
1

An Event Calculus for Event Recognition
Alexander Artikis, Marek Sergot, and Georgios Paliouras

Abstract—Systems for symbolic event recognition accept as input a stream of time-stamped events from sensors and other
computational devices, and seek to identify high-level composite events, collections of events that satisfy some pattern. RTEC
is an Event Calculus dialect with novel implementation and ‘windowing’ techniques that allow for efficient event recognition,
scalable to large data streams. RTEC supports the expression of rather complex events, such as ‘two people are fighting’, using
simple primitives. It can operate in the absence of filtering modules, as it is only slightly affected by data that are irrelevant to
the events we want to recognise. Furthermore, RTEC can deal with applications where event data arrive with a (variable) delay
from, and are revised by, the underlying sources. RTEC can update already recognised events and recognise new events when
data arrive with a delay or following data revision. We evaluate RTEC both theoretically, presenting a complexity analysis, and
experimentally, using two real-world applications. The evaluation shows that RTEC can support real-time event recognition and
is capable of meeting the performance requirements identified in a survey of event processing use cases.

Index Terms—event pattern matching, event processing, action language

F

1 INTRODUCTION

Systems for symbolic event recognition (‘event pat-
tern matching’) accept as input a stream of time-
stamped simple, derived events (SDE)s. A SDE (‘low-
level event’) is the result of applying a computational
derivation process to some other event, such as an
event coming from a sensor [23]. Using SDEs as input,
event recognition systems identify composite events
(CE)s of interest—collections of events that satisfy
some pattern. The ‘definition’ of a CE (‘high-level
event’) imposes temporal and, possibly, atemporal
constraints on its subevents, i.e. SDEs or other CEs.
Consider e.g. the recognition of attacks on computer
network nodes given the TCP/IP messages.

Numerous recognition systems have been proposed
in the literature [12]. Recognition systems with a logic-
based representation of CE definitions, in particular,
have recently been attracting attention [5]. They ex-
hibit a formal, declarative semantics, in contrast to
other types of recognition system that usually rely
on an informal and/or procedural semantics. Cugola
and Margara [11] point out that almost all ‘complex
event processing languages’, including [1], and sev-
eral ‘data stream processing languages’, such as ESL
[6] which extends CQL [3], lack a rigorous, formal
semantics. Eckert and Bry [16] note that the semantics
of ‘event query languages’ often are somewhat ad hoc,
unintuitive and generally have an algebraic and less
declarative flavour. Paschke and Kozlenkov [29] state
that commercial ‘production rule languages’ lack a
declarative semantics.

• A. Artikis and G. Paliouras are with the NCSR Demokritos, Athens,
Greece. E-mail: {a.artikis,paliourg}@iit.demokritos.gr

• M. Sergot is with the Department of Computing, Imperial College
London, UK. E-mail: m.sergot@imperial.ac.uk

Non-logic-based CE recognition systems have
proven to be, overall, more efficient than logic-based
ones. To address this issue, we present an efficient
dialect of the Event Calculus [19], called ‘Event Cal-
culus for Run-Time reasoning’ (RTEC). The Event
Calculus is a logic programming formalism for repre-
senting and reasoning about events and their effects.
RTEC includes novel implementation techniques for
efficient CE recognition, scalable to large SDE and
CE volumes. A form of caching stores the results
of sub-computations in the computer memory to
avoid unnecessary recomputations. A set of inter-
val manipulation constructs simplify CE definitions
and improve reasoning efficiency. A simple indexing
mechanism makes RTEC robust to SDEs that are
irrelevant to the CEs we want to recognise and so
RTEC can operate without SDE filtering modules.
Finally, a ‘windowing’ mechanism supports real-time
CE recognition. One main motivation for RTEC is that
it should remain efficient and scalable in applications
where SDEs arrive with a (variable) delay from, or
are revised by, the underlying SDE detection system:
RTEC can update the already recognised CEs, and
recognise new CEs, when SDEs arrive with a delay or
following revision. The code of RTEC is available at
〈http://users.iit.demokritos.gr/∼a.artikis/EC.html〉.

We evaluate RTEC theoretically, presenting a com-
plexity analysis, and experimentally, using two real-
world applications: city transport management (CTM)
and public space surveillance (PSS) from video con-
tent. In CTM, public transport vehicles, such as buses
and trams, are equipped with sensors that report
on position, in-vehicle temperature, noise level and
acceleration. Fixed sensors are mounted on intersec-
tions to report on traffic flow and density. Given
such SDEs, the task is to inform the decision-making
of transport officials by recognising CEs related to

2

traffic congestion, the punctuality of a vehicle, passen-
ger and driver comfort, passenger and driver safety,
and passenger satisfaction. In PSS, the SDEs are the
‘short-term activities’ detected on video frames—e.g. a
person walking, running or being inactive. The aim
then is to recognise ‘long-term activities’, i.e. short-
term activity combinations, such as when a person
leaves an object unattended, when two people are
moving together, when they are having a meeting or
fighting. The CE definitions for these applications are
quite complex—a major benefit of RTEC is that it sup-
ports the expression of rather complex definitions—
allowing for a realistic evaluation of the efficiency of
RTEC. This is in contrast to the majority of related
approaches where rather simple CE definitions are
used for empirical analysis. Our evaluation shows
that RTEC supports real-time CE recognition and is
capable of meeting the performance requirements of
most of today’s applications as estimated by a recent
survey of event processing use cases [7].

Organisation. Sections 2–4 present, respectively,
RTEC, its reasoning algorithms and the complexity
analysis. The experimental evaluation is given in Sec-
tion 5. In Section 6 we put the work in context, while
in Section 7 we summarise the presented work and
outline directions for further research.

2 EVENT CALCULUS
Our system for CE recognition is based on an Event
Calculus dialect. The Event Calculus [19] is a logic
programming formalism for representing and reason-
ing about events and their effects. For the dialect
introduced here, called RTEC, the time model is linear
and includes integer time-points. Variables start with
an upper-case letter, while predicates and constants
start with a lower-case letter. Where F is a fluent—a
property that is allowed to have different values at
different points in time—the term F =V denotes that
fluent F has value V . Boolean fluents are a special
case in which the possible values are true and false.
holdsAt(F =V, T) represents that fluent F has value V
at a particular time-point T . holdsFor(F =V, I) repre-
sents that I is the list of the maximal intervals for
which F =V holds continuously. holdsAt and holdsFor
are defined in such a way that, for any fluent F ,
holdsAt(F =V, T) if and only if T belongs to one of the
maximal intervals of I for which holdsFor(F =V, I).

The happensAt predicate represents an instance of
an event type. E.g. in public space surveillance
happensAt(appear(id1), 5) represents the occurrence of
event type appear(id1) at time-point 5 . When it is
clear from context, we do not distinguish between
an event and its type. An event description in RTEC
includes rules that define the event instances with the
use of the happensAt predicate, the effects of events
with the use of the initiatedAt and terminatedAt predi-
cates, and the values of the fluents with the use of
the holdsAt and holdsFor predicates, as well as other,

TABLE 1: Main predicates of RTEC.
Predicate Meaning

happensAt(E, T) Event E occurs at time T

holdsAt(F =V, T) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

initiatedAt(F =V, T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V, T) At time T a period of time for which
F =V is terminated

relative I is the list of maximal intervals produced
complement by the relative complement of the list
all (I ′,L, I) of maximal intervals I′ with respect to

every list of maximal intervals of list L
union all(L, I) I is the list of maximal intervals

produced by the union of the lists of
maximal intervals of list L

intersect all(L, I) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

possibly atemporal, constraints. Table 1 summarises
the RTEC predicates available to the event description
developer. The last three items in the table are interval
manipulation predicates specific to RTEC.

We represent instantaneous SDEs and CEs by
means of happensAt, while durative SDEs and CEs
are represented as fluents. The majority of CEs are
durative and, therefore, in CE recognition the task
generally is to compute the maximal intervals for
which a fluent representing a CE has a particular
value continuously.

2.1 Simple Fluents
Fluents in RTEC are of two kinds: simple and statically
determined. We assume, without loss of generality, that
these types are disjoint. For a simple fluent F , F =V
holds at a particular time-point T if F =V has been
initiated by an event that has occurred at some time-
point earlier than T , and has not been terminated at
some other time-point in the meantime. This is an
implementation of the law of inertia. To compute the
intervals I for which F =V , i.e. holdsFor(F =V, I), we
find all time-points Ts at which F =V is initiated, and
then, for each Ts, we compute the first time-point Tf

after Ts at which F =V is ‘broken’. The time-points
at which F =V is initiated are computed by means
of domain-specific initiatedAt rules. The time-points at
which F =V is ‘broken’ are computed as follows:

broken(F =V, Ts, T)←
terminatedAt(F =V, Tf), Ts < Tf ≤ T

(1)

broken(F =V1, Ts, T)←
initiatedAt(F =V2, Tf), Ts < Tf ≤ T, V1 6= V2

(2)

broken(F =V, Ts, T) represents that a maximal interval
starting at Ts for which F =V holds continuously is
terminated at some time Tf such that Ts<Tf≤T . Sim-
ilar to initiatedAt, terminatedAt rules are domain-specific
(examples are presented below). According to rule (2),
if F =V2 is initiated at Tf then effectively F =V1 is

3

terminated at time Tf , for all other possible values
V1 of F . Rule (2) ensures therefore that a fluent
cannot have more than one value at any time. We
do not insist that a fluent must have a value at every
time-point. There is a difference between initiating a
Boolean fluent F = false and terminating F = true: the
former implies, but is not implied by, the latter.

