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The flux tube and the flux tube breaking amplitude in the 
harmonic approximation 

Nigel Dowrickt, Jack Paton and Stavros Perantonis$ 
Department of Theoretical Physics, 1 Keble Road, Oxford, UK 

Received 16 May 1986 

Abstract. In the flux tube model the amplitude for meson hadronic decay A +  B + C is given 
by an overlap integral containing a factor yic which represents the amplitude that the initial 
flux tube a should break at a specific point, forming the two flux tubes b and c of the final two 
mesons. We estimate the factor y& in a harmonic approximation for the decays of both 
ordinary quark model mesons (a=flux tube ground state) and the lowest vibrational hybrids 
(a=first excited state of flux tube). We also discuss the relationship of the flux tube model to 
the leading term in the evaluation of the Wilson loop expectation value. 

1. Introduction 

In the flux tube model [ 11, which is abstracted from the lattice Hamiltonian version of QCD 

introduced by Kogut and Susskind [2], hadrons are regarded on the scale a -0.1-0.2 fm 
for which the coupling g(a) - 1 as quarks connected by lines of chromoelectric flux or flux 
tubes. The flux may exist in one of several topologies. In the lowest lying mesons the flux 
tube topology is just that of a single string joining a quark-antiquark pair. The flux tube 
carries mass per unit length b N 1 GeV fm-’ and is a quantum object with (in the adiabatic 
limit of fixed quark and antiquark positions) a spectrum of states. Each quantum state of 
the flux tube defines an adiabatic potential surface for quark motion. The mesons of the 
usual quark model are identified with the adiabatic surface in which the flux tube is in its 
ground state, and other surfaces correspond to so-called ‘vibrational hybrid’ states which 
are additional to the states of the naive quark model. 

The flux tube model leads naturally to a mechanism for hadron decay which is very 
similar to that of the 3P0 quark pair creation (QPC) model [3]. The difference is that in the 
flux tube model the qq pair is created with an amplitude which is proportional to the 
overlap between the initial and final flux tube wavefunctions [4]. Specifically for the decay 
of a meson A to mesons B and C with quark relative wavefunctions @B, +C the 
amplitude is proportional to 

M(A+BC)=J d 3 r J d 3 w  I):($’+ w ) I ) / E ( ~ r - w ) ~  

(iVB + i v c  + q ) * A ( r )  exp($q r)ybac(rr w )  

where the limit y& =constant corresponds to the QPC model, q is the CM momentum of 
mesons B and C, and the flux tube breaks at  the point of position vector w. The initial 
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quark-antiquark pair are at +r /2 .  It has been pointed out [4] that decays between quark 
model mesons (a = b = c = 0) are not very sensitive to the functional form of y:o and thus 
the successes of the QPC decay model are reproduced. Nevertheless the relation be- 
tween y j o  and y i0  allows a parameter-free calculation of the decay amplitude of hybrid 
mesons [ 5 ] .  

We present in the next section the results of a calculation of y& in a harmonic 
approximation to the flux tube motion. Although a more realistic calculation is possible [ 61 
it is considerably more complicated, and the simple picture presented here should have 
some qualitative validity. 

2. The harmonic approximation 

The flux tube joining a quark-antiquark pair a distance r = (N + l ) a  apart is modelled as a 
set of point masses m = b a  (b=string tension ~1 GeV fm-') a distance a apart with 
Lagrangian (c = A = 1 )  

i 

where the ys are the transverse displacements of the point masses. The system decouples in 
terms of (transverse) normal mode coordinates 

( 2 , ( ijn ) a i = x  - y j  sin - 
j =  1 N +  1 N +  1 

giving normal frequencies wi =(2 /a )  sin[in/2(N+ l)], i =  1 , 2 , .  . . , N .  The ground state 
wavefunction is 

and the excited states are of the form (Yo x polynomial in ai). For example, the 
wavefunctions of the first excited states are 

In particular for the flux tube ground state, po has a gaussian dependence on yb with a 
'diameter' between half maximum points which depends somewhat on quark-antiquark 
separation r = Na and on distance along the quark-antiquark axis <r = Nba (0 < << 1 ) .  A 
numerical calculation of this is shown in figures 1 and 2. Thus the flux tube is rather fat, 
because of quantum fluctuations, and its diameter increases logarithmically with its length 
asymptotically. 

