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Abstract

In this paper, we propose a tensor factorization method, called CLASS-RESCAL,

which associates the class labels of data samples with their latent representa-

tions. Specifically, we extend RESCAL to produce a semi-supervised factoriza-

tion method that combines a classification error term with the standard factor

optimization process. CLASS-RESCAL assimilates information from all the re-

lations of the tensor, while also taking into account classification performance.

This procedure forces the data samples within the same class to have similar

latent representations. Experimental results on several real-world social net-

work data indicate this is a promising approach for multi-relational classification

tasks.

Keywords: semi-supervised tensor factorization, multi-relational networks,

social network analysis

1. Introduction

Social network analysis (SNA) provides new ways of answering standard

social and behavioral science research questions. Analyzing social networks

typically involves tasks like node centrality prediction, node classification and

link prediction. However, social networks usually comprise heterogeneous infor-5

mation, a variety of node types, multiple relations between them and complex
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Figure 1: An example of a multi-relational network. Here, we observe three different types of

interactions/relations between nodes (right).

structures. A category of such complex networks are the multi-relational ones.

In multi-relational social networks, a relation represents a social tie or some

type of interaction between two nodes. In this sense, a multi-relational net-

work integrates multiple single relational networks. For a toy example of a10

multi-relational network see Figure 1. Nodes represent entities and edges the

existing types of interactions. Here, the network displays three different kinds

of relations (deconstructs, criticizes, follows).

Given the proliferation of complex multi-relational social networks, it be-

comes imperative to design new analysis methods that will capture the diver-15

sity of information in the network. The use of simpler traditional graph analysis

methods inevitably leads to partial and incomplete conclusions.

In this work, we focus on the problem of identifying the type/class of nodes

in multi-relational social networks through their social interactions. The under-

lying assumption is that the interactions between two nodes largely depend on20

their positions in the social network and the roles they play [8]. Hence, find-
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ing nodes of the same class can be modeled as a task of identifying nodes that

have similar relationships [38]. In many cases there is additional information

about nodes beyond their relationships and interactions. For example, in the

scenario of Figure 1 we know that some of the philosophers are post-modernists25

while others are existentialists. Such information can facilitate the social mod-

eling process, especially in classification tasks. However, in many real-world

applications only a small portion of the data is accompanied with such labels.

The research problem studied in this paper can be defined as follows: we

want to extract informative latent representations of nodes out of all information30

available in the network. Through this process, we aim to identify the type/class

of a node (e.g. a user) in the graph. Solving this task raises the following

research questions:

(Q1) How can we combine information from multiple relations in the net-

work?35

(Q2) How can we incorporate the label information of the data in hand to

enhance the analysis?

(Q3) How can we effectively integrate the two sources of knowledge to iden-

tify the type/class of a node?

Several approaches to multi-relational network analysis have appeared in the40

literature, such as multilinear PageRank [11] and the multi-relational version

of hubs and authorities [21]. Tensors and their factorizations have also been

used widely. Due to the nature of tensors, relations expressed as tuples of the

form (object, relation, subject), for instance (Derrida, criticizes, Foucault), can

be straightforwardly mapped to a tensor. As an example, the multi-relational45

network in Figure 2 can be represented as a 5x5x3 tensor where an entry (i,j,r)

is 1 only if the corresponding relation exists in the network. This process is

depicted in Figure 2. Rows represent the nodes and each slice/matrix represents

the adjacency matrix for a distinct relation. Therefore, tensors can be used to

address the first question (Q1).50

However, in many cases there is additional information about nodes apart

from relationships and interactions. One way of making use of such information
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Figure 2: A multi-relational network can be easily mapped to a tensor. As we can see,

the network at the left can be mapped to a 5x5x3 tensor. Each frontal slice represents the

adjacency matrix for a specific relation

is to extract node vectors from the tensor (e.g. using factorization) and then

append to the vectors this extra information that is available. The extended

vectors could then be used to train a classifier to identify the class of a node.55

The problem with this approach is that the first (factorization) step remains

agnostic of the final (e.g. classification) task. Therefore, the factors are not

optimized for the node classification task.

In order to address this problem, we propose a new method for ranking

nodes in multi-relational networks, which combines tensor factorization and60

classification in a joint optimization process. Similar to TripleRank [9], our idea

is to produce a ranking of nodes, based on the factor scores that are computed

during factorization. However, in our approach the factor matrices are a result

of a new semi-supervised factorization process, which forces nodes that belong

to the same class to obtain a similar factor representation. The resulting class-65

biased factor matrices can thus be used for node ranking/classification. In this

manner, we tackle questions (Q2) and (Q3).

The method proposed in this paper (CLASS-RESCAL) is an enhanced ver-

sion of RESCAL tensor factorization [31], that assimilates a-priori information

about nodes. The factorization process of CLASS-RESCAL incorporates a com-70
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ponent that minimizes classification error. We evaluate the proposed method

using three real-wold datasets that have been used in existing literature. The

first was collected from Twitter and consists of a network of 4,317 users and two

types of relations [35], the second was collected from Tagged.com and consists

of a network of 5,317,649 users and seven types of relations [7] and the third75

was collected from Flickr and contains 8,536 photos and seven types of relations

[20].