In city transport management, officials are inter-
ested in identifying tendencies towards traffic conges-
tion. Consider the following formalisation:

initiatedAt(densityTrend(S)= increasing , T)←
happensAt(traffic(S ,Flow ,Density), T),
happensAt(traffic(S ,Flow ′,Density ′), T+60),
Density ′ > Density+Density×0 .2

(3)

traffic(S ,Flow ,Density) is an instantaneous SDE re-
porting traffic flow and density in the junction where
sensor S is mounted. Each such sensor reports on flow
and density every 60 seconds. According to rule (3),
traffic density is said to be increasing if in two con-
secutive SDEs there is a rise of more than 20% in the
density value. The maximal intervals during which
densityTrend(S)= increasing holds continuously are
computed using the built-in RTEC predicate holdsFor
from rule (3) and other similar rules, not shown here,
defining the remaining values of densityTrend . When
density is increasing (resp. traffic flow is decreasing)
transport officials usually take proactive measures
against traffic congestion.

initiatedAt(F =V, T) does not necessarily imply that
F 6=V at T . Similarly, terminatedAt(F =V, T) does not
necessarily imply that F =V at T . Suppose that F =V
is initiated at time-points 10 and 20 and terminated at
time-points 25 and 30 (and at no other time-points).
In that case F =V holds at all T such that 10<T≤25.

In addition to constraints on events, initiatedAt and
terminatedAt predicates in the bodies (antecedents) of
rules may specify constraints on fluents. Consider the
following example from public space surveillance:

initiatedAt(moving(P1 ,P2)= true, T) ←
happensAt(start(walking(P1)= true), T),
holdsAt(walking(P2)= true, T),
holdsAt(close(P1 ,P2)= true, T)

initiatedAt(moving(P1 ,P2)= true, T) ←
happensAt(start(walking(P2)= true), T),
holdsAt(walking(P1)= true, T),
holdsAt(close(P1 ,P2)= true, T)

initiatedAt(moving(P1 ,P2)= true, T) ←
happensAt(start(close(P1 ,P2)= true), T),
holdsAt(walking(P1)= true, T),
holdsAt(walking(P2)= true, T)

terminatedAt(moving(P1 ,P2)= true, T) ←
happensAt(end(walking(P1)= true), T)

terminatedAt(moving(P1 ,P2)= true, T) ←
happensAt(end(walking(P2)= true), T)

terminatedAt(moving(P1 ,P2)= true, T) ←
happensAt(end(close(P1 ,P2)= true), T)

(4)

walking is a durative SDE detected on video frames.
start(F =V) (resp. end(F =V)) is a built-in RTEC event
taking place at each starting (ending) point of each
maximal interval for which F =V holds continuously.
close(A,B)= true when the distance between A and B
does not exceed some threshold of pixel positions. The
above formalisation states that P1 is moving with P2

when they are walking close to each other.
One of the main attractions of RTEC is that it

makes available the power of logic programming to
express complex temporal and atemporal constraints,
as conditions in initiatedAt and terminatedAt rules for
durative CEs, and happensAt rules for instantaneous
CEs. E.g. standard event algebra operators, such as
sequence, disjunction, parallelism, etc, may be ex-
pressed in a RTEC event description.
2.2 Statically Determined Fluents
In addition to the domain-independent definition of
holdsFor, an event description may include domain-
specific holdsFor rules, used to define the values of
a fluent F in terms of the values of other fluents.
We call such a fluent F statically determined. holdsFor
rules of this kind make use of interval manipulation
constructs—see the last three items of Table 1. Con-
sider, e.g. moving as in rules (4) but defined instead
as a statically determined fluent:

holdsFor(moving(P1 ,P2)= true, I)←
holdsFor(walking(P1)= true, I1),
holdsFor(walking(P2)= true, I2),
holdsFor(close(P1 ,P2)= true, I3),
intersect all([I1 , I2 , I3], I)

(5)

According to the above rule, the list I of maximal
intervals during which P1 is moving with P2 is com-
puted by determining the list I1 of maximal intervals
during which P1 is walking, the list I2 of maximal
intervals during which P2 is walking, the list I3 of
maximal intervals during which P1 is close to P2, and
then calculating the list I representing the intersec-
tions of the maximal intervals in I1, I2 and I3.

RTEC provides three interval manipulation con-
structs: union all, intersect all and relative complement all.
union all(L, I) computes the list I of maximal intervals
representing the union of maximal intervals of the
lists of list L. For instance:

union all([[(5, 20), (26, 30)], [(28, 35)]], [(5, 20), (26, 35)])

A term of the form (Ts ,Te) in RTEC represents the
closed-open interval [Ts ,Te). I in union all(L, I) is a
list of maximal intervals that includes each time-point
that is part of at least one list of L. The implementa-
tion of all interval manipulation constructs is available
with the code of RTEC.

intersect all(L, I) computes the list I of maximal inter-
vals such that I represents the intersection of maximal
intervals of the lists of list L, as, e.g.:

intersect all([[(26, 31)], [(21, 26), (30, 40)]], [(30, 31)])

4

I in intersect all(L, I) is a list of maximal intervals that
includes each time-point that is part of all lists of L.

relative complement all(I ′, L, I) computes the list I of
maximal intervals such that I represents the relative
complements of the list of maximal intervals I ′ with
respect to the maximal intervals of the lists of list L.
Below is an example of relative complement all:

relative complement all([(5, 20), (26, 50)],
[[(1, 4), (18, 22)], [(28, 35)]], [(5, 18), (26, 28), (35, 50)])

I in relative complement all(I ′, L, I) is a list of maximal
intervals that includes each time-point of I ′ that is not
part of any list of L. The CE definition below uses all
interval manipulation constructs of RTEC:

holdsFor(fighting(P1 ,P2)= true, I)←
holdsFor(abrupt(P1)= true, I1),
holdsFor(abrupt(P2)= true, I2),
holdsFor(close(P1 ,P2)= true, I3),
union all([I1 , I2], I4), intersect all([I4 , I3], I5),
holdsFor(inactive(P1)= true, I6),
holdsFor(inactive(P2)= true, I7),
relative complement all(I5 , [I6 , I7], I)

(6)

In the public space surveillance application, abrupt
and inactive are durative SDEs detected on video
frames. According to rule (6), two people are assumed
to be fighting as long as at least one of them is moving
abruptly, the other is not inactive, and they are close.

The interval manipulation constructs of RTEC sup-
port the following type of definition: for all time-
points T , F =V holds at T if and only if some Boolean
combination of fluent-value pairs holds at T . For a
wide range of fluents, this is a much more concise
definition than the traditional style of Event Calculus
representation, i.e. identifying the various conditions
under which the fluent is initiated and terminated so
that maximal intervals can then be computed using
the domain-independent holdsFor. Compare, e.g. the
statically determined and simple fluent representa-
tions of moving in rules (5) and (4) respectively.

The interval manipulation constructs of RTEC can
also lead to much more efficient computation. We will
return to that point in Section 4.

2.3 Semantics
CE definitions are (locally) stratified logic programs
[30]. We restrict attention to hierarchical definitions,
those where it is possible to define a function level
that maps all fluent-values F =V and all events to the
non-negative integers as follows. Events and statically
determined fluent-values F =V of level 0 are those
whose happensAt and holdsFor definitions do not depend
on any other events or fluents. In CE recognition,
they represent the input SDEs. There are no fluent-
values F =V of simple fluents F in level 0. Events and
simple fluent-values of level n are defined in terms of
at least one event or fluent-value of level n−1 and a
possibly empty set of events and fluent-values from

levels lower than n−1. Statically determined fluent-
values of level n are defined in terms of at least one
fluent-value of level n−1 and a possibly empty set of
fluent-values from levels lower than n−1. Note that
fluent-values F =Vi and F =Vj for Vi 6=Vj could be
mapped to different levels. For simplicity however,
and without loss of generality, a fluent F itself is
either simple or statically determined but not both.
The CE definitions of city transport management and
public space surveillance, i.e. the holdsFor definitions of
statically determined fluents, initiatedAt and terminatedAt
definitions of simple fluents and happensAt definitions
of events, are available with the RTEC code.

