attributes the complexity of the two versions of the
algorithm is�

O�jCjjAj�jVmaxjjAj��jEj� ����
�

��Note that this process is implied also in the calculation of the class frequencies�
��This is similar to the situation where 	 large complex with jEj selectors is produced�
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��
�	 Conclusion

The results of the worst�case analysis are very di�erent from the previously re�
ported estimate of the complexity of CN� �Clark and Niblett� ��
��� The reason
for that is the extremity of the worst�case assumptions� which are very atypical
of the situations in which the algorithm is expected to be used� However� these
results could be used as means of comparing the expected performance of the
examined algorithms� In that respect� CN� seems to be doing better than AQ�
and worse than the decision�tree based algorithms both with respect to the size
of the training set and the size of the search space�

The factors which determine the worst�case scenario for CN� are the following�

�� The maximum number of complexes that can be produced�

�� The number of iterations of the complex�generating procedure� needed
to produce the maximum number of complexes�

�� The total number of selectors that exist�

�� The maximum number of selectors each complex can have�

The estimation of the �rst two� of the above listed� parameters is decisive for
the complexity of the algorithm� Previous work on the topic has assumed that
these parameters are only dependent on the nature of the problem� avoiding the
estimation of upper bounds that was attempted in the above analysis�

Concluding� one could argue that CN� provides a substantial improvement to
the basic AQ algorithm� It removes the dependence of the algorithm from speci�c
examples� providing unconstrained specialisation of complexes �i�e� the search is
not constrained to consistent complexes�� This results to better performance in
the presence of noise� further enhanced by the use of the signi�cance criterion�
which provides a �search�stopping� mechanism�

��	 AQ��

����� Introduction

As its name reveals� AQ� �Michalski et al�� ��
��� �Hong et al�� ��
��� is based
on the AQ algorithm �section ������� It is one of the latest versions of the algo�
rithm� incorporating a number of new features �e�g� incremental and constructive
induction�� although its basic inductive process is very similar to its antecedents�
The program has been implemented in Pascal�
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����� Description

Due to the similarity of AQ� to the basic AQ algorithm� this section will focus
on its new features�

Representation scheme

The representation scheme used in the AQ�family of learning algorithms is the
 Annotated Predicate Calculus �APC	� �Michalski� ��
��� This scheme is more
expressive than the schemes used in other algorithms and allows the construc�
tion of decision�rules� which are comprehensive to humans� AQ� introduces an
extension to the basic scheme� as a by�product of the constructive induction pro�
cess� Selectors �or extended selectors as they are now called� can now refer to a
combination of attributes� rather than a single one� If one assumes for example
that attributes a� and a� are numeric the following is a valid selector�

� a� " a� ! ������

Attributes

A further distinguishing feature of the AQ series of algorithms is their ability to
handle tree�structured attributes and their inability to handle continuous ones�
Thus� AQ� accepts nominal� linear �integers�� �interval� �ordinal�� cyclic�� �inte�
gers in circular order� and structured attributes� A further addition to AQ� is the
use of structured classes� A class can be subdivided into children classes� which
are associated with a subset of the training examples belonging to their parent
class� This subdivision could potentially result to more accurate and meaningful
classi�cation within the subclasses�

Examples

The training examples for AQ� have a similar format to the other algorithms�
examined in the project� However� apart from being assigned a single value� an
attribute can be associated with a list or a range of its legal values� Unde�ned
attribute values are also allowed but they are all handled as �don�t care� ones
�ref� section �������

��These are also a by�product of constructive induction� An example would be an attribute
which is de�ned as the modulo of an integer attribute with some arithmetic constant�
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Incremental Learning

In addition to the training examples� AQ� accepts decision rules as input� These
can either be provided by the user as background knowledge or by a previous run
of the algorithm� In the case where such rules are provided� they are being re�ned
according to the new training examples� The result is a new set of rules which
cover in a �consistent and complete� way the input rules and the new examples�
This feature makes the system usable in situations where continuous update of
the rules� in the light of new information� is required�

Constructive Learning

Apart from decision rules� AQ� accepts an additional form of background infor�
mation� It can be given rules which associate attributes in some way and can be
used to generate new attributes� There are two types of those rules� arithmetic
�a�rules� and logical �l�rules�� The former are applied to numeric and the later to
all types of attributes� The following are examples of such rules �assume that a�
b� c are the three sides of a triangle��
A�rule�

area �! ��� a � b if type!right�angle

L�rule�

area �! large if a & b & c � ��

The algorithm uses those rules constructing new features� which are expected to
be more powerful in terms of prediction�

Noise Handling

AQ� lacks the search�stopping criterion used in CN� �ref� ������ but it incorpo�
rates pre� and post�processing facilities� in order to eliminate the e�ects of noise�
Pre�processing involves the resolution of clashes between training examples before
the induction process commences� Clashing examples can be considered positive
or negative for their class or they can be ignored altogether� The way in which
they are to be handled is speci�ed by the user� Post�processing involves the sim�
pli�cation of the generated decision�rules� by eliminating insigni�cant complexes��

�ref� �Michalski et al�� ��
���� The signi�cance of complexes is determined by the
number of examples that they cover�

��This process di�ers from the tree�pruning used in NewID and C���� which would correspond
to the removal of selectors from within the complexes�
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Lexicographic Functionals �LEFs

The learning process of the AQ algorithm involves a search for complexes which do
well in discriminating between positive and negative examples of a class� During
this search� complexes are evaluated based on some user�de�ned criteria �LEFs��
The most commonly used LEF is the coverage of the complex� AQ� introduces
some new LEFs� which can be used for complex�evaluation� Examples of those
are the ratio between positive and negative events covered by the complex and the
cost of variables used� The existence of more LEFs allow the user to tailor the
behaviour of the system to his�her speci�c problem�

Evaluation of Covers

AQ� allows for two modes of evaluation of the generated decision�rules� strict
and analogical� In the former mode an instance must be covered completely by
the complexes of a rule� in order to be used for its evaluation� In the analogical
mode� however� the distance between the rule and the instance is calculated�
The distance of a rule from an instance is de�ned as the probabilistic sum of
the distance of each of the rule�s complexes from the instance� which in turn
is de�ned in terms of the number of selectors of the complex� which cover the
corresponding selectors of the instance �ref� �Michalski et al�� ��
���� Having
calculated the distance of all the rules� the one with the highest score is being
used for the classi�cation of the instance�

Usage

Finally� there are two points to be made about the way in which the program is
being used�

� The program can be run in one of the three following modes�

ic �intersecting covers� In this mode covers of di�erent classes are allowed
to intersect�

dc �disjoint covers� In this mode the algorithm uses as negative examples
for a class the covers generated for the preceding classes�

vl �variable�valued logic� This mode produces an ordered list of rules��� by
ignoring the examples of preceding classes�

� All input to the program is done using specially named relational tables�
This enables the use of a spreadsheet as a front�end to the system�

��This is di�erent from the rule list generated by the ordered version of CN�� because only
one rule is generated for each class�
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����� Analysis

Most of the new features introduced in AQ� are aimed at extending the usability
of the system� but do not a�ect signi�cantly the basic induction structure� Thus�
if one ignores the pre� and post�processing facilities which have been added��� the
core element is similar to the basic version of the algorithm ��gures ���� ������
Thus� this section will focus on a few di�erences which exist�

Design

There are two new features of AQ� which could have an e�ect on the design of
the control module�

� The use of decision�rules as input to the induction process�

� The use of structured classes�

The former involves some extra pre�processing for each individual class� The input
rules are being translated into positive and negative examples for the class� The
later change is handled by considering each sub�class individually� inheriting the
negative examples of its parent and adding to them the examples of its brother�
classes�

Thus� the design of the control module is not a�ected signi�cantly and it
is similar to the one used for the unordered version of CN� ��gure ����� Their
major di�erence� however� is that AQ� bases its search on individual positive
seed examples� Figure ���� describes the control element of AQ��

As seen� when examining CN� ��gure ��	�� the search �for best complex� pro�
cedure of the algorithm is also di�erent from the one in the basic AQ algorithm�
The di�erence lies in that AQ �and AQ�� considers only those complexes which
do not cover the negative examples for the class� rather than evaluating all pos�
sible complexes� Moreover� AQ� di�ers from the basic AQ algorithm in that
it orders the set of negative examples� rather than selecting one in random each
time� Figure ���� describes the process�

Worst�Case Computational Complexity Analysis

Despite their similar structure� the complexity of CN� and AQ� di�er signif�
icantly� mainly due to the inability of AQ� to handle numeric attributes of
unlimited range� which increase substantially the worst�case complexity of the
CN� algorithm�

��A thorough description of those is given in �Hong et al�� 	
���



Figure ����� The Control Module�



Figure ����� The Search Procedure�
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The complexity of the AQ� algorithm can be calculated as follows�

COMP �AQ��E�� !

jCj � n� � COMP �Find�Best�Cpx�E�� e
��� "

COMP �Covered�BEST � CPX�E��� " COMP �E� � E �
�� � ������

where n is the number of iterations before the �nal rule is constructed�
Although this calculation looks very similar to the one done for CN� �equation
������ the worst�case complexity of its components is signi�cantly di�erent�

Let us examine each component in turn�

�� COMP �Find�Best�Cpx�E�� e
��

This can be decomposed further according to �gure �����

COMP �Find�Best�Cpx�E�� e
��� !

COMP � Dist�Sort�E�� e
�� � "

jE�j � � COMP �Covers�STAR� e�j �� "

COMP �Cover�against�e�� e�j �� "

COMP �Multiply�STAR�MGC�� "

COMP �Value�Order�STAR�LEF �� "

COMP �Trim�STAR�� � ������

The complexity of each of those components is�

�a� COMP�Dist�Sort�E�� e
��

This process involves the calculation of the distance between each neg�
ative example in E� and the positive seed e� and the sorting of the
negative examples in descending order of distance� The distance be�
tween two complexes �the examples� is de�ned as the number of dis�
joint selectors that they contain� Thus the complexity of the distance
calculation is of order O�jE�jjAj�� while an e�cient sorting routine will
take time O�jE�j log jE�j�� Assuming that jAj � log jE�j� for large
data sets� the overall complexity of the process is O�jE�j log jE�j��

�b� COMP�Covers�STAR�e�j �
During this process� each complex in STAR is examined as to whether
it covers e�j � Thus the complexity of the process is of order
O�MAXSTARjAj��

�c� COMP�Cover�against�e�� e�j �
At this stage a disjunction of selectors is produced� which provide
the Most General Cover�
 of e� that excludes e�j � The generalisation

��A cover of e�� containing single�selector complexes� that excludes e�j �
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of each selector is based on the domain de�nition of the attribute in�
volved� which speci�es the range of values the attribute can take� Since
AQ� cannot handle numeric attributes without an upper bound� the
value�set for each attribute is �nite� Thus� if Vmax is the largest de�ned
value set� the complexity of this process is of order O�jAjjVmaxj��

�d� COMP�Multiply�STAR�MGC�
During this process� the conjunction of each single�selector complex
of MGC and each complex in STAR is produced� This process is of
order O�jMGCjjSTARj� ! O�MAXSTARjAjjVmaxj� and its output
is a star containing in the worst case MAXSTARjAjjVmaxj complexes�

�e� COMP�Value�Order�STAR�LEF�
The complexity of this process depends on the evaluation function
�LEF� which is selected� In the worst�case� the set of examples covered
by each complex will have to be found and the complexity of the
process will be O�jSTARjjE�jjAj� ! O�MAXSTARjE�jjAj�jVmaxj��
This is the most expensive process carried out during the search for
the best complex and it would have been more expensive if in�nite
value sets were allowed�

�f� COMP�Trim�STAR�
At this stage complexes which are covered by a disjunction of the other
complexes in the cover are eliminated and then the MAXSTAR best
ones are kept� The former process is quite expensive� requiring� in the
worst�case� time O�jSTARj�jAj� ! O�MAXSTAR�jAj�jVmaxj���

Thus the overall complexity� according to equation ���� of the search process
is�

COMP �Find�Best�Cpx�E�� e
��� ! jE�j log jE�j"

jE�j � � MAXSTARjAj" jAjjVmaxj"
MAXSTARjAjjVmaxj"
MAXSTARjE�jjAj�jVmaxj"
MAXSTAR�jAj�jVmaxj� � !