In summary, the main contributions of the paper are:

• Combination of tensor factorization with classification, achieving class-

aware factorization of tensorial data.80

• Demonstration of the benefits of using the proposed method to rank social

network users according to their class, using real-world datasets.

The remainder of the paper is organized as follows. In Section 2, we provide

the notation we use throughout the paper and review tensor factorization models

which are commonly used in multi-relational learning. In Section 3, we formal-85

ize the task and present in detail our approach. In Section 4, we experimentally

evaluate CLASS-RESCAL and compare it with competitive classification and

factorization methods. Finally, we conclude with a discussion on our observa-

tions and directions for future research in Section 5.

2. Related Work90

2.1. Notation

Throughout the paper we will use the following notation. The uppercase

calligraphic letters denote a tensor T ∈ Rn×n×m, where n is the number of

nodes (e.g. users) and m is the number of relations. Matrices are represented

by uppercase italic letters like A. Lowercase bold letters, like v, denote vectors.95

The (i,j) element of a matrix A is denoted by aij . To refer to the i-th row of a

matrix A we use ai. Similarly, an element (i,j,k) of a tensor T will be denoted
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as Tijk. Also, Tk represents the k-th frontal slice of tensor T . Additionally,

vec(A) is the vectorization of A and the operator ⊗ is the Kronecker product.

For our relational modeling of triples of the form (object, relation, subject),

we use a binary representation:

Tijk =

1 if the k-th relation exists between nodes i and j

0 otherwise

This representation is also known as an adjacency tensor. As an example, the100

relation (u1, r2, u5) in Figure 2, causes the corresponding entry in the tensor

to be 1, i.e. T1,5,2 = 1. In this sense, each frontal slice of T represents an

adjacency matrix for a particular relation.

The order of a tensor, also known as ways or modes, is the number of its

dimensions, therefore, T is called a third-order tensor. Also, a r-order tensor is105

of rank-one if it can be strictly decomposed into the outer product of r vectors.

In addition, to simplify the notation, we follow the same notation as in [19]

for Kruskal and Tucker operators[19], to express the factorization models in the

next sections.

2.2. Multi-Relational Learning with Tensor Factorization110

As multi-relational data can be efficiently represented by tensors, many ap-

proaches have been proposed in the literature that employ tensor factorization.

Common tensor factorization approaches such as CANDECOMP/PARAFAC

(CP) [13], Tucker factorization [39] and DEDICOM [3] have been utilized widely.

Most of these studies use a common latent representation for both entities and115

relations. CP decomposes a tensor into a sum of rank-one tensors. The CP de-

composition of a third-order tensor, is computed by the following least-squares

loss:

minA,B,C ‖T − [[A,B,C]]‖2 ,

where A, B and C are the separate factor matrices.
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On the other hand, Tucker [39] decomposes a tensor into a core tensor and120

separate factor matrices for each mode of the tensor. The optimization problem

for Tucker takes the following form:

minG,A,B,C ‖T − [[G;A,B,C]]‖2 ,

where G is the core tensor and A, B, C the separate factor matrices.

Another approach for tensor factorization, which achieves high predictive

performance in the task of link prediction, is RESCAL [31]. RESCAL, which

we will describe in more detail in Section 3, uses a unique latent representation

for nodes. The minimization problem for RESCAL is the following:

minA,R

∥∥T −ARAT
∥∥2 .

ConsMRF [5] follows a similar approach, but builds a separate model for each

relation. ConsMRF uses Alternate Direction Method of Multipliers (ADMM)125

for optimization [23, 4].

Recently, several studies have combined matrix and tensor factorization in a

joint model. These techniques proved to achieve good performance when there

is additional information available (e.g. the fact that Derrida and Foucault are

post-modernists). Such a joint factorization method based on CP is proposed130

in [2]. The matrix is used to hold the available additional information about

the nodes. The minimization problem is formulated as:

minA,B,C,V ‖T − [[A,B,C]]‖2 +
∥∥Y −AV T

∥∥2 ,
where Y is the additional information matrix and V is the corresponding factor

matrix.

Similar approaches are presented in [29, 6, 34]. Lin et al.[24] also discussed135

coupled matrix and tensor factorizations using KL-divergence. They model

higher-order tensors by fitting a CP model. In contrast to these studies that

use alternating algorithms for optimization, Acar et al. [1] proposed an all-at-

once optimization approach for coupled analysis.
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The goal of our work is to incorporate classification error in the optimiza-140

tion process. In this direction, very few tensor factorization methods obtain

the factor matrices in a supervised manner, that is, by utilizing the label infor-

mation of the samples. Most of these methods, perform the decomposition in

the usual unsupervised way and then build a classifier using the resulting factor

matrices (e.g. [22]). Therefore, factorization remains agnostic to the labels of145

the samples. Differently from these methods, our approach takes into account

the classification error, during the decomposition process.