3 RUN-TIME RECOGNITION
CE recognition has to be efficient enough to support
real-time decision-making, and scale to very large
numbers of SDEs and CEs. SDEs may not necessarily
arrive at the CE recognition system in a timely man-
ner, i.e. there may be a (variable) delay between the
time at which SDEs take place and the time at which
they arrive at the CE recognition system. Moreover,
SDEs may be revised, or even completely discarded
in the future, as in the case where the parameters of
a SDE were originally computed erroneously and are
subsequently revised, or in the case of retraction of a
SDE that was reported by mistake, and the mistake
was realised later [2]. Note that SDE revision is not
performed by the CE recognition system, but by the
underlying SDE detection system.

RTEC performs CE recognition by computing and
storing the maximal intervals of fluents and the time-
points in which events occur. CE recognition takes
place at specified query times Q1, Q2, At each
Qi the SDEs that fall within a specified interval—the
‘working memory’ (WM) or ‘window’—are taken into
consideration. All SDEs that took place before or at
Qi−WM are discarded. This is to make the cost of
CE recognition dependent only on the WM size and
not on the complete SDE history. The WM size, and
the temporal distance between two consecutive query
times — the ‘step’ (Qi−Qi−1) — are set by the user.

At Qi, the maximal intervals computed by RTEC are
those that can be derived from SDEs that occurred
in the interval (Qi−WM, Qi], as recorded at time
Qi. When WM is longer than the inter-query step,
i.e., when Qi−WM<Qi−1<Qi, it is possible that an
SDE occurs in the interval (Qi−WM, Qi−1] but arrives
at RTEC only after Qi−1; its effects are taken into
account at query time Qi. And similarly for SDEs that
took place in (Qi−WM, Qi−1] and were subsequently
revised after Qi−1. In the common case that SDEs
arrive at RTEC with delays, or there is SDE revision,
it is preferable therefore to make WM longer than
the inter-query step. Note that information may still
be lost. Any SDEs arriving or revised between Qi−1
and Qi are discarded at Qi if they took place before
or at Qi−WM. To reduce the possibility of losing

5

time

Q136

Working Memory

Q139Q138Q137Q135

time

Q136

Working Memory

Q139Q138Q137Q135

time

Q136

(c)

Working Memory

Q139Q138Q137Q135

(a)

(b)

CEstd

CEs

CEstd

CEs

CEstd

CEs

Fig. 1: Windowing in RTEC.

information, one may increase the WM size. Doing
so, however, decreases recognition efficiency. In what
follows we give an example and a detailed account of
the ‘windowing’ algorithm of RTEC.

3.1 Illustrative Example
Figure 1 illustrates windowing in RTEC. In this exam-
ple we have WM>Qi−Qi−1. To avoid clutter, Figure 1
shows streams of only five SDEs. These are displayed
below WM, with dots for instantaneous SDEs and
lines for durative ones. For the sake of the example,
we are interested in recognising just two CEs:
• CEs , represented as a simple fluent (see Section

2.1). The starting and ending points, and the
maximal intervals of CEs are displayed above
WM in Figure 1.

• CEstd , represented as a statically determined flu-
ent (see Section 2.2). For the example, the maxi-
mal intervals of CEstd are defined to be the union
of the maximal intervals of the two durative SDEs
in Figure 1. The maximal intervals of CEstd are
displayed above the CEs intervals.

For simplicity, we assume that both CEs and CEstd

are defined only in terms of SDE, i.e. they are not
defined in terms of other CEs.

Figure 1 shows the steps that are followed in order
to recognise CEs at an arbitrary query time, say Q138.
Figure 1(a) shows the state of RTEC as computation
begins at Q138. All SDEs that took place before or at
Q137−WM were retracted at Q137. The thick lines and
dots represent the SDEs that arrived at RTEC between
Q137 and Q138; some of them took place before Q137.
Figure 1(a) also shows the maximal intervals for the
CE fluents CEs and CEstd that were computed and
stored at Q137.

The CE recognition process at Q138 considers the
SDEs that took place in (Q138−WM, Q138]. All SDEs
that took place before or at Q138−WM are discarded,
as shown in Figure 1(b). For durative SDEs that
started before Q138−WM and ended after that time,
RTEC retracts the sub-interval up to and including
Q138−WM. Figure 1(b) shows the interval of a SDE
that is partially retracted in this way.

Now consider CE intervals. At Qi some of the
maximal intervals computed at Qi−1 might have
become invalid. This is because some SDEs occur-
ring in (Qi−WM, Qi−1] might have arrived or been
revised after Qi−1: their existence could not have
been known at Qi−1. Determining which CE intervals
should be (partly) retracted in these circumstances
can be computationally very expensive. See Section
6 for a discussion. We find it simpler, and more
efficient, to discard all CE intervals in (Qi−WM, Qi]
and compute all intervals from scratch in that period.
CE intervals that have ended before or at Qi−WM are
discarded. Depending on the user requirements, these
intervals may be stored in a database for retrospective
inspection of the activities of a system.

In Figure 1(b), the earlier of the two maximal inter-
vals computed for CEstd at Q137 is discarded at Q138

since its endpoint is before Q138−WM. The later of the
two intervals overlaps Q138−WM (an interval ‘over-
laps’ a time-point t if the interval starts before or at t
and ends after or at that time) and is partly retracted
at Q138. Its starting point could not have been affected
by SDEs arriving between Q138−WM and Q138 but its
endpoint has to be recalculated. Accordingly, the sub-
interval from Q138−WM is retracted at Q138.

In this example, the maximal intervals of CEstd are
determined by computing the union of the maximal
intervals of the two durative SDEs shown in Figure 1.
At Q138, only the SDE intervals in (Q138−WM, Q138]
are considered. In the example, there are two maximal
intervals for CEstd in this period as can be seen in
Figure 1(c). The earlier of them has its startpoint
at Q138−WM. Since that abuts the existing, partially
retracted sub-interval for CEstd whose endpoint is
Q138−WM, those two intervals are amalgamated into
one continuous maximal interval as shown in Fig-
ure 1(c). In this way, the endpoint of the CEstd interval
that overlapped Q138−WM at Q137 is recomputed to
take account of SDEs available at Q138. (In this par-
ticular example, it happens that the endpoint of this
interval is the same as that computed at Q137. That is
merely a feature of this particular example. Had CEstd

been defined e.g. as the intersection of the maximal
intervals of the two durative SDE, then the intervals
of CEstd would have changed in (Q138−WM, Q137].)

Figure 1 also shows how the intervals of the sim-
ple fluent CEs are computed at Q138. Arrows facing
upwards (downwards) denote the starting (ending)
points of CEs intervals. First, in analogy with the
treatment of statically determined fluents, the ear-

6

lier of the two CEs intervals in Figure 1(a), and its
start and endpoints, are retracted. They occur before
Q138−WM. The later of the two intervals overlaps
Q138−WM. The interval is retracted, and only its
starting point is kept; its new endpoint, if any, will
be recomputed at Q138. See Figure 1(b). For simple
fluents, it is simpler, and more efficient, to retract such
intervals completely and reconstruct them later from
their start and endpoints by means of the domain-
independent holdsFor rules, rather than keeping the
sub-interval that takes place before Q138−WM, and
possibly amalgamating it later with another interval,
as we do for statically determined fluents.

The second step for CEs at Q138 is to calculate
its starting and ending points by evaluating the rele-
vant initiatedAt and terminatedAt rules. For this, we only
consider SDEs that took place in (Q138−WM, Q138].
Figure 1(c) shows the starting and ending points of
CEs in (Q138−WM, Q138]. The last ending point of
CEs that was computed at Q137 was invalidated in the
light of the new SDEs that became available at Q138

(compare Figures 1(c)–(a)). Moreover, another ending
point was computed at an earlier time.

Finally, in order to recognise CEs at Q138 we use the
domain-independent holdsFor to calculate the maximal
intervals of CEs given its starting and ending points.
The later of the two CEs intervals computed at Q137

became shorter when re-computed at Q138. The sec-
ond interval of CEs at Q138 is open: given the SDEs
available at Q138, we say that CEs holds since time t,
where t is the last starting point of CEs .

The discussion above showed that, when SDEs
arrive with a variable delay, CE intervals computed
at an earlier query time may be (partly) retracted at
the current or a future query time. (And similarly
if SDEs are revised.) Depending on the application
requirements, RTEC may be set to report:
• CEs as soon as they are recognised, even if their

intervals may be (partly) retracted in the future.
• CEs whose intervals may be partly, but not com-

pletely, retracted in the future, i.e. CEs whose
intervals overlap Qi+1−WM.

• CEs whose intervals will not be even partly re-
tracted in the future, i.e. CEs whose intervals end
before or at Qi+1−WM.

The example used for illustration shows how RTEC
performs CE recognition. To support real-time reason-
ing, at each query time Qi all SDEs that took place be-
fore or at Qi−WM are discarded. To handle efficiently
delayed SDEs and SDE revision, CE intervals within
WM are computed from scratch. At Qi, the computed
maximal CE intervals are those that can be derived
from SDEs that occurred in the interval (Qi−WM, Qi],
as recorded at time Qi. For completeness, RTEC
amalgamates the computed intervals to any intervals
ending at Qi−WM. In the section below we present
the CE recognition algorithm, and in Section 4 we
discuss the complexity of RTEC.