O�MAXSTARjAj�jVmaxjjE�j�� ������

�� COMP �Covered�BEST �CPX�E� �
During this process each positive example is examined as to whether it
is covered by BEST�CPX� As mentioned above� this process costs time
O�jE�jjAjjVmaxj��

�� COMP �E� � E�
�
 �

This process does not add to the complexity of the algorithm because it
can be done at the previous stage�
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n � Clearly� in the worst case� only one positive example will be subtracted from
the set of positive examples at each iteration� Then n ! jE�j�

Based on the above analysis and equation ����� the complexity of the AQ�
algorithm is���

jCj � jE�j � �MAXSTARjAj�jVmaxjjE�j��

For a large number of classes one can assume that jE�j  jEj� Thus� if no
children�classes exist�� the overall complexity of the algorithm is���

O�MAXSTARjAj�jVmaxjjEj�� ������

According to this estimate� the complexity of AQ� has a cubic relation to the
number of training examples� This is one order of magnitude less than the esti�
mate for CN� and that is the result of the upper bound on the size of the value
sets�

����	 Conclusion

By setting a restriction to the number of values each attribute can take one
would expect the complexity of the AQ� to be signi�cantly smaller than the
other examined algorithms� However� this is not the case and the algorithm is
found to have a high order of complexity� not only relative to the number of
training examples� but also to other parameters� Thus� for example� if one was
to increase the maximum size of the value set at the same time as increasing the
number of examples� the e�ect could be dramatic�

Apart from the e�ect that it has on the complexity of the algorithm� having
to specify the range of values for numeric attributes� reduces the applicability
of the system to many real�world problems� This� however� may be o�set by
the plethora of other useful facilities provided by AQ�� Most importantly� the
use of incremental learning and the ability to construct new features� based on
background knowledge can be advantageous to a number of applications�

Concluding� AQ� is an interesting learning system� with numerous useful
facilities� The complexity of the underlying search processes� however� is quite
large� increasing the computational complexity of the algorithm� In order to solve

�	Only the complexity of the search process is included� because it is the one which determines
the complexity of the whole process�

�
If this is not the case the complexity estimate must be multiplied by the proportion of
sub�classes to the classes at the highest level of the hierarchy�

��Notice that due to the upper bound to the number of values of integer attributes� the
complexity of the algorithm is the same for both nominal and numeric attributes�
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this problem� the search space is being limited� with the use of upper bounds to
the size of the value sets� Thus� an improvement of the search method could make
possible the removal of the restriction in the search space� This is succeeded to a
certain extend in the CN� algorithm �section ����

��� Summary

This chapter has provided a description of the algorithms that were used in the
project� In addition to that� a detailed worst�case computational complexity
analysis of the algorithms was carried out� focusing on those design decisions�
which a�ect mostly their performance�

Algorithm Heuristic Purpose Problems
NewID Simple Entropy Evaluation Favours attributes

�eq� ���� with many values
Sum of Class Variances Evaluation

�eq� ����
�Binary nominal� Splitting

C�� Mutual Information Evaluation Unbalanced Splits
�entropy gain�

�eq� ����
Value�grouping Splitting

PLS� Region Distance Evaluation and
�eq� ����� Growth�stopping

CN� Likelihood Ratio Statistic Growth�stopping
�eq� ���
�
Entropy Evaluation Rules with

�eq� ����� small coverage
Laplace Error Estimate Evaluation

�eq� �����
AQ� LEFs �variety of heuristics� Evaluation

Table ���� Heuristics used in each algorithm�

During the description of the algorithms� special attention was paid to the
heuristics used and the types of attributes that each algorithm can handle� This
is due to the importance of these two features to the computational complexity
of the algorithms� Table ��� and ��� summarise these information� provided
throughout the chapter�

In addition to these� the following are important features of the algorithms�
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Algorithms
Attribute Types

nominal ordinal integer continuous structured
NewID

p p p p
'

C��
p

'
p p

'
PLS� ' '

p
' '

CN�
p p p p

'
AQ�

p p
�bound� '

p

Table ���� Attribute types that each algorithm can handle�

� Coverage
Irrespective of the representation used� the end�result of all the examined
algorithms can be seen as a set of orthogonal hyperrectangles in the hyper�
space de�ned by the feature set� This is a feature dominating the design of
the algorithms� which incrementally build this set of rectangles�

� Expressiveness of Representation
Although they all generate a set of hyperrectangles� the expressiveness of
the representation scheme of the examined algorithms varies substantially�
For example� the scheme used by PLS� is very restrictive allowing only
for ordered attributes� while AQ� can handle structured concepts and at�
tributes and generate new attributes� combining old ones in a logical or an
arithmetical way�

� Search Type
The �specialisation� algorithms �NewID� C��� PLS�� use hill�climbing�
while the �generalisation� ones use beam search�

� Incremental and Constructive Learning
Only AQ� is able to perform these types of learning�

In terms of their computational complexity� the algorithms which use decision�
trees were found to be over�quadratic� while the other three are of even higher
order� These results are very di�erent from previously reported work� where sim�
ilar algorithms to the ones examined here are shown to be of a near�linear worst�
case computational complexity �e�g� �Rendell et al�� ��
��� �O�Rorke� ��
��� etc���
The main reason for this is that researchers� who have dealt with the problem in
the past� assumed that only nominal features would be used by the algorithms�
An assumption that was valid for early versions of the algorithms� The most
recent versions� however� incorporate mechanisms for dealing with numeric fea�
tures� which cause the search space to become of an in�nite size and push the
upper bounds� considered in worst�case analysis to the size of the training set�
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Algorithms
Attribute Types

nominal special integer continuous
NewID O�ca�ve� O� �

��
cav�e�� O��

�
ae� log�e���� O��

�
ae� log�e����

C�� O�ca�ve� O��
�
c�av�e�� O��

�
ae� log�e���� O��

�
ae� log�e����

PLS� ' ' O�cae�� '
CN� O�ca�va��e� ' O�ca�e�� O�ca�e��
AQ� O�sa�ve�� ' O�sa�ve�� '

Notes�
s ! MAXSTAR
c ! jCj ! jVcj
a ! jAj
v ! jVmaxj
e ! jEj

Table ���� Summary of complexity estimates�

Table ��� summarises the worst�case computational complexity estimates pro�
duced in this chapter� grouping them according to the di�erent types of attributes
each algorithm can handle� The following need to be noted about the contents of
this table�

� Structured attributes are not included� since only AQ� can handle them�

� Ordinal attributes are handled in the same way as integer ones and are thus
omitted as well�

� C�� and NewID allow for �special treatment� of nominal attributes�

� The cubic estimate is presented for PLS�� because the over�quadratic one
cannot be justi�ed by its description�

In general the following comments can be made about the complexity results
presented in the chapter�

�� Most of the algorithms can handle nominal attributes quite e�ciently� with
respect to the size of the training set� but they do worse in terms of the size
of the attribute set and the value�sets� This is because the search space is
limited by the domain�de�nition of the nominal attributes�

�� The use of value�groups �binary split in the case of NewID� for nominal
attributes� increases even more the order of complexity with respect to the
size of the value�sets� At the same time the complexity with respect to
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the number of examples increases� since the restrictions set by nominal
attributes to the size of the search space are removed�

�� The complexity of the algorithms which can handle integer and continuous
attributes is the same for both these types�

�� AQ� imposes an upper bound to the number of values of an integer at�
tribute� thus decreasing the order of complexity of the algorithm�

� The value of MAXSTAR does not seem to a�ect the worst�case complexity
of the CN� algorithm� although this is not expected to hold in the average
case�

Nevertheless� one has to be very careful with the interpretation of the results of
a worst�case analysis� The situations which were assumed� in order to obtain those
results are extreme and very atypical of the problems that a concept�learning
system will usually be required to solve� Thus� it is expected that the results of an
average�case analysis would be very di�erent� The following chapter examines the
scalability of the algorithms in an experimental way� using arti�cial and natural
data� in order to con�rm the validity of the results reported in this chapter
and examine how these compare to the performance of the algorithms in typical
situations�



Chapter �

Scaling up on Real and Arti�cial

Data

��� Introduction

The claim made in chapter � was that the worst�case computational complexity
of the examined algorithms is over�quadratic and in some cases cubic� This claim
however is based on the occurrence of extreme situations which are atypical for
normal classi�cation tasks� The �rst objective of this chapter is to compare these
worst�case results with the results of an experimental analysis of the algorithms�
using two real�world data sets� These data sets describe typical classi�cation
tasks aiming to provide an average�case indication of the performance of the
algorithms� In addition to that� an arti�cial problem is used� in order to examine
the validity of the theoretical results� This task describes a typical situation where
the learning methods used in the examined algorithms are inadequate� resulting
to their near�worst case performance�

There have been numerous experimental analyses and comparisons of Ma�
chine Learning algorithms in the past �e�g� �O�Rorke� ��
��� �Rendell� ��
���
�Gams and Lavrac� ��
	�� �Fisher and McKusick� ������ �Mooney et al�� ������
�Weiss and Kapouleas� ������ �Nakhaeizadeh et al�� ������ etc��� a few of which
have examined the computational performance of the algorithms� The ones which
are relevant to the work presented here are �O�Rorke� ��
�� and �Rendell� ��
���
which however su�er from the following problems�

�� They use old versions of the algorithms� most of which cannot handle
numeric attributes�

�� The data sets that are used are too small �i�e� � ���� data points� for
an adequate computational performance evaluation of the algorithms�

���
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�� They perform a general comparison of the algorithms� of which the per�
formance evaluation is only a small part� As a result� the evaluation is
rather shallow�

On that basis� the analysis presented in this chapter is a specialised one� exam�
ining in depth the scaling behaviour of the �ve concept�learning algorithms on
real�world classi�cation tasks� Most of the algorithms are state�of�the�art ones�

and the data sets are substantially larger than the ones used in the work cited
above�

��� Description of Data Sets

	���� Selection Criteria

The main criterion for the selection of the real data sets is their size� At this
point� an important distinction has to be made between the size of the data set
and the size of the search space� both of which are relevant to the problem of
scalability� The size of the data set is de�ned by the number of instances that
the set contains� The search space on the other hand is de�ned by the type and
the domain of the features used to describe the concept�

Although the size of the training set is the main variable which is used to
evaluate the scalability of the algorithms� the type of attributes that are used
is also a very important factor for the selection of the data sets� This is due to
the observation that the computational complexity estimate of the algorithms is
usually much worse for numeric than it is for nominal attributes� Thus problems
which use numeric attributes have been favoured for this analysis�

Other criteria� which have a�ected to a smaller extend the selection of the
data sets are the following�

� The amount of noise in the training set� Both the computational and the
classi�cation performance of the algorithms tend to degrade as the amount
of noise in the data set increases� Seen from a di�erent point of view� the
e�ects of noise with respect to an increase in the size of the training set is
a very interesting issue� a�ected also by the distribution of the noise�

� The type of the problem� It is a common practice of the developers of ML
algorithms to test them on toy�problems that they construct� This allows
them to test speci�c aspects of the algorithm� However� very rarely the

�Except from PLS	 which has not been improved substantially in the recent past�
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training sets that they use combine all the problems that appear in real�
world domains� This is usually true about the size of the data set� Toy�
problem data sets are seldom as big as real�world ones� Thus real�world
problems are favoured for the scalability analysis of the algorithms�

� The structure of the problem is also important since some problems require
special representation schemes which are not supported by some or all of
the algorithms used in this project�

The main source of data sets that has been considered is the UCI Repository of
Machine Learning Databases �Murphy and Aha� ������ which contains a number
of data sets used in Machine Learning research in the past� Appendix B examines
some of those data sets� classifying them according to the criteria listed above�

	���� Recognising Typed Letters

The �rst real data set used in the experimental analysis is the �Letter Recognition�
one� which was donated to the UCI Repository by D�J� Slate� The data set has
originally been used by its author as an application domain for Holland�style
genetic classi�er systems�Frey and Slate� ������ More recently the data set has
also been used in the StatLog project�Nakhaeizadeh et al�� ������

The task in this set is to classify typed uppercase letters of the Latin alphabet�
based on a number of statistical properties of their pixel images� The initial
characters that are used belong to �� di�erent fonts� including normal Latin
ones� script� italics and Gothic� These characters are randomly distorted in four
di�erent ways�

� Horizontal magni�cation�

� Vertical magni�cation�

� Horizontal warp�

� Vertical warp�

introducing thus noise to the data� The resulting images are then encoded in
terms of �� of their �rst and second�order statistical properties� which are further
scaled to the common integer range ��� �� The �nal scaled values constitute the
features used in the classi�cation problem�

�This scaling provides a convenient representation for the genetic classi�ers used by the
author of the data set�
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The data set contains ������ instances� which are generated in the manner
described above� Examples of the features used to describe each instance are the
following��

�� The width and the height of the smallest rectangular box containing the
character� which measures the size of the character�

�� The horizontal and vertical mean positions of �on� pixels� which measures
the distribution of �on� pixels in the pixel image�

�� The horizontal and vertical variance� based on the corresponding mean
positions�

The class feature is simply the uppercase letter corresponding to the instance�
Finally� the data set does not contain any missing values�

The main reason why this data set was selected is the number of instances
that it contains� Moreover the use of bound integer attributes makes it very
interesting� since one of the algorithms �AQ�� cannot handle unbound ranges of
integers� Thus� this type of attribute allows the investigation of all �ve algorithms�
in a numeric feature space� Finally� the fact that the set has been previously
used allows for comparison of the results presented here with the ones previously
presented�

	���� Classifying Chromosomes

The second real data set used in the experiments describes a chromosome analysis
task� It is the Copenhagen data set� used also in �Errington and Graham� ����a�
and �Errington and Graham� ����b�� where an arti�cial Neural Network system
is used for the classi�cation of chromosomes� The Neural Network is shown to
achieve higher classi�cation performance than other statistical classi�ers which
have been used in the past on the same task� The data set was provided by the
Department of Medical Biophysics� University of Manchester�

Each instance of the set corresponds to a chromosome� which is described in
terms of � features� extracted in the following way�

�� Chromosomes in cells which are in the metaphase stage� are stained� pro�
ducing a series of bands along their length �G�banding��

�� A Grey�level pro�le is produced for each chromosome� giving an indication
of the banding pattern�

�Refer to �Frey and Slate� 	

	 for a complete description of the attribute set�
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�� The pro�les are scaled in order to eliminate length and grey�level variations
between the chromosomes�

�� The scaled pro�les are discretised at � positions along the length of the
chromosome� using local averaging�

The result of this process is a vector of � real�valued attributes� which correspond
to the � average grey level values�

The data set contains 
���� examples� described in terms of the � extracted
features� In �Errington and Graham� ����a� and �Errington and Graham� ����b�
two more attributes are being used �the length of the chromosome and its cen�
tromere index��� which have not been used in this analysis� The class attribute
can take �� independent values� corresponding to the �� di�erent types of chromo�
somes ��� �autosomes� and � �sex chromosomes��� Finally� due to the sampling
method used� the quality of the data set is considered very good� minimising the
possibility of noise�

The most interesting characteristic of this data set is the fact that it uses
continuous attributes� Although only three of the examined algorithms can be
tested on this set �AQ� and PLS� cannot handle continuous attributes� it is
interesting to examine the e�ect that real� instead of integer�valued� attributes
may have on the computational performance of the algorithms� In addition to
that� the set is fairly large and it has been used in the past� allowing for a
comparison of the classi�cation performance of the symbolic algorithms used
in this project to the numeric one used in �Errington and Graham� ����a� and
�Errington and Graham� ����b��

	���	 Learning Even Numbers

This is a simple arti�cial problem� whose purpose is to examine the validity
of the worst�case estimates produced in the previous chapter� The task is the
discrimination between even and odd integers� provided no more information but
the integers themselves� The size of the data set is obviously unlimited� while the
size of the training sets used in the experiment is externally de�ned�

Each set contains the �rst n integers� where n is the set�s size� There is only
one integer attribute used for the problem and the class attribute is a binary one�
taking the values true and false when the attribute value is an even or an odd
number respectively�

The key feature of this problem is that there is no knowledge encoded in the
feature set� Instead of providing information about properties of the instances

�This is an indicator of the size of the small arm of the chromosome as a proportion of its
whole length�
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�integers�� raw data �i�e� the integers themselves� are provided� As a result there
are no similarities between the instances� on which induction can be based�

Also very important is the pattern that the data follow� which is one that
cannot be detected by the examined algorithms�� When provided with numeric
attributes� the algorithms look for ranges of those attributes� sharing the same
class value� These ranges serve as sides of rectangular regions in the hyperspace�
In this case� the outcome of that method is a large number of ranges� each of
which contains only one instance� Clearly� this discrimination method is not
suitable for the problem� because there are no adjacent attribute values sharing
the same class value�

In addition� the problem has a number of characteristics� which make it suit�
able for the experimental worst�case analysis of the algorithms�

�� The attribute is numeric� de�ning an in�nite search space�

�� The fact that the class is binary and there is only one attribute min�
imises the e�ect that other factors apart from the number of examples have
on the computational performance of the algorithms�

�� The entropy heuristic� used in a number of algorithms� favours splits near
the ends of the range of integers� used as instances� The result of this is
that decision trees are not only complete but highly skewed as well�

Given the above features� this problem is expected to force the examined
algorithms to near worst�case behaviour� similar to that assumed in the theoretical
analysis�

��� Test Organisation

	���� Measuring Scalability

The problem of measuring the scalability of an algorithm� using a speci�c data
set can be de�ned in terms of an independent variable� which is the size of the
training set� and the quantity being measured� which is the rate of change in the
computational performance of the algorithm� The desired outcome is a function
of the form�

Pa ! f�St�

�Other types of ML algorithms� notably the ones used in Inductive Logic Programming� can
easily cope with this problem�
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de�ning a relationship between the performance of the algorithm Pa and the size
of the training set St� which can be translated to a computational complexity
estimate�

In order to derive the above relationship� the CPU�time consumption of the
learning process is measured at di�erent  size�steps�� CPU�time consumption is
de�ned in this case as the  user time� component of the overall time consumption
of the process� excluding things like the swapping time� which depends on the
memory capacity of the machine and can have an undesirable e�ect on the �nal
measurement� Built�in C and Pascal functions �getrusage and clock respec�
tively� are used for the measurement of time consumption�

The size�steps that are used are determined in an exponential way� starting
from a small power of �� usually �� ! �� instances� and multiplying by � each
time� up to the step closest to the ��� of the size of the whole data set�� The
reason why the size of the training set St is varied exponentially is because the
rate of change� rather than the absolute value� of the computational performance
of the algorithm is examined� Moreover� in order to reduce the possibility of
erroneous and coincidental measurements� at each size�step three random subsets
of the data set are used and the results of the three tests are averaged�

The results of this analysis are plotted on a logarithmic scale for both axes
and the slope of di�erent parts of the resulting line are examined� In most cases�
an additional �tting of several standard curves is attempted� approximating the
order of increase of the learning time� The curve that best �ts the generated
line can �nally be compared to the theoretical estimate of the complexity of the
algorithm�

	���� Measuring Classi�cation Accuracy

In addition to the computational performance� for real data sets� the classi�ca�
tion accuracy of the decision function� generated by each algorithm� is measured
on unseen test cases� The objective of this measurement is to verify that algo�
rithms which do well in computational terms� do not do so at the expense of low
classi�cation performance�

There are a number of statistical methods for measuring the classi�cation
performance of an algorithm�� One of the most reliable ones that has been used
in the past is cross�validation� where the data set is divided into k subsets� each
of which is used as the training set and the rest as a test set� The results of the
k runs are averaged to produce the classi�cation accuracy of the algorithm for a
training set of size equal to each of the k subsets�

�The remaining 	�� is used as a test set of unseen cases�
��Nakhaeizadeh et al�� 	

� gives an interesting account of them�
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The main problem with this approach is that it is computationally heavy�
especially for large size�steps� An alternative to that� which has also been very
popular� is to select at random ��� of the data set to be used as the training set
and use the remaining ��� as a test set� A variation of this method is used here
as well� A test set� which is ��� of the whole data set� is randomly selected for
testing and from the remaining ��� a subset of the required size is selected for
training� Again three tests are done at each size�step and the results are averaged
to give the classi�cation accuracy of the algorithm for that size�

As in most similar analyses� the classi�cation accuracy of an algorithm is
measured as the percentage of correctly classi�ed instances of the test set� The
results are plotted on a logarithmic scale for the horizontal axis �size of training
set� and a linear one for the vertical axis �accuracy�� The outcome of that plot
is known as the  learning curve� of the algorithm�

	���� Hardware Speci�cation

All the experiments presented in this chapter were carried out on a
 Sun�SPARCsystem����� machine
� which contains �� MBytes of �xed memory
and ��� MBytes of swap memory� The system runs the  SUNOS ������ operating
system�

��� Experimental Results

	�	�� Letter Recognition

Set�up

According to the  size�step� scheme introduced above� this data set can be used
to produce � steps� Set sizes vary from �� to ��� ��� training instances� The
size of the test set is always around �� ��� instances� which are di�erent from the
ones used in the training set� At each step three tests are done and the results
are averaged to produce an estimate of the computational and the classi�cation
performance of the algorithms� The maximum deviation from the mean value is
also reported for each step�

In this experiment� all �ve algorithms can be used� since all of them can handle
bound integer attributes� The following are the parameter settings for each of
the algorithms�

�A server machine similar to a SPARC��
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C�
�� Default settings�

NewID� Default settings�

PLS�� �� The parametermintotalcount� which determines how many instances
a region must contain� in order to be considered for splitting� is set to
�� aiming at perfect discrimination�

�� Also maxspansteps is set to �� because all of the integer attributes
used have a value range ����� Thus � steps allow the examination of
all possible splitting points� between the �� feature values�

CN�� �� The ordered version of the algorithm is used �described in section
����

�� The Laplacian error estimate is used� because it has proved
�Clark and Boswell� ����� to be better than the Entropy one�

�� The maximum star size parameter has been set to 	� which has proved�
during some initial experimentation� to be large enough for the gener�
ated decision rules�

AQ��� �� Disjoint covers are generated� similar to the other examined algo�
rithms�

�� The maximum star size parameter has been set to �� which is the size
of the feature�set�� The setting of this parameter however is suspected
for the low classi�cation performance of the algorithm in the experi�
ment� Some experimentation was also done� using a value of 	 �similar
to that used for CN��� which has provided worse classi�cation results�

From the above list� it is clear that wherever possible� the default values were
used� The setting of the maximum star size parameter� for the CN� and AQ�
algorithms� has proved to be a di�cult task� since the value of this parameter
a�ects substantially the performance of the algorithms�

Scalability Results

The results of the computational performance part of this experiment are sum�
marised in �gure ��� ���

The �rst thing to note about these results is that they do not agree with the
theoretical estimates presented in the previous chapter� The rate at which the
CPU�time consumption increases� as the size of the training set is doubled at

	This is a guideline appearing in �Hong et al�� 	
���
�
Appendix C contains the tables corresponding to the graphs that are presented in this

section�
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Figure ���� Scalability Results� using the Letter Recognition data set� �corre�
sponds to table C���
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each step� is slightly above linear� This is illustrated more clearly in �gure ����
where the rate at which the CPU�time consumption increases at each size�step is
examined for each algorithm� This rate is calculated by the following formula���

rs !
cs
cs��

where rs is the calculated ratio at size�step s� while cs and cs�� correspond to the
CPU�time consumption of the algorithm at steps s and s� � respectively�
If the behaviour of the algorithm was linear� the outcome of this transformation
would be a straight horizontal line� crossing the y�axis at �� which is the rate at
which the size of the training set increases at each step� This relationship is shown
by the lower thick dashed line in the diagram� Similarly� a quadratic relationship
would produce the upper horizontal dashed line� intercepting the y�axis at the
rate of ��

Most of the algorithms �except PLS�� start with a very close to linear be�
haviour� some of them actually lying below the linear threshold� The explanation
for this is given by the set�up cost involved in each algorithm� which is relatively
�xed and accounts for most of the time�consumption for small training sets� This
also explains the high increase rate� which is observed for most of the algorithms�
at the second size�step ��� instances�� As the size of the training set becomes
quite large� di�erent algorithms behave di�erently� although a general upwards
trend in the rate of increase is observed� More speci�cally�

� For C�
� the e�ect of the �xed costs gradually disappears� leading to a
behaviour very close to linear for the size�steps between �� and �� ��
�
For size�steps above this point the rate estimate increases� leading to the
conclusion that the overall behaviour of the algorithm is slightly above
linear�

� NewID and CN� start with a low rate� which however increases steadily
after the third size�step and this increase becomes steeper as the training set
becomes larger� For the largest sets used� the two algorithms become very
expensive� CN� moving even above the quadratic threshold� This behaviour
suggests that the algorithms use some optimisation method which cannot
handle very large data sets�

� PLS� is the only algorithm which starts well above the linear threshold and
remains above it throughout the experiment� For the �rst three steps its
behaviour follows the normal pattern� explained by the �xed initialisation
costs� After that� the rate of increase remains fairly steady� showing a
temporary increase for the two penultimate tests and a decrease for the

��This formula is a substitute of the �rst�derivative� which cannot be used due to the small
number of data points�



CHAPTER �� SCALING UP ON REAL AND ARTIFICIAL DATA ���

100 1000 10000 100000
set size (instances)

1

2

3

4

5

R
at

e 
of

 in
cr

ea
se

 

Rate of increase of CPU-time consumption
Letter Recognition Set

C4.5
NewID
PLS1
CN2
AQ15

(n
2
)

(n)

Figure ���� Letter Recognition Set� The rate of increase of the CPU�time con�
sumed at each size�step� �corresponds to table C���
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largest training set� Thus� the relationship between the size of the training
set and the cost of the algorithm seems to be a steady one�

� AQ�� behaves similar to the average behaviour of the other algorithms�
starting from a very low rate of increase� which becomes large as the size
of the training set increases�

In order to con�rm the validity of the linearity claim� simple linear regression
was used� attempting to �t a straight line to the original as well as a modi�ed
version of the data� In the modi�ed version� the CPU�time consumption values
were changed according to the following formula�

c�s !
cs

ln�xs�

where cs and c�s are the original and the modi�ed consumption values and xs is
the set size at step s�
Fitting a straight line to these data� approximates the n ln�n� relationship be�
tween the CPU�time consumption and the size of the training set� Tables ��� and
��� summarise the results of this analysis�

correlation regression regression t�value for
Algorithm coe�cient coe�cient coe�cient regression

�slope	 error coe�cient
C�� ����	 ����� ������ ���	

NewID ���		 ���� ������ �����
PLS� ���� ���� ������ ����	�
CN� ���	 ����� ����	� 
�	��
AQ� ���
 ���
� ���
�� ������

Table ���� Regression analysis for linear behaviour on the Letter Recognition Set�

Using those results the following observations can be made�

� Based on the values of the correlation coe�cient� one concludes that there is
a signi�cant linear relationship between the CPU�time consumption of the
algorithms and the size of the training set� This relationship is stronger for
C�� and PLS� and it becomes even stronger in the analysis of the log�linear
behaviour�

� The slope of the �tted line� given by the regression coe�cient is higher for
the generalisation algorithms� especially for AQ�� than for the specialisa�
tion ones� This is a result of the high computational overhead imposed by
the former category of algorithms� which has also been observed in �gures
��� and ����
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correlation regression regression t�value for
Algorithm coe�cient coe�cient coe�cient regression

�slope	 error coe�cient
C�� ����� ������ ���	e�� ���	

NewID ���
� ����� ���e�� ����
PLS� ����
 ����� ���e�� ����

CN� ����� ������ ���e�� ���

AQ� ���
� ����� ���e�� ���



Table ���� Regression analysis for log�linear behaviour on the Letter Recognition
Set�

� Finally the low regression coe�cient error values and the high t�values sup�
port the claim of a strong linear and an even stronger log�linear trend in
the data�

Another important observation to be made on �gure ��� is the large di�erence
between the absolute values of the cost of each algorithm� Although all algorithms
behave in a near�linear fashion� some of them become prohibitively slow for large
data sets �e�g� AQ��� The extreme case is the di�erence of AQ� from C���
which is given by the intercept of the corresponding lines in the diagram� In
general� algorithms using specialisation �i�e� C��� NewID and PLS�� seem to
impose a lower computational overhead than the generalisation ones� The slower
of the former category �i�e� PLS��� which is a very old algorithm is comparable
to the fastest of the latter category �i�e� CN���

Classi	cation Accuracy Results

The results of the classi�cation performance analysis of the algorithms are pre�
sented in �gure ������

Although the classi�cation performance of the algorithms is not the central
issue of this analysis� a number of interesting observations can be drawn on the
obtained results�

�� Most of the algorithms perform similarly� The only exception is AQ��
which performs substantially worse� The reason for that is probably the
parameter�settings that have been used and in particular the maximum
star size parameter�

��The reason why the learning curves have a slightly di�erent shape than usually� is because
a logarithmic scale is used on the x�axis�
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Figure ���� Classi�cation Accuracy Results� using the Letter Recognition data
set� �corresponds to table C���
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�� The classi�cation accuracy of the algorithms seems to converge just be�
low ��#� This is a much better performance than the one presented in
�Frey and Slate� ������ who have used genetic classi�ers on the same set�
Their highest achieved accuracy� using a training set of ��� ��� instances
was just above 
�#�

�� As expected the deviation from the presented mean value decreases as the
size of the training set increases and the generated classi�ers become more
reliable�

�� A further indication that something is going wrong with the settings for
AQ� is the high deviation from the mean value for this algorithm�

	�	�� Chromosome Classi�cation

Set�up

This data set is smaller than the Letter Recognition one� It contains 
� ��� data
points which provide 	 size�steps� ranging from �� to �� ��� instances� In addition
to those� an eighth test was carried out� using � ��� instances� which correspond
to ��� of the whole set� In a similar manner to the Letter Recognition experiment�
three tests were done per step� averaging the results to produce the estimated
performance of each algorithm� In this experiment ��� of the whole data set
�i�e� ��	�� data points� is used in the test set� when measuring classi�cation
performance�

As mentioned in the description of the data set� the attributes that are used
are real numbers and because of that� only three of the algorithms can be used�
The parameter settings for them are as follows�

C�
�� Default settings�

NewID� Default settings�

CN�� �� In contrast to the Letter Recognition experiment� the unordered ver�
sion of the algorithm was used�

�� The Laplacian error estimate was used here as well�

�� The maximum star size parameter is also the same as in the previ�
ous experiment �i�e� it is set to 	�� although the performance of the
algorithm suggests that this is not its optimum value for this prob�
lem� However� some experimentation with di�erent settings has not
provided better results�

Again default settings were used wherever possible�
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Scalability Results

Figure ��� presents the results for the computational performance of the algo�
rithms in this experiment�
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Figure ���� Scalability Results� using the Chromosome Classi�cation data set�
�corresponds to table C���

In general the behaviour of the algorithm is very similar to the previous exper�
iment� All three algorithms have a near�linear behaviour and the �generalisation�
one �i�e� CN�� is more expensive than the two �specialisation� ones� However
there are a few things to be noted about the results� which di�er from the previous
experiment�
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consumed at each size�step� �corresponds to table C��
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�� The absolute CPU�consumption values are slightly higher than the corre�
sponding ones for the previous set� Since the number of attributes and
classes are smaller for this data set and the only major di�erence in the
de�nition of the search space is caused by the type of the attributes that
are used� it is suspected that the computational overhead imposed by each
algorithm is higher for continuous than it is for integer attributes�

�� Another possible explanation for the higher CPU�time consumption values
could be the higher complexity of the problem� In that case however a
higher rate of increase rather than higher absolute values would be expected
�Rendell� ������ Comparing the results presented in �gure �� with those
in the previous section ��gure ���� the rate of increase of the CPU�time
consumption seems to be lower in general for this problem� In fact� the
average increase rate for NewID and CN� is considerably lower than in the
Letter Recognition experiment���

�� A further interesting observation that can be made on the results of �gure
�� is that the rate of increase for the three algorithms remains fairly stable�
The behaviour of the algorithms remains very close to linear throughout
the experiment� although CN� becomes slightly more expensive for larger
training sets� It seems possible however that if larger sets could be used a
large increase in the cost of NewID and CN�� similar to the �rst experiment�
would have been observed�

�� A �nal point to be made on �gure ��� is that the absolute consumption
values for C�� are only minimaly lower than the ones for NewID� for small
training sets� while the algorithm becomes more expensive than NewID
for larger sets� This is a major di�erence to the results of the previous
experiment ��gure ����� which seems to be caused by the fact that NewID
can handle continuous attributes more e�cient than C��� This conclusion
is also supported by the fact that the rate of increase for NewID is lower
than that of C���

The regression analysis results �tables ��� and ���� support the conclusions
drawn above� More speci�cally�

� The correlation coe�cient values and the t�values show a stronger linear
behaviour than in the Letter Recognition experiment� which is even better
for the log�linear relationship� In fact� NewID seems to �t almost perfectly
to the log�linear behaviour estimate�

� In contrast to the previous experiment� the linearity of NewID is higher
than that of C��� This agrees with the conclusions drawn above�

��The actual average values are given in tables C�� and C���
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� The estimated regression coe�cient values for CN� and NewID are lower
than in the previous experiment� due to the lower average increase rate for
the two algorithms�

correlation regression regression t�value for
Algorithm coe�cient coe�cient coe�cient regression

�slope	 error coe�cient
C�� ����
 ���
 ������ ����
�

NewID ����� ����� ������ 	���
CN� ����� ���
� ����
 ����
�

Table ���� Regression analysis for linear behaviour on the Chromosome Classi��
cation Set�

correlation regression regression t�value for
Algorithm coe�cient coe�cient coe�cient regression

�slope	 error coe�cient
C�� ����� �����	 ����e�� ����

NewID ����� ����	 ��	�e�� ������
CN� ����
 ���� ���
e�� �	�	�

Table ���� Regression analysis for log�linear behaviour on the Chromosome Clas�
si�cation Set�

Classi	cation Accuracy Results

Figure ��� shows the results of the classi�cation performance part of this
experiment� The conclusions drawn on these results are to a large extent similar
to those in the Letter Recognition experiment�

�� The performance of NewID and C�� is very similar� converging to a clas�
si�cation accuracy around 
�#�

�� The deviation from the estimated accuracy value is in general higher than in
the previous experiment� especially for large data sets� because it decreases
a lot slower� Using this as an indicator of reliability� one can argue that the
algorithms do not provide very good solutions to the problem�



CHAPTER �� SCALING UP ON REAL AND ARTIFICIAL DATA ���

60 600 6000
set size (instances)

0

20

40

60

80

100

ac
cu

ra
cy

 (
%

)

Classification Accuracy
Chromosome Classification Set

C4.5
NewID
CN2

Figure ���� Classi�cation Accuracy Results� using the Chromosome Classi�cation
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�� The suspicion that the performance of the algorithms is not very good
is con�rmed by the high classi�cation accuracy that the Neural Network
classi�er achieves in �Errington and Graham� ����a�� The authors of those
papers report an accuracy of ����#� using only half of the data set for train�
ing �i�e� �� �� instances�� This can probably be attributed to the nature of
the concept to be learned� which cannot be approximated su�ciently by a
set of orthogonal hyperrectangles�

�� The behaviour of CN� is very similar to that of AQ� in the previous
experiments �i�e� very low accuracy and high deviation from the mean
value�� This is probably caused by the parameter settings used for the
algorithm�

	�	�� Learning Even Numbers

Set�up

As mentioned above� this is an arti�cial problem and therefore training sets of
unlimited size can be used� The  size�step� convention adopted in the other ex�
periments is used here as well� with set�sizes ranging from �� to the maximum
number of instances that each algorithm can handle� The limits of each algorithm
in that respect are as follows�

� C�
�� The maximum set size used for this algorithm was 
� ��� instances�
but the algorithm can handle more than that�

� NewID� �� ��� instances�

� PLS�� �� ��� instances�

� CN�� �� ��� instances�

� AQ��� �� ��
 instances�

Another di�erence of this experiment with the other ones is that only one test is
done per step� since the construction of the training sets is done deterministically�
rather than by random selection of instances�

All �ve algorithms were used in this experiment and their parameter settings
are as follows�

C�
�� The termination criterion for this algorithm examines whether at least two
branches contain a minimum number of objects� By default this number is
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set to �� but for this experiment it has been changed�� to �� in order for a
complete tree to be generated�

NewID� Default settings�

PLS�� �� mingoodcount is set to � and mintotalcount is set to �� achieving
complete region splitting�

�� tsubalphaclus is set to ��� in order for all splits to be considered sig�
ni�cant�

�� maxspansteps is set to the size of the training set� leading to the ex�
amination of all possible splitting points�

�� The constant controlling the maximum number of numeric attribute
values is set to �� ���� which is larger than the maximum number of
values that the algorithm can handle�

CN�� �� Unordered rule�lists�

�� Laplacian error estimate�

�� The maximum star size parameter is set to the minimum value of ��
since all the rules produced are single�complex ones�

�� The signi�cance threshold is set to �� so that the complete set of rules
is produced� Actually for any higher value of the threshold no rules
will survive� since they are all very specialised classi�ers�

AQ��� �� disjoint covers mode�

�� maximum star size was set to �� similar to CN��

�� The constant responsible for the maximum number of numeric at�
tribute values was set to 
� ���� but the algorithm can handle less
values than that�

Due to the peculiarity of the results� some further experimentation was carried
out for the NewID algorithm� subdividing the range between �� ��� and �� ��� into
smaller steps and examining both the CPU�time and the memory consumption��

of the algorithm for this subdivision� The steps that were examined are the
following� �� ��	� �� ��
 ! �� � �� ��	� �� �	� ! ���� � �� ��
� �� �� ! ��� �
�� ��
� �� �	� ! ����� ��
� �� 
� ! ��	��� ��
� �� ���� The default parameters
of the algorithm were used in this experiment as well�

��This parameter is set by �ag �m�
��Memory consumption was again measured by the getrusage C function�



CHAPTER �� SCALING UP ON REAL AND ARTIFICIAL DATA ���

Scalability Results

The dominating element in the results of this experiment is the rate at which
the computational performance of the algorithms decreases as the training set
becomes larger� This can be seen in the original results� presented in �gure ��	�
where the slope of the performance curves is very steep� More clearly however
it is shown in �gure ��
� where the behaviour of most of the algorithms quickly
becomes over�quadratic and in some cases approaches the cubic threshold� These
results are very di�erent from the ones obtained using the real data sets and much
closer to the theoretical estimates drawn in the previous chapter�

Examining each of the algorithms in turn the following can be noted�

�� C�
� is the only algorithm that handled training sets larger than � ��� in�
stances� However� its behaviour is not near�linear as it was in the previous
experiments� It starts with an increase�rate well above the linear estimate�
which increases fairly quickly� crossing the quadratic and approaching the
cubic estimate� This behaviour is worse than the theoretical estimate for
the algorithm� suggesting that some of the optimisations assumed in the
analysis have not been fully implemented� As a result of that� the perfor�
mance of the algorithm becomes worse than that of NewID and CN� for
large data sets ��gure ��	��

�� PLS� behaves similarly� although its performance is worse than that of
C��� It starts with an over�quadratic increase�rate and approaches the
cubic threshold for the size�step of �� ��� instances� which is the largest it
can handle� At this stage it becomes even worse than AQ�� which is the
slowest of the examined algorithms�

�� NewID behaves in a way which di�ers from the other algorithms� For most
of the experiment its behaviour is less than quadratic and in some cases very
close to the linear threshold� For the last size�step however its performance
suddenly deteriorates very much� leading to an increase�rate well above the
cubic estimate� At the same time the memory requirements of the algorithm
increase to an extent that makes it impossible to run any experiments with
size�steps above � ��� examples��� This strange behaviour of the algorithm
suggests that some optimisation method has been used� which can handle
data of up to a certain size� In order to investigate this problem� a further
experiment was done using NewID only�

�� CN� and AQ�� behave very similarly and much better than what was
expected� Their increase�rate remains fairly stable� close to the quadratic
threshold� As a result of that� the performance of some of the specialisa�
tion algorithms becomes worse than those two generalisation�based ones� for

��More than 	�� MBytes of memory are required at this stage�
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large data sets �e�g� PLS� vs� AQ� and C�� vs� CN��� The fact that these
algorithms behave near�quadratically� rather than cubicly� as predicted by
the theoretical estimate� suggests that some decisive factor has not been
taken into account in the theoretical analysis�

A further speciality of this experiment is that some components of the CPU�
time consumption� which were considered �xed for most of the algorithms� are
now expected to be related to the size of the training set� which is used in the
de�nition of the search space �i�e� the number of attribute values that are used��
As a result of that� the e�ect of the �xed costs cannot be isolated or minimised
by the use of large training sets� although the behaviour of C�� and PLS�� can
be interpreted as a gradual decrease of the interference of those costs� which keep
the increase�rate relatively low for small sets�

The regression analysis that was carried out in this experiment is also sub�
stantially di�erent from the previous two� Examining the average increase�rates
�table C�
�� quadratic and cubic models seem to �t better to the behaviour of the
algorithms� than linear or log�linear ones� In order to prove that� a logarithmic
transformation was applied to the data and linear regression was used on the
result of this transformation� The results of this analysis are presented in table
���

correlation regression regression t�value for
Algorithm coe�cient coe�cient coe�cient regression

�slope	 error coe�cient
C�� ����� ���
� ����� ���
�

NewID ���
	 ���� ����� ����
PLS� ����� ��	�� ���
 ���
�
CN� ����� ����
 ����� ��
��	
AQ� ����� ����� ����	 ������

Table ��� Regression analysis of log�time on sample�size for the Even�number
Learning Task�

The results of this analysis need to be interpreted in a slightly di�erent manner
than the previous ones� What is important here is the slope of the �tted line�
which determines the rate of increase in the consumption of each algorithm� In
that respect C��� CN� and AQ� are very close to quadratic� PLS� is almost
cubic and NewID is more than linear but less than quadratic� These observations
con�rm the above presented conclusions�

Other things to be noted about the results of the regression analysis are the
following�
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�� CN� and AQ� �t very well to the quadratic estimate� having a correlation
coe�cient which is practically one� a very low regression coe�cient error
and very high t�values�

�� In general error rates are higher than in the previous experiments and t�
values are lower� This is especially true for the specialisation algorithms�
the behaviour of which is very unstable�

Thus the regression analysis has con�rmed the conclusions drawn on the pre�
sented diagrams�

As mentioned above� the behaviour of NewID for a speci�c range of set�sizes
has been investigated further� The results of this investigation are presented in
�gure ����
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Figure ���� Even�Numbers Learning Task� Special examination of the NewID
algorithm� �corresponds to table C���

By subdividing the interval where the sudden fall in the algorithm�s perfor�
mance is encountered� one notices that the problem occurs just above the �� ��

size�step� At this point suddenly the rate at which both CPU�time and memory
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space are consumed increases enormously and remains fairly stable after that� In
other words the behaviour of the algorithm before and after the critical point is
very close to linear� but the di�erence in the slope of the two parts of the curve
is very big� These results reinforce the conclusion drawn above that there is a
�physical limit� to the capabilities of the algorithm� which is probably caused by
some optimisation method incorporated in the algorithm���

Finally� the performance of the generated classi�ers is not measured in this
experiment� because the concept is not learnable by those systems and their
output is of no use� In the case of decision trees �C�� and NewID�� complete and
highly skewed trees are generated� where each leaf node corresponds to a single
instance in the training set� Similarly� in the case of the conceptual clusterer
�PLS��� each region contains one data point and in the case of decision lists and
covers �CN� and AQ�� each rule �complex� corresponds to one example� In other
words� overspecialisation appears in an extreme form� providing no classi�cation
power at all�

��� Summary

	�
�� Real Data Sets

Performance Results

The main conclusion drawn on the presented results is that the performance of
the algorithms in real data sets di�ers substantially from the worst�case estimates�
The data sets that were used in the experiments are considered computationally
demanding for the examined algorithms� because they contain only numeric at�
tributes� Despite that� the behaviour of the algorithms was closer to log�linear
rather than quadratic or cubic� This suggests that an average case estimate would
be of O�n� or O�n log�n�� order of complexity�

A further conclusion of the above analysis is that the computational overhead
of di�erent algorithms can vary substantially� The two extreme cases� in the
algorithms that were examined are C�� and AQ�� the latter of which becomes
prohibitively slow for large data sets� Thus� when examining whether one of
those algorithms is applicable on large�scale data� the constant part� contributing
to the computational complexity of the algorithm is of equal importance to the
order of its complexity�

Another important feature of the algorithms is their behaviour on di�erent

��The exact reason for this behaviour is not known�
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types of attributes� The most characteristic example of this problem� is the be�
haviour of C�� and NewID in the two experiments� In the �rst experiment�
where integer attributes were used� C�� performed better than NewID� in abso�
lute terms� while the order of complexity of the two algorithms was very similar�
In the second experiment however C�� performed slightly better than NewID on
small training sets� but due to its worse order of complexity� it became slower
for large sets� This leads to the conclusion that NewID can handle continuous
attributes more e�ciently than C���

Finally� an observation that dominates the results of the two real�data experi�
ments is that the algorithms which are based on �generalisation� �i�e� AQ� and
CN�� are slower than the �specialisation ones� �i�e� C��� NewID and PLS��� In
both experiments the performance of the slower of the algorithms falling to the
latter category �i�e� PLS�� was comparable to that of the faster of the former
category �i�e� CN��� This is mainly due to the complexity of the calculations
involved in generalising from seed examples�

Accuracy and Usability Results

The classi�cation performance of the algorithms was not of very much interest to
this project� There is a large number of studies comparing the classi�cation per�
formance of similar algorithms to the ones examined here �e�g� �O�Rorke� ��
���
�Gams and Lavrac� ��
	�� �Rendell et al�� ��
��� �Clark and Boswell� ������ etc���
What is mainly important here is that the algorithms have achieved similar lev�
els of accuracy� at the same time that they had very di�erent computational
behaviour� This means that classi�cation accuracy has not been sacri�ced for
speed� for the fastest of the algorithms �e�g� C�� and NewID�� On the contrary�
the slowest algorithms have achieved in two situations very low performance�
which may be the result of suboptimal parameter�settings�

This last observation brings up an important point� the usability of the algo�
rithms� The systems that are related to the AQ algorithm �i�e� AQ� and CN��
have a major shortcoming� which is the setting of the maxstar �maximum star
size� parameter� The optimal setting for this parameter depends on the nature
of the learning problem and some rough guidelines which have been proposed
�e�g� the size of the feature set �Hong et al�� ��
��� do not seem to work� Other
problems related to the usability of the algorithms are the types of attribute they
can handle and the number of values allowed for a numeric attribute� PLS� for
example can handle properly only integer attributes of a small value�range� Sim�
ilar limitations exist in AQ�� which cannot handle continuous attributes and it
only allows for a small range of integer values� which can be increased up to a
certain extent� by changes in the source code�
�

��The same is true for PLS	�
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	�
�� Arti�cial Data

The results obtained in the �nal experiment� which made use of an arti�cial
data set are very di�erent from the other two� The behaviour of the algorithms
departs substantially from the linear estimate� approaching quadratic and cubic
levels� These results are closer to the worst�case theoretical estimates presented
in the previous chapter� con�rming their validity�

At the same time� however� a number of unexpected situations have occurred
in the last experiment�

� The behaviour of the �generalisation� algorithms was near�quadratic� in�
stead of cubic that was predicted� The exact reason for this is not known�
although it seems likely that some optimisation possibility has not been
taken into account in the theoretical analysis�

� The �generalisation� algorithms have also a more stable performance than
the �specialisation� ones� The result of this is that AQ� achieves a better
result than PLS� with �� ��� instances and similarly CN� does better than
C�� on �� ��� examples� This observation reverses the result presented in
the real�data set experiments� where the �generalisation� algorithms per�
form consistently worse than the �specialisation� ones�

� Despite their instability� the behaviour of C�� and PLS� seems to be fol�
lowing some pattern� which is one of increasing complexity� approaching
the cubic estimate for large sets� NewID on the other hand exhibits a very
strange behaviour� which is close to linear for all the tests� but suddenly
becomes very steep around the �� ��
 step� This is probably caused by some
limitation in the way in which the algorithm has been implemented�
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Conclusions

��� Summary of the Presented Work

This thesis has examined the behaviour of �ve concept�learning programs with
respect to the size of the training set� The programs that were chosen imple�
ment popular learning methods �i�e� AQ� decision trees and conceptual cluster�
ing� and were designed for use in real�world applications �with the exception of
PLS��� These programs are� NewID �Niblett� ��
��� C�� �Quinlan� ������ PLS�
�Rendell� ��
�b�� CN� �Clark and Niblett� ��
�� and AQ� �Michalski et al�� ��
���

The �rst part of the presented work provided a theoretical analysis of the
algorithms� concentrating on their worst�case computational complexity� The re�
sults obtained show that the complexity of the three specialisation algorithms �i�e�
NewID� C��� PLS�� is over�quadratic� while those performing generalisation �i�e�
CN�� AQ�� are cubic� These results deviate substantially from those previously
presented �e�g� �O�Rorke� ��
�� and �Rendell et al�� ��
���� which provide linear
and log�linear estimates for earlier versions of the same algorithms�

The second part of the work is an experimental examination of the scalabil�
ity of the �ve algorithms� using real and arti�cial data sets� Two real data sets
have been used� selected from a large number of examined ones �see appendix B��
mainly due to their size� The �rst of these data sets deals with the problem of
recognising typed characters and the second is related to the task of chromosome
classi�cation� Both contain several thousand examples� allowing a thorough ex�
amination of the behaviour of the programs� The arti�cial data set was designed
to provide a near�worst case situation� using the problem of discriminating be�
tween odd and even numbers�

���
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��� Contribution of the Project

Scalability is an important issue to every program that is applied to real�world
problems and may contribute to the fact that ML programs have not been widely
used in large�scale applications� The aim of the project was to address the issue
of using concept�learning programs with large�scale data� previously neglected in
ML research� attempting to answer the question about the applicability for this
type of programs�

The �rst contribution of the presented work was the thorough computational
complexity analysis of popular concept�learning algorithms� Several aspects of
the design of each algorithm and the way in which they have been implemented
in a particular program have been discussed� showing the e�ect that these factors
have on the e�ciency of the programs� Particularly interesting was the e�ect
that di�erent types of attributes have on the worst�case complexity estimate�
Numeric attributes de�ne an in�nitely large search space� limited only by the
attribute�values that appear in the training set� As a result� some parameters of
the worst�case estimate� assumed to be externally determined� can be shown to
be limited only by the size of the training set� An example of such a parameter
is the number of nodes in a decision�tree� This has the e�ect of producing an
over�linear �i�e� quadratic or cubic� complexity estimate for the algorithms�

The second interesting aspect of the project was the experimental investigation
of the scalability of the algorithms� using large real data sets� Each data set
has been divided into a number of size�steps� starting from fairly small ones
�i�e� �� ! �� examples� and moving exponentially up to the limits of the set�
This approach has proved a convenient way of examining the rate of change in
the performance of the programs� without having to examine a large number of
intermediate steps� which could prove a very time�consuming process for large
training sets�

The results of the experimental analysis using real data sets showed a sig�
ni�cant di�erence from the theoretical estimates� All the algorithms behaved
in a near�linear fashion and most were able to adequately handle large training
sets� Those which had di�culties coping with large sets did not do so because of
their order of complexity� but because of the amount of computation per datum�
involved in their learning process� This leads to another important conclusion�
namely that the per datum computational cost of an algorithm is relevant to its
applicability to real�world problems�

The �nal part of the project involved the use of an arti�cial problem in the
empirical analysis of the algorithms� The aim of this experiment was to test the
validity of the theoretical claims by generating a near�worst case situation� The
problem of learning how to distinguish between even and odd numbers� given a
sequence of them� has a number of desirable features in that respect�
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�� It is a very common task in human learning�

�� It contains no encoded knowledge in the de�nition of the feature set�
which is where the �strength� of most learning algorithms lies
�see �Rendell� ��
	���

�� The distribution of the instances in the feature space is such that orthogonal
clustering cannot provide an adequate solution� As a result� near�worst
case situations arise �i�e� complete and highly skewed decision trees and
complete decision lists��

�� Using a single attribute and a binary class causes a minimum amount
of 	xed computational costs� allowing for the investigation of the com�
plexity of the algorithms�

� It is easily reproducable


The results obtained in this experiment have been very similar to the theoretical
estimates� con�rming that the worst�case complexity of the algorithms is over�
quadratic�

��� Further Work

There is a number of issues that this project has not examined� because of the
high dimensionality of the scalability problem and the lack of time and resources
�e�g� many large data sets�� More speci�cally the following topics are of particular
interest�

�� This project has examined only one type of algorithm� namely symbolic
concept�learning ones� which perform orthogonal clustering� There are
many di�erent types of algorithms� which could be analysed in the
same way and compared in terms of their scalability� One example of
an investigation� using a large range of algorithms� is the Statlog project
�Nakhaeizadeh et al�� ����� ��

�� The theoretical analysis examined only the worst�case performance of the
algorithms� while an indication of the average�case behaviour of the algo�
rithms has been gained through the experiments� However� a theoretical
average�case analysis could add to the understanding of the behaviour
of the algorithms� being at the same time more useful for real applications�

�However this project does not examine the problem of scalability�
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�� Only two real data sets were used in the empirical analysis of the algo�
rithms� The main reason for this is that very large data sets are di�cult to
acquire� It is expected that using other sets� which include di�erent types
of attributes and correspond to problems of variable di�culty� would reveal
important aspects of the scaling behaviour of the algorithms� The Statlog
project is again an example where a number of di�erent training sets
have been used�

�� This project has concentrated on one dimension of the scalability problem�
namely the size of the training set� However� the scale of the learning
problem can be examined from a number of di�erent perspectives� Two
of them which are particularly interesting are the following�

The size of the search space

The size of the search space is determined by the number and the
domain of the attributes used� Both these factors are relevant to the
scalability problem� This project has examined only a small part of this
issue� by estimating the e�ect that di�erent types of attributes have
on the complexity of the algorithms and examining numeric data sets�
which is unusual for symbolic learning research� Further investigation
of this topic could produce very intersting results�

The complexity of the learning task

The complexity of the task depends on the distribution of the instances
in the feature space� This shows for example the degree of overlapping
between di�erent classes and their separability� using di�erent cluster�
ing methods� Measuring the complexity of the learning task is not a
straightforward issue� but it is expected to have a signi�cant e�ect on
the performance of the algorithms�

��� Summary

This project has addressed the issue of scalability of learning algorithms� neglected
in ML research so far� It has examined a number of popular algorithms� in
a theoretical and an experimental way and has arrived at several conclusions
about their behaviour on di�erent scales of data� The presented work could
serve as a starting point for a more thorough investigation of the scalability of
learning algorithms� leading to the establishment of design principles that will
make learning algorithms more applicable to real�world problems� utilising the
research that has been done in the �eld�
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Algorithms considered for the

project�

This is a list of all the algorithms considered for the project� grouped according
to their source�

�� Programs acquired from the University of Sydney� Australia�

� C�
�� This is a very recent version of ID�� including many new fea�
tures �e�g� turning decision�trees into meaningful rule lists� incremental
decision�tree building� etc��� The software is being sold together with
Quinlan�s book �C���� Programs for Machine Learning�� published by
Morgan Kaufmann��

� FOIL�� A recent version of Quinlan�s FOIL algorithm� This program
is publicly available� The ftp address is�

cluster
cs
su
oz
au� ftp�pub�foil�
sh ����
��
�
��

�� The Arti�cial Intelligence Group of George Mason University� has provided
the author with a version of Michalski�sAQ�� program� The correspondent
for this program is Eric Bloedorn �bloedorn�aic�gmu�edu�� This program
has also been used in the project�

�� Two versions �one in Lisp and one in Pascal� of the PLS� program were
acquired from the University of Illinois at Urbana�Champaign� Possible
correspondents there are� Larry Rendell �rendell�cs�uiuc�edu� or Gunnar
Blix �blix�cs�uiuc�edu�� The Pascal version of this algorithm was also used
for the project�

�The version acquired for the project was kindly provided by J�R� Quinlan�

���
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�� Algorithms� included in theMLT �Machine Learning Toolkit� Esprit project�
Only a few of those algorithms �CIGOL� NewID� CN� and MOBAL� were
actually acquired�� These programs were provided by their developers� The
MLT programs are usually more sophisticated systems� which are intented
to be used for solving real problems� The project included also an advisor
system� that would help the user choose the learning system which suits
best to his requirements�

The MLT included the following learning programs�

� APT� A learning apprentice� developed at ISoft SA� University of
Coimbra and LRI �Universite Paris XI��
�e�mail� mlt�isoft�fr�

� CIGOL� An induction system� using �rst�order predicate logic� devel�
oped by Muggleton�
�e�mail� Steve�Muggleton�prg�oxford�ac�uk�
A more recent version of CIGOL� called GOLEM� which is written
in C� was also provided by Steve Muggletton�

� NewID� A version of ID�� developed by Tim Niblett� at the Turing
Institute�
�e�mail� robin�turing�ac�uk�

� CN�� A version of the AQ algorithm developed also by P� Clark and
T� Niblett�
�e�mail� robin�turing�ac�uk�

� LASH� A system based on Michalski�s Induce algorithm� developed
at British Aerospace PLC�
�e�mail� sims�src�bae�co�uk�

� KBG� A clustering and generalisation tool� based on a similarity mea�
sure between examples� This was developed at LRI and ISoft�
�e�mail� bisson�lri�lri�fr�

� MOBAL� A large Knowledge acquisition tool� performing model�
learning� developed by GMD�
�e�mail� mlt�gmd�de�

� DMP� A symbolic clustering algorithm� developed by British Aerospace
PLC�
�e�mail� parsons�src�bae�co�uk�

� SICLA� A set of algorithms� performing statistical symbolic and nu�
merical data analysis� developed at INRIA�
�e�mail� lecheval�icare�inria�fr�

� MAKEY� Developed also by INRIA�
�e�mail� lecheval�icare�inria�fr�

�NewID and CN� have also been used in the project�



APPENDIX A� ALGORITHMS CONSIDERED FOR THE PROJECT� ��


� Simple Prolog versions of some well�known algorithms� Acquired from GMD
in Germany� The ftp address for these is �

ftp
gmd
de��gmd�mlt�ML�Program�Library ����
��
�
���

The algorithms acquired from GMD are the following�

� ARCH� � versions of Winston�s Arch�

� VS� A simple version of Mitchell�s Version Space algorithm�

� AQ�PROLOG� A prolog version of the Michalski�s Aq algorithm�

� ID�� A simple version of Quinlan�s ID� algorithm�

� EBG� A version of Mitchell�s EBG�

� COBWEB� A simple version of the Fisher�s Cobweb algorithm�

� DISCR� A simple version of Brazdil�s algorithm for generating dis�
criminants from derivation trees�

� INVERS� Muggleton and Buntine�s Inverse Resolution learning method�

� ATTDSC� A simple learning algorithm� proposed by Bratko�

� MULTAGENT� A simulation of a tutoring system between two agents�
by Brazdil�

� LOGIC� Some useful� for learning� logic procedures� implemented by
Muggleton�

�� Simple Lisp versions of well�known algorithms� Acquired from the Univer�
sity of Texas �developed by Ray Mooney�� The ftp address is�

cs
utexas
edu�pub�mooney

The following programs were acquired from the University of Texas�

� AQ� A simple version of the Aq algorithm�

� ID�� A version of the ID� algorithm�

� COBWEB� A simple version of Cobweb�

� FOIL� A simple implementation of Quinlan�s FOIL �also available in
Prolog��

� PERCEPTRON� A simple learning system� using perceptron�
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Available DataBases

The databases that will be presented here were acquired by the UCI Repository
of Machine Learning Databases �Murphy and Aha� ������ They are only part of
this repository and at the end of this section some of the non�acquired interesting
databases will be described� The structure of the following description of the
databases follows the criteria set in chapter � and includes most of the acquired
databases�

B�� Classi�cation according to Size

Some of the databases that have been acquired are considered� by the ML research
community� as being large ones�

�� Letter Recognition Database
As described in chapter ��

�� Thyroid Disease Databases
These databases have a medical subject� namely that of predicting several
types of thyroid�diseases� There are 
 databases� each dealing with a dif�
ferent type of thyroid�disease� six of them have ��
�� instances each and
the other two ����� each� There are also test�sets� which are of substan�
tial size too ��	� instances�� Their attribute�sets are similar to each other�
containing roughly �� attributes�

�� Mushroom Database
This is a biological database containing 
���� instances of poisonous and
non�poisonous mushrooms� There are �� attributes describing each mush�
room instance� in terms of its appearance�

���
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�� Heart Disease Databases
These are four di�erent databases� which use the same attributes� They
have 	� attributes� of which� though� only �� are considered relevant� In
total they have ����� instances�
The problem is to decide whether a patient su�ers from a heart�disease� In
this respect� there are �ve possible classes� corresponding to the probability
of a patient to su�er from a heart�disease�

� Chess� King�Rook vs
 King�Pawn endgame
This database describes the KR�KP endgame problem� in terms of �����
instances� Each instance is a board position de�ned by �� attributes� The
possible classi�cations are White�WIN or White�NotWin�

�� Annealing data
The information provided about the subject of this database is not very
much� but it contains 	�
 instances� which can be classi�ed into one of �
classes� using �
 attributes�

	� IRAS Low Resolution Spectrometer Database
This is part of the data derived from the Infra�Red Astronomy Satellite
�IRAS�� which attempted to map the full�sky at infra�red wavelengths� It
contains �� instances� each described by ��� attributes� There is also a
large number of possible classes ������


� Mechanical Analysis
This is about a fault�diagnosis problem � diagnosis of faults in electro�
mechanical devices from vibration measurements��� It contains ��� in�
stances� each of which is described by a di�erent number of components�
Each component has 
 attributes� There are � possible classi�cations�

�� Soybean Disease
This is a very�well known database� aimed at predicting the disease from
which a soybean plantation su�ers� It was used by Michalski and Chi�
lauski to test the AQ�� algorithm in ��
�� It contains ��	 instances� each
described by � attributes� There are �� possible diseases that may be
predicted�

Apart from those large databases� there are some data�generating programs�
which one can use to generate arbitrary large databases� Some examples of these
are the following �

�� Chess� King�Rook vs
 King�Knight endgame
This program generates legal board positions for the speci�c endgame prob�
lem� It is based on �� attributes and the number of instances to be generated
is de�ned by the user� since the potential number of legal states is in the
range of millions �Quinlan� ��
�a��



APPENDIX B� AVAILABLE DATABASES ��

�� Waveform
Not much information is provided for the exact subject of this database� It
seems that an arbitrary number of waveforms can be generated� There are
� classes and �� attributes that can be used�

�� Led Display
This generator has been created by the same people who made the Wave�
form one� The problem is to identify one of the �� digits� displayed using
LED�s� There are 	 attributes �the LED�s� and �� classes �the digits�� The
number of instances is again non�restricted��

Finally there is a number of small and medium�size databases� The small ones
are useful in measuring the sample complexity� of an algorithm� However� since
one can always use a small part of a big database to achieve the same outcome�
there seems to be no special reason for favouring a small database�

B�� Attributes and Classes

With respect to the attributes and classes used in a data set� there are two things
that are of interest�

$ The type of the attributes �discrete vs� continuous� structured vs� numeric�
etc���

$ Any missing values of the attributes in the data set�

Concerning the type of the attributes� what is of most interest to the project
is the existence of numeric attributes that makes the learning task substantially
more computationally demanding� For this purpose� the following databases
would be chosen�

�� IRAS Low Resolution Spectrometer Database
The spectrometer database instances are described by ��� attributes� of
which �� are continuous�

�� Auto Imports Data
This database contains �� instances of cars� described by �� attributes�
From those� � are continuous� Several attributes can be used as �class�
attributes�

�� Echocardiogram Data
The problem here is to predict� according to the cardiogram data� whether

�In this problem� duplication of instances is a necessity�
�That is the number of examples needed to produce a �correct� hypothesis�
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a patient will survive for at least one year� There are ��� instances and ��
attributes� of which most are continuous� The class is a combination of two
attributes and is boolean�valued�

�� Iris Plants Database
This is another database that has been widely used� The problem is to
distinguish between di�erent Iris plants� using information about their sepal
and their petals� There are � classes� each represented by � instances�
There are � attributes all of which are continuous �width and length��

� Labor Negotiations
This database contains information about labour agreements� The idea is
to distinguish between acceptable and unacceptable contracts� There are
	 instances� each described by �� continuous attributes�

�� Waveform
All �� attributes are continuously valued in the range �������

	� Relative CPU Performance Data
The problem set in this database is to estimate the relative performance
of a CPU� The database contains ��� instances� which are described by �
continuous attributes� What is special about this data set is that the class
is continuously valued too�

Some of the databases are missing several attribute�values� Examples of those
are the following �

�� Annealing data

�� Heart Disease Databases

B�� Noise

Although some of the databases are bound to contain noise� no measurement
of that is given in the database information� However� there are two database
generators that will produce training sets with noise�

�� Led Display

�� Waveform
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B�� Special types of Learning

The vast majority of the databases is meant to be used with classi�cation systems�
However� there are some sets that suit other types either of induction or other
learning methods� Some of these are the following�

�� Pittsburgh Bridges Database
This database has been constructed to be used with classi�cation systems�
but the actual task is not clearly a classi�cation one� What is asked is to
predict a design description� based on speci�cation properties of the bridge�
The design is described by  properties� which correspond to the �class��
There are ��
 instances and 	 speci�cation properties�

�� Scienti	c Function Finding
This database contains �	� cases� each of which is used for �nding some
scienti�c rule� Each of the cases contain a variable number of data sets
��� in total�� which describe the case�

�� Logic Theorist
This is a Prolog program that learns logic theorems from the �rst � chapters
of  Principia Mathematica��

�� Explanation Based Learning �EBL and PRODIGY
EBL and PRODIGY contain domains to be used with EBL programs� The
former contains very few of them� while the second contains several varia�
tions of the blocksworld� STRIPS� R� etc� These have all been used to test
PRODIGY�

B�� Unusual Structure

Some of the databases have unusual features� which may require a modi�cation
of the algorithm that is to be tested on them� The most outstanding of those are
the following�

�� Audiology Data
This is another medical database� which contains ��� instances� which fall
into �� distinct classes� What is peculiar about this database� is that it
does not have a pre�set attribute set� The attribute name is given together
with the attribute value at each case�

�� Pittsburgh Bridges Database
Described above�
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�� Relative CPU Performance Data
As mentioned above� this database has a continuous class� which is an
unusual phenomenon�

�� Mechanical Analysis
The instances of this data set contain a variable number of components�
Thus they will probably have to be treated separately�

B�	 Realworld vs� Toy cases

Most of the databases that have been acquired are based on real�world problems�
However� the number of instances that they contain� which is the main concern of
this project� is relatively small� compared to real�world applications� The major
problem categories� which one could identify are the following�

�� Medical� There are many medical problems that are being dealt with� For
example � Heart�Disease� Echocardiogram and Thyroid�Disease�

�� Mechanical� Relative CPU Performance� Mechanical Analysis� etc�

�� Biological� Mushroom� Iris Plants�

�� Politics� Labor Negotiations� Voting Records�

Apart from those� there are some toy�cases� Toy�cases are usually derived
from games and especially in Machine Learning chess is the favourite one� As
mentioned above� there are a database and a database�generator for chess� which
are accompanied by � domain theories� written in Prolog� which generate legal
moves�

B�� Additional Databases

Some interesting databases which exist in the UCI repository and have not been
acquired yet are the following�

�� Credit Screening Databases
These are apparently two databases� which have been the product of the
knowledge acquisition process for an expert system� They are relatively
large and it is claimed that they contain  a good mix of attributes��
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�� Data Generation Program DGP��
This is a sophisticated domain generator which facilitates the formation of
a search space with a speci�c structure� It may be useful for testing special
cases that don�t arise usually with real data�



Appendix C

Experimental Results�

The results of the experimental analysis of the algorithms are summarised in the
following tables�

Size� Algorithm
steps C��� NewID PLS	 CN� AQ	�
�� ����a������b 	�	� ������ ���� ������ 	���� �	���� �������	���
	�� 	�	� ������ ��	� ����	� 		��	 ���	�� ���	� ����
� �
����
����
��� ���	 ����
� ���� ���	
� ����� �	���� �	��� ������ 	� ��� ����
�	� ���� ����
� ��	� ������ ����� ������ ����� ����
� �� 	
� �	�	�
	� ��� 
��� ���
�� 	���
 ������ ��
�����	���� 	����� ������ �� ��� ��
��
�� ��� 	
��� ������ ����� ���
�� ����
�������� ������ ���
�� 	�� 	�� ����
�� �
� �	�
� �	���� 
���
 ������ 	� ��� �	�� 	� ��� ��� ��� ���c

�� 	
� 
���� �	��	� ��
��
�	
�	�� �� ��� ����� �� ��� ���� 		�� ���
	�� ��� �	���
 ���
�� �
��
	�����	� �� ��� ��

� ��� �	��	� 	��� �d

aCPU�time consumption in seconds�
bMaximum deviation from the mean value�
cA single test was carried out for steps � and �� due to the very long time that

each test takes�
dThis test was not carried out� because it is expected to take prohibitively long

time�

Table C��� Scalability Results� using the Letter Recognition data set�

��
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Size� Algorithm
steps C�� NewID PLS� CN� AQ�
��
 ���� ��
� ��	� ���� ��
	
�� ���� ���
 ���� ��

 ����
�� ���
 ���� ���� ���� ����

�� ��� ���� ���� ���� ���� ����
�� ��
 ���� ���	 ���� ��� ���

�� ��� ���� ���� ���	 ���� ����

� ��� ���� ���� ���	 ��� ��
�
��� �
� ��� ���� ���� ���	 '

Avg
 ���� ���� ���� ���� ����

Table C��� Letter Recognition Set� The rate of increase of the CPU�time consumed
at each size�step�

Size� Algorithm
steps C�� NewID PLS� CN� AQ�
�� ����	a������b ����	���� ��������� ���
������� ����	����	�
��
 ����	 ����� ��������� ����	���	� ���	������ ����	������
�� ����� ������ ����	����� �	��������� ���
������� ����� �	�
�� ���� ���	� ��������� ����	������ ��
	����� ����� ���

�� ��� ���� ������ ���������� �
�������� ����	����� ���� ���
�� ��
 	��
	 ������ 	���	���� 	���������� 	���������� ���� ���
�� ��� 		�� ����� 	
�������� 	��	������ 	���������� ����c


� ��� 
���� ����� 
���	���� 
���������� 
���������� �����
��� �
� 
��� ���
�� 
	��	���� 

������	�� 

������	� 'd

aPercentage of correctly classi�ed instances�
bMaximum deviation from the mean value�
cA single test was carried out for steps � and �� due to the very long time that

each test takes�
dThis test was not carried out� because it is expected to take prohibitively long

time�

Table C��� Classi�cation Accuracy Results� using the Letter Recognition data set�
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Size� Algorithm
steps C�� NewID CN�
�� ���������� ���������� ����� ������
��
 ���������� ��������� �
�� ������
�� ��������� 	�������
� 
��� ������
�� ����	���	�� �	�
�����
� �����	 ������

�� ��� ����������� ���	������ ������ �������
�� ��
 ����	�
���� 
	��������� 	���	� �������
�� ��� ��
�	
���	�� �������
���� �� 
�����	����
� ��� ��	��������� ��������� �� ����

����

Table C��� Scalability Results� using the Chromosome Classi�cation data set�

Size� Algorithm
steps C�� NewID CN�
��
 ��
 ��
� ����
�� ���� ���� ���

�� ��� ���� ����

�� ��� ���� ���
 ����
�� ��
 ���
 ���� ����
�� ��� ��� ���� ����

Avg
 ���� ���� ����

Table C�� Chromosome Classi�cation Set� The rate of increase of the CPU�time
consumed at each size�step�
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Size� Algorithm
steps C�� NewID CN�
�� ��	������ ������	� �	�������
��
 ���������� ����	�� �
�������
�� �������� ����� ����������
�� ��������� ����	��� ���	�����

�� ��� �
������� �
������ ����	����
�� ��
 	�������� 	������� ����������
�� ��� 		��	����� 		������ ���
������
� ��� 	��������� 	������� ����������

Table C��� Classi�cation Accuracy Results� using the Chromosome Classi�cation
data set�

Size� Algorithm
steps C�� NewID PLS� CN� AQ�
�� ���� ���� ���� ���� �����
��
 ��	 ���
 	�� ���� �����
�� ���� ��
� �
�� ��	� ������
�� ��� 
��� ������ ���� ����


�� ��� ����� ���
 �� ��� ���� �� ���
�� ��
 ������ ���� 'a �
	��� 
� ��
�� ��� �� �
� ����� ' �� ��� '

� ��� 
� ��� ' ' ' '

aSome of the tests could not be done� because the algorithms could not handle
the size of the search space�

Table C�	� Scalability Results� using the Even�Numbers learning task�
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Size� Algorithm
steps C�� NewID PLS� CN� AQ�
��
 ��	� ���� ��
 ���� ���
�� ��

 ���� ���	 ���� ����
�� ���
 ���� 	��� ���� ����

�� ��� ��� ���� 	� ���� ����
�� ��
 ���� ���	 ' ���� ��
�
�� ��� 	��� ���� ' ���� '

� ��� 	��	 ' ' ' '

Avg
 ���� ���� ���� ���� ����

Table C�
� Even�Numbers Learning Task� The rate of increase of the CPU�time
consumed at each size�step�

CPU�time memory
Size�steps consumption requirements

�sec�� �KBytes�
����	 ����� �� ��
����
 	��� �� ���
���	� 

�	� 	� ���
���� �
���� �	� �
	
���	� ����� 
� ��
��
� ����� ��� ���
����� ����� ��	� ��


Table C��� Even�Numbers Learning Task� Special examination of the NewID
algorithm�
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