2.3. Identifying Important Nodes in Multi-relational Networks

The problem of identifying important nodes has been extensively studied in

the literature, albeit mostly in single-relation networks. For instance, PageRank150

assigns a score to each node that expresses its importance. Many studies propose

centrality measures such as in-degree, betweenness or variations of PageRank-

like algorithms [18, 14, 33, 26]. While most of these methods refer to single-

relation networks, they can be extended to multi-relational ones. For example,

the study in [11] is an extension of PageRank to multi-relational networks. In155

[25], the authors propose a graphical model which utilizes heterogeneous link

information and the textual information associated to each node. In [41], the

authors suggest a method for performing combined random walks exploiting

multi-relational influence networks.

MultiRank [30] is a method to simultaneously determine the importance of160

both nodes and relations, based on a probability distribution computed from

multi-relational data. HAR [21] calculates hub, authority and relevance scores

by performing random walks in multi-relational data. Both MultiRank and

HAR are unsupervised methods, that use a tensorial representation of multi-

relational data and perform random walks on the tensors. On the other hand,165

in [15] a three-stage unsupervised process is proposed, which firstly collects

features of the nodes, then performs a tensor factorization on node relations

and finally applies a ranking scheme to identify the most influential nodes.

Tensor factorization has also been used in the context of linked data. TripleR-
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ank [9], ranks nodes in triple stores using CP [13] to obtain two factor matrices170

which correspond to hub and authority scores. Another approach [36], utilizes

tensor factorization over heterogeneous1 networks to rank tags and provide tag

recommendations.

Our method also aims at classifying nodes in multi-relational networks. How-

ever, it differs from existing methods as it combines the decomposition of the175

tensor with additional supervision, that provides information for the specific

type of node.

Recent work on neural networks involves also research on methods that op-

erate on graphs. Node2vec [12], learns a mapping of nodes to a low-dimensional

space of features that maximizes the likelihood of preserving network neigh-180

borhoods of nodes. The authors define a flexible biased random walk proce-

dure, which efficiently explores diverse neighborhoods and show that the added

flexibility in exploring neighborhoods is the key to learning richer representa-

tions. On the other hand, Kipf et. al [16] propose a scalable approach for

semi-supervised learning on graph-structured data which is based on an effi-185

cient variant of convolutional neural networks operating directly on graphs. In

this line of work, there are also other methods that study graphs with the use

of neural networks, including [17, 37, 42, 10].

The method that comes closest to our approach is the one presented in [40],

which performs discriminative tensor decomposition by coupling non-negative190

Tucker tensor factorization and a maximum margin classifier. In contrast to

that method, our approach (a) utilizes RESCAL, which does not require the

construction of a core tensor and (b) produces factor matrices by employing

Alternating Least Squares (ALS), which has been proven to be a more efficient

optimization method than gradient descent [3]. Our approach incorporates the195

social network structure and class label information in a joint factorization prob-

lem with shared latent factors. Combining all available information in a unified

learning process allows the method to learn the classes of nodes in a shared

1More than one type of nodes and edges involved in the network.
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latent space. This means we not only characterize users by their interactions

but also identify the connection between the class labels and the social graph.200

3. Semi-Supervised RESCAL (CLASS-RESCAL)

3.1. RESCAL tensor factorization

RESCAL is a state-of-the-art relational learning method, based on a variant

of the DEDICOM tensor factorization. It achieves high predictive performance

in various tasks such as link prediction and collective classification [31]. A basic205

assumption of RESCAL’s model is that a node has a unique representation over

all relations in the data.

RESCAL factorization is computed for each frontal slice as follows:

Tk = ARkA
T , for k = 1,..,M

where A ∈ Rn×r is a latent factor matrix that models nodes and Rk ∈ Rr×r

is an asymmetric latent factor matrix that models relations (n is the number

of nodes and r is the number of latent factors). Each node is represented via a210

unique row ai in A and the k-th (frontal slice) relation via Rk.

To compute this factorization, a regularized least squares optimization prob-

lem must be solved:

min
A,R

∑
k

∥∥Tk −ARkA
T
∥∥2 +λA ‖A‖2 + λR

∑
k

‖Rk‖2 (1)

where λA and λR are regularization hyperparameters. This function can be

minimized via Alternating Least Squares (ALS) [3], where the updates of A and

Rk can be calculated as follows:

A← [

M∑
k=1

TkART
k + T T

k ARk][

M∑
k=1

RkA
TART

k +RT
kA

TARk + λI]−1 (2)

and

Rk ← (ZTZ + λI)−1Zvec(Tk), (3)

where Z = A⊗A. It is important to recall that during the optimization process,

a unique latent representation for each node is shared over all relations. This

means that the same A is used with all relations.
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3.2. The CLASS-RESCAL approach215

Our approach combines two basic mechanisms: the collective multi-relational

learning achieved through factorization and the class-driven optimization in

relation to the latent factors. Similar to RESCAL, input data is decomposed

into the matrices A ∈ Rn×r and R ∈ Rr×r. To capture class-aware information

we add a classification error term, based on the latent factor A. Key points of220

this approach are the following:

• Similar to RESCAL, the tensor factorization uses a unique latent repre-

sentation over all relations for each node, regardless of their occurrence

as subjects or objects in a relation. Consequently, all relations have a

determining influence on the calculation of factors in A.225

• Node vectors ai in A are linked to class labels. The similarity of nodes

is assumed to be reflected in their latent-component representation in A.