Listing 1 recogniseSDFluent(CEstd , Index , Qi−WM)

1: retract(sdFList(Index , CEstd , OldI , OldPE))
2: amalgamate(OldPE , OldI , OldList)
3: if Start ,End : [Start ,End) ∈ OldList ∧

End>Qi−WM ∧ Start≤Qi−WM then
4: PE : =[(Start ,Qi−WM+1)]
5: else PE : =[]
6: end if
7: holdsForSDFluent(CEstd , I)
8: assert(sdFList(Index , CEstd , I , PE))

3.2 RTEC Operation

After ‘forgetting’ SDEs, i.e. after retracting SDE in-
tervals taking place before or at Qi−WM, RTEC
computes and stores the intervals of each CE of
interest. At the end of CE recognition at each
query time Qi, all computed fluent intervals are
stored in the computer memory as simpleFList and
sdFList assertions. I in sdFList(Index ,CEstd , I ,PE)
(resp. simpleFList(Index ,CEs , I ,PE)) represents the in-
tervals of statically determined fluent CEstd (simple
fluent CEs) starting in (Qi−WM, Qi], sorted in tem-
poral order. PE stores the interval, if any, ending at
Qi−WM. The first argument in sdFList (simpleFList) is
an index that allows for the fast retrieval of stored
intervals for a given fluent even in the presence of
very large numbers of fluents. When the user queries
the maximal intervals of a fluent, RTEC amalgamates
PE with the intervals in I , producing a list of max-
imal intervals ending in [Qi−WM, Qi] and, possibly,
an open interval starting in [Qi−WM, Qi]. Next, we
present how RTEC computes and stores the maximal
intervals of fluents at each Qi. Computing and storing
the time-points of events representing instantaneous
CEs is simpler and omitted here to save space.

Listing 1 shows the pseudo-code of recogniseSDFluent,
the procedure for computing and storing the intervals
of statically determined fluents. First, RTEC retrieves
from sdFList the maximal intervals of a statically de-
termined fluent CEstd computed at Qi−1 and checks
if there is such an interval that overlaps Qi−WM
(lines 1–6). In Listing 1, OldI represents the inter-
vals of CEstd computed at Qi−1. These intervals
are temporally sorted and start in (Qi−1−WM, Qi−1].
OldPE stores the interval, if any, ending at Qi−1−WM.
RTEC amalgamates OldPE with the intervals in OldI ,
producing OldList (line 2). If there is an interval
[Start ,End) in OldList that overlaps Qi−WM, then the
sub-interval [Start ,Qi−WM+1) is retained. See PE in
Listing 1. All intervals in OldList after Qi−WM are
discarded.

At the second step of recogniseSDFluent, RTEC evalu-
ates holdsForSDFluent rules to compute the CEstd inter-
vals from SDEs recorded as occurring in (Qi−WM, Qi]
(line 7). Prior to the run-time recognition process,
RTEC has transformed holdsFor rules concerning stati-

7

cally determined fluents into holdsForSDFluent rules, in
order to avoid unnecessary holdsFor rule evaluations.
The intervals of CEstd computed at the previous query
time Qi−1 are not taken into consideration in the
evaluation of holdsForSDFluent rules. The computed list
of intervals I of CEstd , along with PE , are stored
in sdFList (line 8), replacing the intervals computed at
Qi−1. (Recall that, when the user queries the maximal
intervals of a fluent, RTEC amalgamates PE with the
intervals in I .)

recogniseSimpleFluent, the procedure for computing
and storing simple fluent intervals, also has two parts.
First, RTEC checks if there is a maximal interval
of the fluent CEs that overlaps Qi−WM. If there is
such an interval then it will be discarded, while its
starting point will be kept. Second, RTEC computes
the starting points of CEs , without considering the
starting points calculated at Qi−1. The starting points
are given to holdsForSimpleFluent, into which holdsFor calls
computing the maximal intervals of simple fluents are
translated at compile time. This program is defined as
follows:

holdsForSimpleFluent([], , [])
holdsForSimpleFluent(SP , CEs , I)←

SP 6= [], computeEndingPoints(CEs , EP),
makeIntervals(SP , EP , I)

(7)

If the list of starting points is empty (first argument of
holdsForSimpleFluent) then the empty list of intervals is
returned. Otherwise, holdsForSimpleFluent computes the
ending points EP of the fluent, without considering
the ending points calculated at Qi−1, and then uses
makeIntervals to compute its maximal intervals given its
starting and ending points.

4 COMPLEXITY ANALYSIS
In the analysis below, m(S,E) denotes the number
of time-points in the interval (S,E] — we assume
discrete time. m(S,E)/2 is thus the maximum number
of maximal intervals in (S,E]. The number of time-
points in WM, m(Qi−WM, Qi), is denoted in short
by mWM. The maximum number of maximal intervals
in WM is therefore mWM/2. Table 2 summarises the
notation employed in this section.

4.1 Forget Mechanism
At each query time Qi, RTEC first ‘forgets’ all avail-
able SDEs ending before or at Qi−WM. In the com-
mon case that SDEs arrive with a variable delay, RTEC
goes through the complete list of SDEs available at Qi.
In the worst case, all SDEs that took place in (0, Qi]
arrive between Qi−1 and Qi. The worst-case cost of
the ‘forget’ mechanism is thus

O
(
n(m(0, Qi) +m(0, Qi−WM))

)
where n denotes the number of SDE types. This is
the cost of going through the SDEs in (0, Qi] and
retracting those in (0, Qi−WM]. This situation may
occur at most once since all SDEs ‘forgotten’ at Qi

TABLE 2: Complexity Analysis Notation.
Notation Meaning

m(S,E) Number of time-points in the interval (S,E]

mWM Number of time-points in the working memory WM
n Number of SDE types
f Number of fluent types
e Number of event types
k Number of interval manipulation constructs
l Number of rules defining a simple fluent

are not available after Qi. In practice, the cost of the
‘forget’ mechanism is bound by approximately

n
(
m(Qi−1−WM, Qi) +m(Qi−1−WM, Qi−WM)

)
i.e. the SDEs that took place before or at Qi−1−WM
are typically retracted at Qi−1 and are not available
at Qi.

4.2 Statically Determined Fluents
First, RTEC searches the maximal intervals of the flu-
ent in question ending in [Qi−1−WM, Qi−1] and, pos-
sibly, an open interval starting in [Qi−1−WM, Qi−1].
The worst-case cost of this step is

O
(
mWM/2 + 1

)
. (8)

In practice the number of maximal intervals of a fluent
ending in [Qi−1−WM, Qi−1] is much smaller than the
maximum number of maximal intervals in WM.

Second, RTEC evaluates a holdsForSDFluent rule. The
cost of evaluating such a rule is bound by the sum
of the cost of computing the intervals of the fluents
appearing in the body of the rule and the cost of any
interval manipulation operations. A fluent appearing
in the body of holdsForSDFluent represents a SDE or a
CE. In either case, RTEC simply retrieves the fluent
intervals from the computer memory. RTEC performs
recognition bottom-up and thus the intervals of all
CEs appearing in the body of a holdsForSDFluent rule are
already calculated when evaluating this rule: RTEC
need only retrieve the intervals stored in simpleFList
and sdFList. The third argument of simpleFList (sdFList)
is a list of intervals starting in (Qi−WM, Qi], sorted
in temporal order. Moreover, SDE intervals start in
(Qi−WM, Qi] as earlier intervals have been retracted
by the ‘forget’ mechanism, and they are temporally
sorted because RTEC sorts the intervals of durative
SDEs used in CE definitions. Each fluent in the body
of a holdsForSDFluent rule, therefore, has at most mWM/2
temporally sorted maximal intervals.

The cost of the interval manipulation constructs of
RTEC is as follows. To compute the union of a list
of lists of maximal intervals, RTEC recursively uses
union for calculating the union of two lists of maximal
intervals. The cost of union is limited by the sum of the
sizes of the two lists, as this predicate operates under
the assumption that each list of maximal intervals is
sorted. Furthermore, the size of the output list of union

8

is limited by the sum of the sizes of the two lists,
as, in the worst case, the intervals of the two input
lists of union are disjoint. Assuming x lists of maximal
intervals of size y, the cost of union all is bound by:

O(
1st union︷︸︸︷

2y +

2nd union︷ ︸︸ ︷
2y+y + . . .+

x−1th union︷ ︸︸ ︷
2y+y+ . . .+y) =

O
(
y

(
x(x+1)

2 −1
))

.

(9)

To compute the intersection of a list of lists of
maximal intervals, RTEC recursively uses intersection
for calculating the intersection of two lists of maximal
intervals. Like union, the cost of intersection is limited
by the sum of the sizes of the two lists, if each list
is sorted. The size of the output list of intersection is
bound by the size of the longest input list. The cost
of intersect all is bound by:

O
(1st intersection︷︸︸︷

2y + . . .+

x−1th intersection︷︸︸︷
2y

)
= O

(
2y(x−1)

)
relative complement all(I ′, L, I) recursively uses rela-

tive complement to compute the relative complement
of the list of maximal intervals I ′ with respect to
each list of maximal intervals of list L. The cost of
relative complement is limited by the sum of the sizes of
the two input lists. Moreover, the size of the output
list of relative complement is limited by the sum of the
sizes of the two lists. The cost of relative complement all,
therefore, is the same as that of union all.

Assuming that in the body of a holdsForSDFluent rule
there are f fluents (SDEs and CEs)—in the worst
case this is the number of fluent types of the event
description—and k interval manipulation constructs,
the cost of evaluating such a rule is bound by

O
(
f + k

mWM

2

(
f(f+1)

2
− 1

))
. (10)

This is the cost of retrieving f fluent intervals from
the computer memory plus k times the cost of the
most expensive interval manipulation construct (see
formula (9)). In practice, f and k are small, and the
number of maximal intervals of a fluent starting in
(Qi−WM, Qi] is considerably smaller than mWM/2.

4.3 Simple Fluents
The first step of recogniseSimpleFluent has the same cost
as the first step of recogniseSDFluent—see formula (8).
At the second step, RTEC computes the maximal
intervals for which F =V holds continuously. The
cost of this step is limited by the sum of the cost
of computing the starting points of F =V , the cost
of computing the ending points of F =V , and the
cost of makeIntervals (see formalisation (7)). Starting and
ending points are computed by evaluating initiatedAt
and terminatedAt rules. Assume that there are e events
in the body of an initiatedAt/terminatedAt rule. e is bound
by the number of event types of an event description.
Evaluating a happensAt predicate expressing an event

in the body of an initiatedAt/terminatedAt rule requires
retrieving the event time-points from the computer
memory.

Assume also that there are f fluents in the body
of an initiatedAt/terminatedAt rule. In the worst case,
this is the number of fluent types of the event
description. Fluents are represented by means of
holdsAt in the body of initiatedAt/terminatedAt. Evaluating
holdsAt(G=U, T) in the body of an initiatedAt/terminatedAt
rule requires retrieving the intervals for which fluent
G has value U that are stored in simpleFList or sdFList,
and checking whether T belongs to these intervals.
Each fluent has at most mWM/2 maximal intervals
stored in simpleFList/sdFList. The cost of computing the
starting and ending points of F =V , therefore, is
bound by

O
(
mWM l(e+ f + fmWM/2)

)
, (11)

where l is the number of initiatedAt/terminatedAt rules
defining F =V . In the worst case, RTEC will evaluate
all l rules defining F =V mWM times. For each time-
point in (Qi−WM, Qi], RTEC will check whether each
event in the body of an initiatedAt/terminatedAt rule has
taken place, and for every fluent in the body of such
a rule, it will check whether that time-point belongs
to one of the maximal intervals of that body fluent.

In practice, l, e and f are small—e.g. in rule (3),
f =0. Moreover, an initiatedAt/terminatedAt rule is evalu-
ated considerably fewer times than mWM — such a rule
is evaluated as many times as the number of instances
of the first event in the body of the rule.

Finally, makeIntervals sorts the lists of starting and
ending points, and then computes maximal intervals
by retrieving, for every starting point Ts, the first
ending point Tf , if any, after Ts. The sum of starting
and ending points of a fluent is bound by mWM. The
cost of the first step of makeIntervals, therefore, is bound
by O(mWM logmWM) while the cost of the second step
is bound by O(mWM).

Given the above, the total cost of computing the
maximal intervals of a simple fluent is bound by

O
(
mWM(l (e+ f + fmWM/2) + logmWM + 1)

)
.

4.4 Simple vs Statically Determined Fluents
The presented complexity analysis may guide the
decision to formalise a CE as a simple fluent vs a
statically determined one. Consider e.g. the moving
CE from public space surveillance, represented in
rule (5) as a statically determined fluent. To compute
the cost of this representation, we make the following
substitutions in formula (10): f =3 (3 body fluents)
and k=1 (1 interval manipulation construct). There-
fore, the cost of this representation is bound by

O(3 + 5mWM/2) .

The simple fluent representation of moving—see for-
malisation (4)—requires 6 initiatedAt and terminatedAt

9

rules with 3 fluents and no events in the body (recall
that the start and end built-in events are defined in
terms of fluents). From formula (11) we have that the
cost of computing the starting and ending points of
moving is bound by

O
(
6mWM(3 + 3mWM/2)

)
.

To be precise, this cost is bound by

O
(
3mWM(3 + 3mWM/2)

)
because the initiatedAt and terminatedAt rules of moving
are specified in such a way that at most 3 of
them may be evaluated at any time. A statically
determined fluent representation of moving , therefore,
leads to more efficient reasoning than a simple fluent
representation. (For simplicity, we omit the cost of
makeIntervals.) Similarly, we could have shown, for
some other fluent, why a simple fluent representation
leads to more efficient reasoning than a statically
determined fluent representation.

5 EXPERIMENTAL RESULTS

We present experimental results on city transport
management (CTM) and public space surveillance
(PSS). The experiments were performed on a com-
puter with eight Intel i7 950@3.07GHz processors and
12GiB RAM, running Ubuntu Linux 12.04 and YAP
Prolog 6.2.2. Each CE recognition time displayed in
this section is the average of 30 runs, each produced
by replaying the stream of SDEs from the recorded
dataset. Each SDE is sent to RTEC according to its
timestamp plus a randomly chosen non-negative de-
lay, while RTEC computed continuous queries accord-
ing to specified working memory and step sizes. For
instance, when the working memory and step are
both set to 10 seconds, RTEC performs CE recognition
every 10 seconds using the SDEs with a timestamp in
the last 10 seconds.

As explained in Section 3, at each query-time Qi,
RTEC first discards all CE intervals that overlap
Qi−WM, and then computes all such intervals from
scratch. This is in order to avoid costly checks ev-
ery time a fluent interval is asserted/retracted due
to delayed SDE arrival or revision. For this reason
RTEC does not benefit from a warm-up period. Com-
puted SDE and CE intervals that overlap Qi−WM are
recorded in the computer memory. It is assumed that
the computer memory is sufficient for this amount of
information (as it is in all the experiments reported in
this section). We have not developed a technique for
dealing with the possibility of running out of memory.
All the CE definitions and the datasets on which the
experiments were performed are available with the
RTEC code.

5.1 City Transport Management
To evaluate RTEC on CTM we used two datasets: the
data of the PRONTO project [4], and the transport and

traffic streams from Dublin, Ireland 〈www.dublinked.
ie〉. In PRONTO, the task was to recognise CEs related
to the punctuality of a public transport vehicle (bus
or tram), driving style and quality, passenger and
driver comfort, and passenger satisfaction. These CEs
were requested by the public transport control centre
of Helsinki, Finland, in order to support resource
management. Buses and trams were equipped with
sensors for detecting SDEs related to changes in posi-
tion, acceleration, in-vehicle temperature, noise level
and passenger density. At the time of the project,
the available datasets included only a subset of the
anticipated SDE types as some SDE detection com-
ponents were not functional yet. In order to provide
a more stringent evaluation, therefore, we performed
experiments on synthetic data that are considerably
more demanding than the real data [4]. Each syn-
thetic stream contains instances of every SDE type
(equal numbers of each). SDEs are not chronologically
ordered—in CTM there are SDE delays.

CE recognition for a single vehicle. Figure 2(a)
shows experimental results regarding CE recognition
for a single vehicle (bus or tram). These were in-
tended to test the effects of varying the WM size
and the tolerance of RTEC to irrelevant SDEs. The
figure shows the results of four sets of experiments.
In the first, only 10% of the SDEs concern the vehicle
for which we perform CE recognition. In the second
and the third, 30% and 50% respectively of the SDEs
concern this vehicle. In the fourth case, all available
SDEs concern it. In every case, RTEC computes and
stores the intervals of 20 CE—fluent and event—
types (each vehicle is associated with 20 CEs). We
also varied the WM size. Figure 2(a) shows results of
experiments in which WM varies from 3,000 to 15,000
SDEs. The times displayed in this figure show average
CE recognition time in CPU milliseconds (ms).

RTEC employs a very simple indexing mechanism:
it merely exploits YAP Prolog’s standard indexing
on the functor of the first argument of the head
of a clause. Nevertheless, as shown in Figure 2(a),
the presence of irrelevant SDEs affects recognition
efficiency only very slightly. This is a very important
feature of our approach as it means we do not have to
rely on modules filtering SDEs and we can distribute
recognition tasks across multiple machines and pro-
cessors (as demonstrated below).