Entities of the same class are expected to be represented by similar latent

vectors. In order to achieve this, a classifier is trained on the matrix A,

and A is updated with respect to the classification error. In this manner,230

the similarity between nodes in A captures their similarity across multiple

relations.

• A folding-in technique is employed, in order to project a new test instance

to the existing latent space of A and R. This representation is then used

to rank/classify the test instance.235

The conceptual diagram of the proposed approach is depicted in Figure 3.

The first step in the approach is to build a multi-relational graph from the

raw data. In this paper, we focus on social media data, but our method can

be readily applied to other domains (e.g. biology and medicine). Next step

is to construct a tensor using the adjacency matrices, induced by the multi-240

relational graph. The result is a 3rd-order tensor. CLASS-RESCAL extends

the RESCAL factorization model using supervision. That is, the 3rd-order
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Figure 3: Conceptual diagram of CLASS-RESCAL.

tensor is approximated by taking into account the available labeled data. In

particular, the node vectors in A are linked to class labels.

Regarding new nodes (test instances to be classified), CLASS-RESCAL com-245

putes new vectors by projecting their observed data onto the latent space of

existing nodes (Folding-in). Given a new node’s data X, and using the node

factor A and the relation factor R from the learned model, the method esti-

mates the new node’s vector atest. The produced vector in this way can be

used for ranking or classification.250

All the steps of the CLASS-RESCAL method, except tensor construction

which is the same as in RESCAL (see 2.1) are described in the following sub-

sections.

3.3. Joint optimization in CLASS-RESCAL

Suppose we have a set of labels for some of the nodes in our tensorial data.255

For example, we may have a label for each author in Figure 1, which indicates

whether the author is influential or not. We could assume that influential au-

thors will have similarities in the way they interact and relate with each other

[27]. In other words, we expect similarly labeled nodes to share similar factors.

Based on this assumption, we introduce class-label information into the tensor260

factorization, in order to move nodes of the same class closer in the latent space.

12



CLASS-RESCAL models this problem as a joint optimization of tensor factors

and classification.

Given an adjacency tensor T ∈ Rn×n×m, as presented in Section 2, and a

set of labels Yi ∈ {−1, 1}, where i = 1,..,l, with l<n, we solve the optimization

problem presented in Eq. 4.

minimize
A,R

f(A,R) + g(A) + h(A,R), (4)

where

f(A,R) =
∑
k

∥∥Tk −ARkA
T
∥∥2

is the tensor factorization least squares problem,

g(A) = λg ‖Y − y(A)‖2 (5)

is the prediction error of the classifier y(a) and

h(A,R) = λA ‖A‖2 + λR
∑
k

‖Rk‖2

is the regularization term. λg is a hyperparameter to control the influence of

the classification error in the optimization. Note that the classifier y(A) is265

produced with respect to the current values of the latent factor matrix A. In

the next subsection we provide more information regarding the calculation of

y(A).

3.4. Classification in CLASS-RESCAL

Each row ai of the factor matrix A represents a unique latent-factor repre-270

sentation of the i-th node. The similarity of nodes is assumed to be reflected

in their latent-factor representation. Namely, nodes of the same class will also

share similar latent representations. So, if the i-th node is similar to the j-th

node then their rows in the factor matrix A should also be similar, i.e. ai ≈ aj.

In order to force nodes of the same class to have similar latent representation275

we minimize the prediction error of a classifier trained on A (Eq. 5). To further
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Figure 4: The process of k-NN classification. The top-k similar nodes are used for labeling,

based on majority voting. Here, the top-2 neighbours of Derrida are Foucault and Nietzsche,

who are labeled as influential (shaded). As a result, Derrida will also be classified as influential.

explore the role of a classifier in our method, we show how two different clas-

sifiers can be used: a lazy k-nearest neighbor (k-NN) classifier and a support

vector machine (SVM).

k-NN Classifier. Nearest neighbor techniques use the similarity among280

nodes to construct a neighborhood and make a prediction, assuming that the

class of a node is close to the class of its neighbors. For instance, an influential

individual is likely to interact and share social connections with other influential

individuals. In this context, we assign a label to a node in A, based on its top

k neighbors in A (see Figure 4).285

For example, the latent representation of Derrida is similar to the latent

representations of Foucault and Nietzsche. Assuming that both Foucault and

Nietzsche are influential according to supervision, the majority rule2 will classify

Derrida as influential.