CE recognition for multiple vehicles. The next set
of experiments concerns CE recognition at rush hour
in Helsinki. At most 1,050 vehicles, i.e. 80% of the total
number of available vehicles, operate at the same time
in Helsinki during rush hour. It is estimated that no
more than 1 SDE per 3 seconds (sec) can be detected
on a single vehicle—no more than 350 SDEs can be de-
tected per sec on the 1,050 operating vehicles. We were
thus able to test RTEC under the maximum expected
SDE frequency. Figure 2(b) presents the results of two
sets of experiments. First, we used a single processor

10

0

5

10

15

20

25

30

35

3K 5K 7K 9K 11K 13K 15K

Ti
m

e
 (

m
s)

Working Memory (SDE)

100% relevant SDE 50% relevant SDE 30% relevant SDE 10% relevant SDE

(a) PRONTO: CE recognition for a single vehicle.

0

50

100

150

200

250

300

350

400

450

500

7 sec ≈
2,5K SDE

13 sec ≈
4,5K SDE

19 sec ≈
6,5K SDE

25 sec ≈
9K SDE

31 sec ≈
10K SDE

37 sec ≈
13K SDE

43 sec ≈
15K SDE

Ti
m

e
 (

m
s)

Working Memory

1 processor/21000 CE 8 processors/2640 CE per processor

(b) PRONTO: CE recognition for 1,050 vehicles.

0

100

200

300

400

500

600

700

800

900

7 sec ≈
23K SDE

13 sec ≈
43K SDE

19 sec ≈
63K SDE

25 sec ≈
83K SDE

31 sec ≈
103K SDE

37 sec ≈
123K SDE

43 sec ≈
143K SDE

Ti
m

e
 (

m
s)

Working Memory

8 processors/25000 CE per processor

(c) PRONTO: CE recognition for 10,000 vehicles.

0

0,5

1

1,5

2

2,5

3

3,5

4

10 min ≈
32K SDE

30 min ≈
99K SDE

50 min ≈
166K SDE

70 min ≈
233K SDE

90 min ≈
300K SDE

110 min ≈
368K SDE

130 min ≈
435K SDE

Ti
m

e
 (

se
c)

Working Memory

1 processor/7765 CE 4 processors/2169 CE per processor

(d) Dublin: CE recognition for 912 buses and 1,675 SCATS.

Fig. 2: Event Recognition for City Transport Management.

to perform CE recognition for all 1,050 vehicles. In this
case, the intervals of 21,000 CEs (1,050 vehicles×20
CEs per vehicle) are computed and stored. Second, we
used all eight processors of the computer in parallel.
Each instance of RTEC running on a processor was
set to perform CE recognition for 132 vehicles, and
computed and stored the intervals of 2,640 CEs. We
emphasize that the input data was the same in all sets
of experiments: each processor receives SDEs coming
from all 1,050 vehicles—i.e. there was no SDE filtering
to restrict the input relevant for each processor. We
rely only on the indexing mechanism to pick out
relevant SDEs from the stream.

The inter-query step is set to 1 sec—a shorter step
was deemed unnecessary by end users. WM is longer
than the step as the SDE stream is not temporally
ordered, and ranges from 7 sec (2,450 SDEs) to 43 sec
(15,050 SDEs). In the Helsinki infrastructure a 10 sec
WM is sufficient, i.e. SDE delays are expected to be
less than 10 sec. Figure 2(b) shows that we can achieve
a significant performance gain by running RTEC in
parallel. Such a gain is achieved without requiring
SDE filtering. Moreover, Figure 2(b) shows that RTEC
is capable of supporting real-time CE recognition at
rush hour in Helsinki. For example, given a WM of
10 sec, RTEC recognises all CEs requested by end
users in 260 ms when a single processor is used, and
in 32 ms when all eight processors are used.

Larger datasets. In other applications, data velocity
may be higher than that presented above. According
to the results of the use case survey of the Event
Processing Technical Society (EPTS) [7], in most ap-

plications there are at most 1,000 SDEs per sec. To test
RTEC on higher SDE frequency, we generated datasets
of 10,000 operating vehicles. In this case, we have
3,333 SDEs per sec coming from the 10,000 vehicles.
We used all eight processors of the computer in par-
allel. Each instance of RTEC running on a processor
performed recognition for 1,250 of these vehicles, and
thus computed and stored the intervals of 25,000 CEs.
Each processor received SDEs coming from all 10,000
vehicles. Figure 2(c) shows the average recognition
times. As in the previous experiments, the step is set
to 1 sec, while WM ranges from 7 to 43 sec. In this
set-up, however, WM is ranging from 23,331 to 143,319
SDEs. Figure 2(c) shows that RTEC supports real-time
recognition in this setting as well—RTEC recognises
all CEs requested by end users in less than 1 sec.

Heterogeneous datasets. The experiments pre-
sented above were on homogeneous streams pro-
duced by buses and trams. The next set of exper-
iments concerns heterogeneous streams from buses
and Sydney Coordinated Adaptive Traffic System
(SCATS) sensors, i.e. fixed sensors mounted on in-
tersections. Our experiments were performed on real
data for 1-31 January 2013, coming from the buses and
SCATS sensors of Dublin, Ireland 〈www.dublinked.
ie〉. The bus dataset covers 912 buses. Each operating
bus emits a SDE every 20-30 sec with information
about its position, delay and congestion. Information
about in-vehicle temperature, noise and passenger
density is not available in this dataset. On average,
the bus dataset has a new SDE every 2 sec. The
SCATS dataset includes 1,675 sensors, and each such

11

sensor transmits information every minute reporting
on traffic flow and density. Given these streams,
RTEC recognises CEs concerning bus punctuality, traf-
fic congestion, traffic flow and density trends (for
traffic congestion forecasting), and source disagree-
ment i.e. when buses and SCATS sensors provide
conflicting information on traffic congestion. Source
disagreement recognition aids sensor fault diagnosis
and repair. The choice of CEs, and their definitions,
were specified in collaboration with domain experts.
The CE definitions for this dataset require more com-
plex reasoning than the definitions of PRONTO. Both
sets of definitions are available with the RTEC code.

Figure 2(d) presents the results of two sets of exper-
iments. First, we used a single processor to perform
CE recognition for all 912 buses and 1,675 SCATS
sensors, computing and storing the intervals of 7,765
CEs. Second, we used four processors in parallel. We
took advantage of the existing SCATS sensor geo-
division in Dublin—central, north, south and west
city—and, therefore, each RTEC instance performed
CE recognition for the SCATS sensors of, and buses
going through one of the four Dublin areas. In this
case, each RTEC instance computed and stored the
intervals of approximately 2,169 CEs. As in the previ-
ous experiments, there was no SDE filtering to restrict
the input relevant for each processor.

The inter-query step is set to 1 minute to coincide
with the SCATS sensor update frequency. WM ranges
from 10 to 130 minutes (32,000 to 435,000 SDEs).
Figure 2(d) shows that RTEC is capable of supporting
real-time CE recognition. E.g. given a 110 minute
(368,000 SDEs) WM, RTEC performs CE recognition
in 2 sec when four processors are used in parallel.
Figure 2(d) also shows the performance gain of par-
allel recognition. The gain would have been more
visible had there been a greater difference between the
number of CEs in the single processor setting (7,765)
and the distributed setting (2,169 per processor).

5.2 Public Space Surveillance
The second application concerns public space surveil-
lance (PSS) from video content. We use the CAVIAR
benchmark dataset consisting of 28 surveillance
videos of a public space 〈http://groups.inf.ed.ac.uk/
vision/CAVIAR/CAVIARDATA1〉. The videos are
staged—actors walk around, sit down, meet one an-
other, leave objects behind, etc. Each video has been
manually annotated by the CAVIAR team in order
to provide the ground truth for ‘short-term activi-
ties’, i.e. activities taking place in a short period of
time detected on individual video frames. (The frame
rate in CAVIAR is 40 ms.) The short-term activi-
ties of CAVIAR concern an entity (person or object)
entering or exiting the surveillance area, walking,
running, moving abruptly, being active or inactive.
The CAVIAR team has also annotated the 28 videos
with ‘long-term activities’: a person leaving an object

unattended, two people meeting, moving together
and fighting. Short-term activities can be viewed as
SDEs while long-term activities can be viewed as CEs.
Consequently, the input to RTEC in this case study
includes the set of annotated short-term activities, and
the output is a set of recognised long-term activities.

‘Forget’ mechanism. The cost of the ‘forget’ mech-
anism depends on the WM size and the inter-query
step size. In this application, we set WM =Qi−Qi−1
— in CAVIAR, SDEs are temporally sorted. Moreover,
RTEC does not have to go through the complete list
of SDEs available at each query time in order to
decide which to retract. Whenever it can be safely
assumed that the SDE stream is temporally sorted,
the ‘forget’ mechanism can stop processing SDEs as
soon as it finds the first such fact that starts after
Qi−WM . The performance gains can be significant.
E.g. for WM =Qi−Qi−1 = 5,000 SDEs, the average
‘forget’ time is reduced from 27 ms to 17 ms.