SVM Classifier. We build a SVM model out of the labeled data which290

uses as features the latent values of each node, i.e. the factor values of each row

2In case of ties, the classification result will be the class that happens to appear first in

the set of neighbors.
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ai. As we want similarly labeled nodes to share similar latent representation,

the discrimination of classes should rely on the factor values produced during

the factorization process.

The resulting classifier, be it k-NN, SVM or a different one, is used in the295

optimization process (see Eq. 5) to update A and R.

3.5. Updating matrices A and R

We solve the minimization problem in Eq. 4, using the efficient alternating

least squares method (ALS), as in [31]. This approach alternately fixes and

solves A and R following update rules. The update rules for A and Rk are300

derived by setting the gradient of Eq. 4 with respect to each matrix to zero.

The update rule for Rk is the same as in the original RESCAL, but the update

rule for A becomes:

A← [

m∑
k=1

TkART
k + T T

k ARk + 2(Y − y(A))]

[

m∑
k=1

RkA
TART

k +RT
kA

TARk + λI]−1
(6)

Note that the update of A is directly coupled to the classification result of y(A).

When f(A,R)+g(A)+h(A,R)

‖T ‖2 converges to a predefined threshold ε or a maximum305

number of iterations is exceeded, the procedure stops. The details of the pro-

posed method are summarized in Algorithm 1.

3.6. Folding-in a new instance

Given a new instance, we want to project it to the latent space of A and R,

learned from the training data. Figure 5, illustrates the folding-in process for

CLASS-RESCAL. The shaded part of T is the new instance which represents a

new node (e.g user), T(new) ∈ R1×n×m, where n is the number of nodes and m is

the number of relations. Matrix R remains unchanged while A is updated in an

alternating setting, exactly as in the optimization process described in Section
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Algorithm 1 CLASS-RESCAL: Given a tensor T and a set of labels Y, ap-

proximate A and R

Require: adjacency tensor T , labels Y

Ensure: latent matrix A, latent matrices Rk

1: Initialize A, R and hyperparameters λg, λA

2: repeat

3: procedure update(A)

4: y(A)← (Classifier(A))

5: update A using Eq. 6

6: end procedure

7: procedure update(R)

8: for each k in k-relations do

9: update Rk using Eq. 3

10: end for

11: end procedure

12: until convergence

3.5. Hence, the projection can be computed by the following equation:

A(new) = [

m∑
k=1

Tk(new)A(old)R
T
k(old)]

[

m∑
k=1

RT
k(old)A

T
(old)A(old)Rk(old) + λI]−1

(7)

This procedure will produce a matrix Anew ∈ R1×r where r is the number of

factors3. As it requires just a few simple matrix operations, it is fast and hence310

it can be used for incorporating unseen nodes in A.

3.7. Classifying nodes

In RESCAL, the factor matrix A is a latent representation of nodes (e.g.

users). Each row ai contains r values, one for each latent factor. Each factor

3note that Tk(new) ∈ R1×n
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Figure 5: The folding-in process of CLASS-RESCAL. A new test instance Tnew, consists of

the interactions with other nodes for each relation. The result of the folding-in process is a

new vector (Anew) which is the projection of Tnew in the latent space of A and R. Note that

R remains unchanged

value represents the placement of the i-th node with respect to the factor. In315

CLASS-RESCAL the factor matrix A is influenced also by the classifier, which

forces users of the same class to obtain a similar factor representation. Conse-

quently, in order to classify nodes (e.g. identify influential users) we can rank

the rows of the factor matrix A, using a ranking score for each row ai. Giving

an extra weight to the “positive” class by adjusting the parameter λg will move320

positive instances higher in the ranked list. The score is based on the factor

values and is defined as follows

ascorei =

∑r
j=1 |aij |
r

.

A new test instance is placed in the total ranking, according to the ranking

score computed from its folded vector. The assumption here is that the values

of ai will be higher for i ∈ P , where P is the set of indexes of the positive325

labeled instances. This is achieved by the integration of the classification error

in the update of A, which penalizes the values of negative instances. Therefore,

we expect that ascorei will be higher for the positive labeled instances.
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3.8. Complexity

Following the analysis in [32], the complexity of updating A and R in330

RESCAL is O(pnr + nr2) and O(pnr2 + nr2) respectively, where p are the

non-zero entries, n is the number of nodes and r is the number of factors.

The time complexity of adding a classifier in the update process of A, depends

on the number of nodes, as well as the number and size (e.g. the number

of factors) of training instances. Specifically, for the purposes of the study,335

adding a k-NN classifier4 will only change the complexity of updating A to

O(pnr+nr2 +rlog(n)). On the other hand, adding a SVM classifier will change

the complexity in the range between O(pnr+nr2+r(l2)) and O(pnr+nl2+r(l3)),

depending on the implementation, where l � n is the number of labeled nodes.