CE recognition for multiple pairs of entities. Fig-
ure 3(a) shows the results of experiments concerning
all 45 pairs of the 10 entities tracked in the CAVIAR
dataset. (In CAVIAR each CE concerns a pair of enti-
ties.) On average, 179 SDEs are detected per sec. First,
we used a single processor for CE recognition con-
cerning all 45 tracked pairs. That requires computing
and storing the intervals of 655 CEs. Second, we used
all eight processors in parallel. In this case, each RTEC
instance performed CE recognition concerning at most
6 entity pairs, computing and storing the intervals of
127 CEs. In both settings there was no SDE filtering.
We varied WM from 10 sec (≈1,793 SDEs) to 110 sec
(≈19,201 SDEs). As mentioned earlier, the inter-query
step is equal to WM. Note that a simultaneous and
equal increase of WM and inter-query step results
in a more rapid increase of the total RTEC time
than an increase of WM or step size separately (see
e.g. Figure 2(b)). In all settings shown in Figure 3(a),
RTEC performs real-time CE recognition.

In PSS, RTEC has to compute the SDE intervals
from the given time-points at which a SDE takes place.
In CTM in contrast the SDE intervals were computed
by the SDE detection system and were made available
when an interval ended. This task makes CE recogni-
tion in PSS more time-consuming. On the other hand,
it may allow some CEs to be recognised at an earlier
query time, as one does not have to wait for an SDE
interval to end before recognising a CE.

Figure 3(a) shows that no significant performance
gain is obtained by running RTEC in parallel on
different processors. In relatively small CE numbers,
such as those of CAVIAR, the difference of a few
hundred CEs—in the centralised setting the single
processor recognises only a few hundred more CEs
than each of the eight processors in the distributed
setting—affects only very slightly the performance of
RTEC. Furthermore, there is some duplication of com-
putation when we distribute recognition to various

12

0

50

100

150

200

250

300

10 sec ≈
2K SDE

30 sec ≈
5K SDE

50 sec ≈
9K SDE

70 sec ≈
12K SDE

90 sec ≈
15,5K SDE

110 sec ≈
19K SDE

Ti
m

e
(m

s)

Working Memory

1 processor/655 CE 8 processors/127 CE per processor

(a) CE recognition for all 10 CAVIAR tracked entities.

0

2

4

6

8

10

12

14

16

10 sec ≈
18K SDE

30 sec ≈
53K SDE

50 sec ≈
88K SDE

70 sec ≈
120K SDE

90 sec ≈
156K SDE

110 sec ≈
192K SDE

Ti
m

e
(s

ec
)

Working Memory

8 processors/8299 CE per processor

(b) CE recognition for 100 tracked entities.

Fig. 3: Event Recognition for Public Space Surveillance.

processors. Consider e.g. that CE recognition for the
pair (id1 , id2) is performed on one processor while
CE recognition for the pair (id2 , id3) is performed on
another processor. In both processors we will have
to compute the intervals for which id2 is a person,
walking and stays inactive.

Larger datasets. We constructed a larger dataset by
taking ten copies of the original CAVIAR dataset with
new identifiers for the tracked entities in each copy.
The resulting dataset has 100 tracked entities, i.e. 4,950
entity pairs, while on average 1,793 SDEs take place
per sec. According to the EPTS use case survey [7],
in the resulting dataset there are more SDEs per sec
than in most applications. We used all eight proces-
sors of the computer in parallel. Consequently, each
instance of RTEC running on a processor performed
CE recognition for 619 entity pairs, computing and
storing the intervals of 8,299 CEs. As in the previous
set of experiments, there is no SDE filtering, and the
inter-query step is equal to WM. We varied the sizes
of the inter-query step and WM from 10 sec (≈17,933
SDEs) to 110 sec (≈192,010 SDEs). Figure 3(b) shows
the average CE recognition times. In all cases RTEC
performs real-time CE recognition.

6 RELATED WORK
RTEC has a formal, declarative semantics as opposed
to most complex event processing languages, several
data stream processing and event query languages,
and most commercial production rule systems. Fur-
thermore, RTEC supports atemporal reasoning and
reasoning over background knowledge, has built-
in axioms for complex temporal phenomena, explic-
itly represents CE intervals and thus avoids the re-
lated logical problems, and supports out-of-order SDE
streams. Concerning the Event Calculus literature, a
key feature of RTEC is that it includes a windowing
technique. In contrast, no Event Calculus system ‘for-
gets’ or represents concisely the SDE history.

One of the best known formal CE recognition sys-
tems is the Chronicle Recognition System (CRS) [15].
A ‘chronicle’ can be seen as a CE—it is expressed as
a set of events linked together by time and context
constraints. CRS has proven efficient and scalable

enough for various application domains. However,
CRS is a purely temporal reasoning system and cannot
be directly used in applications requiring any type of
atemporal reasoning, such as spatial reasoning.

In our approach to CE recognition, the availability
of the power of logic programming is one of the
main attractions of employing the Event Calculus.
It allows CE definitions to include not only com-
plex temporal constraints but also complex atempo-
ral constraints. Furthermore, it allows reasoning over
background knowledge. This is in contrast to various
CE recognition approaches, such as [3], [15], [20],
[11], that lack the ability of (complex) reasoning over
existing domain knowledge [2]. The benefits of logic
programming over other CE recognition approaches
are reported in [28], while in [11] there is a detailed
account of the limitations of existing approaches.

Shet et al. [32] have presented a logic programming
approach to CE recognition from video content. Anicic
et al. [2] have also developed a logic programming
approach to CE recognition, and applied it to sensor
networks. A distinguishing feature of our approach
with respect to such lines of work is the use of an
Event Calculus dialect for temporal representation
and reasoning. RTEC has built-in axioms for temporal
phenomena, including the formalisation of inertia,
which facilitate considerably the development of suc-
cinct CE definitions, and therefore code maintenance.

Shanahan [31] formulated in first-order logic the
‘simple’, ‘full’ and ‘extended’ Event Calculus. Miller
and Shanahan [25] translated a fragment of Shana-
han’s Event Calculus dialects to the language E [18]
in order to make use of its software tools. E , how-
ever, does not explicitly represent durative CEs. Other
temporal formalisms that do not explicitly represent
CE intervals may be found in [24], [15], [11]. The
logical problems that arise from the lack of CE interval
representation are reported in [27].

The ‘Macro-Event Calculus’ [8] includes axioms for
computing the maximal intervals of simple fluents
and extends the notion of ‘macro-event’ to support
composite (macro) event operators: sequence, disjunc-
tion, parallelism and iteration. However, this dialect

13

cannot be used for run-time CE recognition as it does
not have a mechanism for efficient reasoning over
large datasets. The ‘Interval-based Event Calculus’
[27], [28] includes event operators for sequence, dis-
junction, mutual exclusivity, conjunction, concurrency,
negation, quantification and aperiodicity. Event inter-
vals in the Interval-based Event Calculus are closed:
it is not possible to recognise a CE that started taking
place at some earlier time-point and is still taking
place. In many application areas, including CTM and
PSS, this is a serious limitation.

The interval manipulation constructs of RTEC
were developed primarily for efficiency reasons, and
proved sufficient for CTM and PSS. The availability
of logic programming allows us to express in RTEC
various event operators, such as those of the Macro-
Event Calculus and the Interval-based Event Calculus.

The Interval-based Event Calculus has a form of
caching of fluents (only concerning time-points as flu-
ent intervals are not represented) and event intervals.
However, the possibilities of SDEs arriving in non-
chronological order, and SDE revision, are not consid-
ered. Thus, in the Interval-based Event Calculus it is
not possible e.g. to update the intervals of recognised
CEs due to SDEs arriving with a delay. Note that sev-
eral other event processing systems, such as [17], [14],
[11], [13], [21], operate only under the assumption
that SDEs are temporally sorted. Such systems rely
on components that order SDEs prior to feeding them
to the CE recognition system. RTEC does not rely on
such components and may dynamically update the
intervals of recognised CEs, or recognise new CEs, as
a result of delayed SDE arrival or SDE revision. The
applications mentioned in [10], [22], as well as CTM
in the Helsinki and Dublin infrastructures, are but a
few examples in which the SDE streams cannot be
assumed to be ordered and/or may be revised.

The ‘Cached Event Calculus’ [10] performs update-
time reasoning: it computes and stores the conse-
quences of a SDE as soon as it arrives. Query process-
ing, therefore, amounts to retrieving the appropriate
CE intervals from the computer memory. The Cached
Event Calculus does not ‘forget’ any SDE and has no
technique for representing concisely the SDE history.
Consequently, this dialect is not suitable for run-time
CE recognition.