4. Experiments340

In this section we perform an analysis of the proposed method and assess

its performance, in terms of prediction quality and run time, compared to other

related algorithms. In the following subsections we describe the datasets used

in the study, the experimental settings, the evaluation protocol and the results.

4.1. Datasets345

We conduct experiments in three real-world datasets. The first dataset [35]

was collected from Twitter using the keyword “Amazon Kindle”. It consists of

4,317 nodes (users) out of which 248 are labeled as influential. The nodes in

this dataset interact with each other in two different ways representing different

relations in the graph. The second dataset [7] was collected from Tagged.com350

and represents a sample of its social network. It consists of 5,617,345 nodes

(users), who interact with each other in seven ways and 221,305 of them are

labeled as spammers. The third dataset [20] was collected from Flickr and

contains 8,536 nodes (images), out of which 1,877 are labeled as popular. The

nodes in this dataset are linked in seven different ways.355

4Using a kd-tree implementation (https://github.com/scikit-learn/scikit-learn)
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Table 1: Overview of the datasets. E is the number of nodes, R is the number of relations,

the fourth column presents the class balance, the fifth column shows the size of the dataset

and the last column is the fraction of the number of interactions between entities, relative to

the number of all possible interactions.

|E| |R| % labels tensor density

Twitter 4,317 2 5.7% influentials 4317x4317x2 0.029

Tagged.com 6,733 7 43% spammers 6733x6733x7 0.002

Flickr 8,536 7 22% popular 8536x8536x7 0.039

All datasets present high sparsity. The average density of the Twitter dataset

is 0.029, that of the Flickr dataset is 0.039, while that of the Tagged.com dataset

is lower than 0.002. For the Tagged.com dataset we perform random subsam-

pling, in order to achieve a better representation of the classes and resolve

memory issues5. We randomly sample N nodes labeled as spammers and N360

nodes labeled as non-spammers. For these nodes we find all interactions among

them that are present in the dataset. Users without interactions are discarded.

Thus, we obtain a MxMx7 tensor, where M is the number of nodes left in the

dataset. Table 1 summarizes the three datasets in numbers. For further details

of the datasets used in this study the reader can refer to the corresponding365

studies, where they were first used [35, 7, 20].

4.2. Analysis of CLASS-RESCAL

Next, we examine the role of latent factors and relations in the performance

of CLASS-RESCAL. For all experiments we follow a 10-fold cross-validation

evaluation methodology. To assess the performance, we employ the average370

precision-recall curve, which is generated by varying a selection threshold and

computing precision and recall successively at each point of the ranked list (as

produced by CLASS-RESCAL) starting from the top of the list.

5We used a machine equipped with a Core i7 and 16GB Ram. That is, we can fit matrix

sizes of around 1.4 ∗ 1010 bytes.
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4.2.1. Number of factors

In order to measure the effect of the number of factors on the performance of375

CLASS-RESCAL, we ran the experiment for various values of r = 2, 3, 5, 10, 15,

20, 30. For these experiments we used an SVM classifier and the results of this
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Figure 6: Behavior of CLASS-RESCAL, using different number of factors on Twitter.

experiment are displayed in Figures 6, 7 and 8. As we can see, CLASS-RESCAL
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Figure 7: Behavior of CLASS-RESCAL, using different number of factors on Tagged.
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performs better for r = 5, while additional factors (r > 5) do not seem to lead to

significant gains and in some cases they lead to lower performance. Moreover, as
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Figure 8: Behavior of CLASS-RESCAL, using different number of factors on Flickr.

380

the number of factors increases, the computation time of the factorization also

increases. As a result, in the rest of the experiments we use r = 5 (green line),

which seems to be a good compromise between performance and computational

cost.

4.2.2. Number of relations.385

Next, we examine the role of the number of relations (frontal slices of the

tensor) in the performance of the method. In Figures 9 and 10, we show

the performance of CLASS-RESCAL on the Tagged and Flickr datasets under

various settings.

We omit the Twitter dataset as it has only two relations. As can be seen, the390

best performance is obtained when all available information (all seven relations)

are used. This is an indication that the richness of multi-relational networks

can lead to better results and thus, a method which exploit them should be

considered.
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Figure 9: Performance of CLASS-RESCAL for various values of the number of relations (using

5 factors) on Tagged.
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Figure 10: Performance of CLASS-RESCAL for various values of the number of relations

(using 5 factors) on Flickr.

4.2.3. CLASS-RESCAL variations395

As part of the analysis, we also compared the following variations of the

proposed method:

• CLASS-RESCAL-knn: The proposed method using a k-NN classifier.
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• CLASS-RESCAL-svm: The proposed method using a SVM classifier.

• NN-RESCAL-svm: A non-negative version of RESCAL, adapted to use400

supervision as in CLASS-RESCAL-svm.

Additionally, we include in the experiments a baseline usnupervised RESCAL

and a SVM classifier (SVM-baseline), using as features the degree of a node in

each relation.
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Figure 11: Performance of CLASS-RESCAL variants and a baseline classifier (using 5 factors)

on Twitter.

The results in Figures 11, 12 and 13, show that CLASS-RESCAL outper-405

forms the baselines while, CLASS-RESCAL-svm performs slightly better than

the ohter variations of CLASS-RESCAL. The use of SVM in the classification

procedure seems to lead to models that associate effectively the latent repre-

sentation of the data samples with their class label. Hence, we use CLASS-

RESCAL-svm in the remaining experiments.410

4.3. Learning curve

Additionally, we investigate the behavior of CLASS-RESCAL with respect

to the size of the labeled data. In Figure 14, we show the F1-score learning

curves in relation to the labeled data ratio on all datasets. As we can see, the
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Figure 12: Performance of CLASS-RESCAL variants and a baseline classifier (using 5 factors)

on Tagged.
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Figure 13: Performance of CLASS-RESCAL variants and a baseline classifier (using 5 factors)

on Flickr.

more labeled instances are used in the training stage, the better performance is415

achieved.
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Figure 14: The learning curve of CLASS-RESCAL with respect to the number of labeled data

4.4. Comparison with other methods

In this experiment, we compare the performance of CLASS-RESCAL against

other related approaches.

4.4.1. Evaluation Methodology420

All datasets, used in this study, incorporate a portion of labeled data: in the

Twitter dataset we have influential and non-influential users, in Tagged.com we

have spammers and non-spammers, while in Flickr we have popular and non-

popular items. As CLASS-RESCAL is a semi-supervised method we evaluate it

over various sizes of the labeled training set, s ∈ [10%, 50%]. For each dataset425

size, we average the results over 10 random runs. In each run, we randomly

sample a percentage of instances from each label to use as the training set,

and consider the remaining as the test set. The training set is used to obtain

the semi-supervised tensor decomposition. Then, we compute the latent repre-

sentation of each test instance, using the folding-in technique presented in 3.6.430

Thereupon, we compute a ranking with respect to the ranking scores of entities,

ascorei , as described in 3.7. The results reported correspond to the performance

of the methods on the test set only.
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4.4.2. Competing methods

We compare CLASS-RESCAL against the following methods from the liter-435

ature:

• MultiRank[30]: MultiRank is a co-ranking method, performing a ran-

dom walk over multi-relational graphs. It constructs two transition prob-

ability tensors, one for nodes and the other for relations. Based on this

tensorial representation of multi-relational data, it performs a Pagerank-440

like random walk and computes one score for nodes and another one for

relations.

• HARrank[21]: A multi-relational analog of the HITS algorithm. It con-

structs three different transition probability tensors, one for hubs, one for

authorities and the last one for relations. Similar to MultiRank, it per-445

forms a random walk in the corresponding tensors and computes three

different scores (hub, authority, relation).

• TripleRank[9]: A tensor factorization approach based on CP. It uses the

factor scores produced from the tensor decomposition to rank nodes in

linked data.450

• Node2vec[12]: A node embedding method, which employs biased-random

walks that preserve the structure of neighborhoods. It uses the skip-gram

architecture [28] to learn the node representations.

• GCN-AE[17]: An unsupervised method for learning node embeddings. It

uses Graph Convolutional Networks(GCN) [16] as an encoder for capturing455

network structural properties and a simple inner product as a decoder in

the framework. It presents state-of-the-art performance in classification

and link prediction tasks.

For the implementation of CLASS-RESCAL and TripleRank we used the

python scikit-learn library6. MultiRank and HARrank were also implemented460

6http://scikit-learn.org/stable/
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in Python. We used a tensorflow implementation of Node2vec7 and the python

implementation of GCN-AE8 provided by their authors.

4.4.3. Parameter configuration

For CLASS-RESCAL, we set the number of factors to k = 5 as explained

in subsection 4.2.1 and hyperparameters λg = 0.1 and λA, λR = 0.5, based on465

the results of a grid search performed on dataset samples as in subsection 4.2.

We also use k = 5 for TripleRank. For the other methods we use the parameter

values proposed by their authors.

Furthermore, for the Node2vec and GCN-AE methods, which cannot be di-

rectly applied to multirelational data, we transform the multirelational network470

into a single-relational network. This is achieved by summing all slices of the

third-order tensor. This results in a weighted adjacency matrix (second-order

tensor).