There are also important differences in the caching
mechanism itself. In the Cached Event Calculus, when
a maximal interval of a fluent is asserted or retracted
due to a delayed SDE, the assertion/retraction is
propagated to the fluents whose validity may rely on
such an interval. E.g. propagateAssert([T1 ,T2],U) in
the Cached Event Calculus checks whether there are
new initiations as a result of asserting the interval
(T1, T2] of fluent U . In particular, propagateAssert
checks whether: (1) the asserted fluent U is a con-
dition for the initiation of a fluent F at the occurrence
of event E, (2) the occurrence time T of E belongs

to (T1, T2], and (3) there is not already a maximal
interval for F with T as its starting point. If the above
conditions are satisfied, propagateAssert recursively
calls updateInit(E ,T ,F) in order to determine if F
is now initiated at T , and if it is, to update the fluent
interval database accordingly.

propagateAssert also checks whether there are new
terminations as a result of a fluent interval assertion,
while propagateRetract checks whether there are new
initiations and terminations as a result of a fluent
interval retraction.

The cost of propagateAssert and propagateRetract is
very high, especially in applications where the CE
definitions include many rules with several fluents
that depend on several other fluents. Furthermore,
this type of reasoning is performed very frequently:
propagateAssert e.g. is invoked every time a fluent
interval is asserted in the computer memory. If SDE
revision were to be supported, then the number of
invocations of propagateAssert and propagateRetract
would increase. Note that the cost of such reasoning
modules applies to all update-time reasoning ap-
proaches (e.g. [2]).

RTEC avoids the costly checks every time a fluent
interval is asserted/retracted due to delayed SDE
arrival/revision. We found that in RTEC it is more effi-
cient, and simpler, to discard at each query time Qi, all
intervals of fluents representing CEs in (Qi−WM ,Qi]
and compute from scratch all such intervals given the
SDEs available at Qi and detected in (Qi−WM ,Qi].

The ‘Reactive Event Calculus’ [9], [26] is another
dialect performing update-time reasoning. This di-
alect is primarily developed to deal with ordered SDE
streams. Furthermore, like the Cached Event Calculus,
it does not ‘forget’ SDEs and has no technique for
representing concisely the SDE history.

7 SUMMARY AND FURTHER WORK
We presented RTEC, an Event Calculus dialect with
novel implementation techniques that allow for ef-
ficient CE recognition, scalable to large numbers of
SDEs and CEs. A form of caching stores the results of
sub-computations in the computer memory to avoid
unnecessary recomputations. A set of interval ma-
nipulation constructs simplify CE definitions and im-
prove reasoning efficiency. A simple indexing mecha-
nism makes RTEC robust to SDEs that are irrelevant
to the CEs we want to recognise and so can operate
without SDE filtering modules. Finally, a ‘windowing’
mechanism supports real-time CE recognition. RTEC
remains efficient and scalable in applications where
SDEs arrive with a (variable) delay from, or are re-
vised by, the SDE detection systems: it can update the
already recognised CEs, and recognise new CEs, when
SDEs are arrive with a delay or following revision.

The CE definitions on which our evaluation was
performed are rather complex, taking into consid-
eration SDEs as well as their context. Furthermore,

14

our CE definitions are significantly more complex
than those presented in most related papers. Our
empirical analysis showed that RTEC supports real-
time CE recognition for very big city transport and
traffic management, and large-scale surveillance ap-
plications. Moreover, it showed that RTEC is capable
of meeting the performance requirements of most of
today’s applications, as estimated by an event pro-
cessing use case survey [7].

We have not conducted comparisons of perfor-
mance with other systems. We have described in de-
tail the differences between our approach and a wide
range of systems, and indicated why an empirical
comparison might not be informative. There would
also be the problem of compiling a new dataset that
uses only features common to several systems. We are
intending to look into the possibility of constructing
such a dataset as part of our future work.

The manual construction of CE definitions is a time-
consuming and error-prone process. We are devel-
oping techniques, based on abductive-inductive logic
programming, for automated generation and refine-
ment of CE definitions from very large datasets. We
are also porting RTEC into probabilistic logic pro-
gramming frameworks, in order to deal with various
types of uncertainty, such as imperfect CE definitions,
incomplete and erroneous SDE streams.

ACKNOWLEDGMENTS

This work has been partly funded by the EU FP7
projects PRONTO (231738) and SPEEDD (619435).

REFERENCES

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient
pattern matching over event streams. In SIGMOD, 2008.

[2] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Real-time
complex event recognition and reasoning. Applied Artificial
Intelligence, 26(1–2):6–57, 2012.

[3] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. The
VLDB Journal, 15(2):121–142, 2006.

[4] A. Artikis, M. Sergot, and G. Paliouras. Run-time composite
event recognition. In DEBS, pages 69–80. ACM, 2012.

[5] A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras. Logic-
based event recognition. Knowledge Engineering Review,
27(4):469–506, 2012.

[6] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo. A
data stream language and system designed for power and
extensibility. In CIKM, pages 337–346, 2006.

[7] P. Bizzaro. Results of the survey on event processing use cases.
Event Processing Technical Society, March 2011. http://www.
slideshare.net/pedrobizarro/epts-survey-results.

[8] I. Cervesato and A. Montanari. A calculus of macro-events:
Progress report. In TIME, pages 47–58, 2000.

[9] F. Chesani, P. Mello, M. Montali, and P. Torroni. A logic-
based, reactive calculus of events. Fundamenta Informaticae,
105(1-2):135–161, 2010.

[10] L. Chittaro and A. Montanari. Efficient temporal reasoning in
the cached event calculus. Computational Intelligence, 12(3):359–
382, 1996.

[11] G. Cugola and A. Margara. TESLA: a formally defined event
specification language. In DEBS, pages 50–61, 2010.

[12] G. Cugola and A. Margara. Processing flows of information:
From data stream to complex event processing. ACM Comput-
ing Surveys, 44(3):15, 2012.

[13] N. Dindar, P. M. Fischer, M. Soner, and N. Tatbul. Effi-
ciently correlating complex events over live and archived data
streams. In DEBS, pages 243–254, 2011.

[14] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W.-P.
Hsiung, and K. Candan. Runtime semantic query optimization
for event stream processing. In ICDE, pages 676–685, 2008.

[15] C. Dousson and P. Le Maigat. Chronicle recognition improve-
ment using temporal focusing and hierarchisation. In IJCAI,
pages 324–329, 2007.

[16] M. Eckert and F. Bry. Rule-based composite event queries: the
language xchangeeq and its semantics. Knowledge Information
Systems, 25(3):551–573, 2010.

[17] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and
G. Anderson. SASE: Complex event processing over streams.
In CIDR, 2007.

[18] A. Kakas, L. Michael, and R. Miller. Modular-E : An elabo-
ration tolerant approach to the ramification and qualification
problems. In LPNMR, pages 211–226, 2005.

[19] R. Kowalski and M. Sergot. A logic-based calculus of events.
New Generation Computing, 4(1):67–96, 1986.

[20] J. Krämer and B. Seeger. Semantics and implementation of
continuous sliding window queries over data streams. ACM
Transactions on Database Systems, 34(1):1–49, 2009.

[21] M. Li, M. Mani, E. A. Rundensteiner, and T. Lin. Complex
event pattern detection over streams with interval-based tem-
poral semantics. In DEBS, pages 291–302, 2011.

[22] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. T.
Claypool. Sequence pattern query processing over out-of-
order event streams. In ICDE, pages 784–795, 2009.

[23] D. Luckham and R. Schulte. Event processing glossary —
version 1.1. Event Processing Technical Society, July 2008.

[24] K. Mahbub, G. Spanoudakis, and A. Zisman. A monitoring
approach for runtime service discovery. Automated Software
Engineering, 18(2):117–161, 2011.

[25] R. Miller and M. Shanahan. Some alternative formulations of
the event calculus. In Computational Logic: Logic Programming
and Beyond, LNAI 2408, pages 452–490. 2002.

[26] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P.
van der Aalst. Monitoring business constraints with the Event
Calculus. ACM TIST, 5(1), 2014.

[27] A. Paschke. ECA-RuleML: An approach combining ECA
rules with temporal interval-based KR event/action logics and
transactional update logics. Technical Report 11, Technische
Universität München, 2005.

[28] A. Paschke and M. Bichler. Knowledge representation con-
cepts for automated SLA management. Decision Support Sys-
tems, 46(1):187–205, 2008.

[29] A. Paschke and A. Kozlenkov. Rule-based event processing
and reaction rules. In Proceedings of RuleML, LNCS 5858. 2009.

[30] T. Przymusinski. On the declarate semantics of stratified
deductive databases and logic programs. In Foundations of
Deductive Databases and Logic Programming. Morgan, 1987.

[31] M. Shanahan. The event calculus explained. In Artificial
Intelligence Today, LNAI 1600, pages 409–430. Springer, 1999.

[32] V. Shet, J. Neumann, V. Ramesh, and L. Davis. Bilattice-based
logical reasoning for human detection. In CVPR, 2007.