4.4.4. Experimental Results

Figures 15, 16 and 17, show the performance of all methods on all three475

datasets. CLASS-RESCAL almost consistently outperforms the other methods

in all datasets. The SVM-baseline yields the lowest performance as it fails to

represent effectively the class labels. Triplerank and RESCAL perform bet-

ter than SVM-baseline, which indicates the importance of graph structure and

tensor representation. Node2vec performs slightly better than the previous ten-480

sor factorization methods, except in the Tagged.com dataset. The curves for

HARrank and MultiRank are comparable across all datasets, with the former

performing slightly better in the Flickr dataset and the latter being superior

in Twitter. GCN-AE comes closest to the performance of CLASS-RESCAL,

indicating the effectiveness of graph convolutional networks in capturing latent485

relations. However, the use of class-label information in the decomposition and

the use of the rich multi-relational data, allows CLASS-RESCAL to outperform

7https://github.com/thunlp/OpenNE
8https://github.com/tkipf/gae
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GCN-AE in all datasets. This is evident also when measuring the area under the

precision-recall curve (see Table 2). A general observation is that all methods
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Figure 15: Performance comparison of CLASS-RESCAL against related methods on Twitter.
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Figure 16: Performance comparison of CLASS-RESCAL against related methods on Tagged.

perform better in Tagged.com dataset. We suspect that the increasing extent490

of class imbalance in the data has a significant effect on the performance. In
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Figure 17: Performance comparison of CLASS-RESCAL against related methods on Flickr.

fact, for Flickr dataset the positive class prevalence9 is 0.22, we observe a large

drop in performance. Class imbalance seems to have a greater effect on perfor-

Table 2: The area under the precision-recall curve scores for all methods.

AUPR Twitter Tagged.com Flickr

SVM-baseline 0.046 0.473 0.214

RESCAL 0.056 0.505 0.274

MultiRank 0.144 0.522 0.315

HARrank 0.126 0.523 0.321

TripleRank 0.032 0.533 0.249

GCN-AE 0.171 0.556 0.421

Node2vec 0.131 0.512 0.305

CLASS-RESCAL 0.182 0.656 0.438

mance in the Twitter dataset in which the positive class prevalence is 0.057. On

the contrary, Tagged.com dataset presents a positive class prevalence of 0.43.495

9prevalence is defined as numberofpositives
numberoftotal
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As expected the increasing positive class prevalence lead to a notable gain in

performance.

4.4.5. Running Times

An empirical run-time comparison of the different multi-relational methods

in producing a ranked list of nodes is depicted in Figure 18. The run-times of
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Figure 18: The running times of all methods for different tensor sizes of each dataset.

500

all methods depend on the dimensions of the tensor and hence the size of the
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dataset. As the dimensionality increases, the run-time of all methods increases.

GCN-AE, MultiRank and HARrank present comparable run-times with the lat-

ter being marginally better in all datasets. The run-times of MultiRank and

HARrank are influenced by the number of random walks they perform. In par-505

ticular, random walks become fewer when the sparsity of the dataset is high.

Hence, MultiRank and HARrank perform slightly better in the Tagged dataset

which is sparser than Twitter and Flickr. However, MultiRank and HARrank

require the construction of two and three tensors respectively, in contrast to

CLASS-RESCAL which uses only one. This makes CLASS-RESCAL more ef-510

ficient. Interestingly, the run-times of TripleRank and Node2vec are inferior

to the rest of the methods. Specifically, TripleRank performance is problem-

atic even for small datasets and becomes unfeasible as the size of the tensor

increases.

The results show that CLASS-RESCAL outperforms the other methods not515

only in terms of prediction quality but also in run-time comparison. Therefore,

our approach can be regarded as accurate and efficient.

5. Conclusion - Discussion

In this paper, we propose a semi-supervised extension of the tensor fac-

torization method RESCAL for classifying nodes in multi-relational networks.520

The factorization that we propose incorporates a classification error term in

the optimization process achieving class-aware modeling of the tensorial data.

Therefore, our method models the tensorial data while minimizing classification

error.

In order to assess the value of the new method, we conducted experiments525

with real-life social network data. CLASS-RESCAL outperforms standard multi-

relational factorization methods by a notable margin. TripleRank, MultiRank

and HARrank are limited due to their incapacity of supervision. Based solely

on the structure of the networks, these methods ignore the class labels that are

available. On the other hand, state-of-the-art methods Node2vec and GCN-530
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AE, are limited also by the fact that they ignore the richness of multi-relational

networks. CLASS-RESCAL can deal with both limitations and present better

performance both in terms of prediction quality, as well as in prediction run-

time. As a more general conclusion, our detailed experiments demonstrate that

incorporating supervision, when available, leads to more accurate models.535

Several interesting future extensions of this work could be considered. As

shown in this study, taking into account the rich multi-relational data results to

more effective models. However, the dimensionality of such data can easily be-

come restrictive in terms of time and memory complexity. To this end, a future

direction is to investigate an efficient and parallel multi-relational factorization540

approach to tackle these issues. Currently, our approach does not support side

information such as node or edge features. CLASS-RESCAL’s learning pro-

cess could be further enhanced by incorporating such data in the optimization.

More than that, the current setup of CLASS-RESCAL can handle single or

multi-relational networks. A possible extension of the method could consider a545

more complex network representation, which integrates multiple types of nodes

and relations. Finally, a future plan is to apply CLASS-RESCAL to other tasks

in Social Network Analysis, such as link prediction and recommendation.
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