We now obtain expressions for the amplitude y& for the initial flux tube with 
wavefunction Ya to break at the point (Nb, Yb) into two flux tubes with wavefunctions \YbL 
and YcR (see appendix to reference [ 4 ] ) .  The axes of the final flux tubes do  not coincide with 
that of the initial flux tube, so it is necessary to introduce new coordinates y,",yp to 
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1 Tube ‘diameter’ ( f m )  

- \ 

~~~ 

Figure 1. Flux tube ‘diameter’ at different places along the string for different values of N .  
N is related to the quark-antiquark separation r by r = N a  (a such that &a)- 1 is 
a = 0.1-0.2 fm). The ‘diameter’ is measured in fm, taking the string tension b = 1 GeV fm - ’. 

describe their configurations. To first order 

N +  1-i 
yb R i L 

Yi =Yt --yb yi =yi- Nb N +  1 -Nb 

and if all the flux tubes are in their ground states we have 

1.01 

Figure 2. Flux density function po for the flux tube ground state. The quark and antiquark 
are situated at the extremes of the horizontal axis a distance 31a apart. The transverse scale 
assumes the string tension b= 1 GeV fm-I. The longitudinal and transverse scales are 
identical for a=O. 1 fm. 
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Figure 3. The string breaking amplitude y:c has the 
form (polynomial in y b  exp(-ffbyi). This is a plot 
of the gaussian coefficient f as a function of relative 
position along the flux tube for various values of 
N ( A N b = l i ( N +  l)-N& The curve labelled N = a ,  
corresponds to the continuum limit f, off .  
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Figure 4. The ratio of the string breaking amplitude 
for flux tube excited and ground state y&/y& has the 
form y & / Y & = K & y b + .  Here is plotted the 
coefficient K as a function of relative position along 
the flux tube for various values of N .  The curve 
labelled N=m corresponds to the continuum limit K ,  

Of K. 

where K and C, are independent of the yi and easily determined. The multiple integral may 
be integrated by standard means giving 

where Ago and f are obtained numerically. 
It is found that Ago is independent of Nb to better than 1% for O < N < 2 0 ,  and 

decreases slowly with N in this range, A:, N 1-0.01N. For N >  10 the decrease of A t o  
becomes logarithmic. The coefficient f is shown as a function of N and Nb in figure 3. For 
the decay of the flux tube in its first excited state we have 

Ydo = K  @Yb+ Y& (7) 

where y$ = yl,  b i iy2, b and the coefficient K is shown as a function of N and Nb in figure 4. 
We remark further in the next section on the limiting behaviour of the coefficient functions 
f and K for large N. 

These are all the results required for quark model meson decays [4] and for the decay 
of the lowest vibrational hybrids [ 5 ] .  We have also computed the amplitude yp0 which 
would be required in the calculation of the decay of a quark model meson to a hybrid, and 
find that it is quite small, 

1 ( Y ? o > ~  d2Yb/1(Y&)2 d2ybN0.1- 
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3. Connection to the Wilson loop expectation value; the continuum limit 

It is clear that the harmonic approximation for the flux tube motion is very crude. The 
zero-point energy per unit length of the harmonic Hamiltonian is -0.2/a2 GeV fm-' giving 
20 GeV fm-' for a = 0.1 fm. This is a huge renormalisation of the string tension whose 
physical value is -1 GeV fm-' and implies that the transverse fluctuations are not small. 
This is also clear from the shape of the flux density function (figures 1 and 2) which, with 
a = 0.1 fm, has a diameter between half maximum points of 0.8 fm for a quark-antiquark 
separation of 1 fm. Could it be that the scale b-l12 entering into the wavefunctions in the 
harmonic approximation, and which determines the scale of the results, is very misleading 
on account of the inadequacies of this harmonic approximation? The following argument, 
based on the Wilson loop area law, shows that this is not the case. 

According to the Wilson loop area criterion in pure gauge theory, the Wilson loop 
expectation value with Euclidean time 

(01 Tr exp(-g f 7 1'A' d r )  IO) 

is proportional to exp(-bA), where b is the renormalised string tension and C is a loop in 
space-time spanned by the minimum space-time area A .  In all cases to be considered, the 
boundary conditions will be such that the minimum area surface lies in the hyperplane 
y 2  =O. Let us choose C to be the loop shown in figure 5(b), where the curve y ,  =y(x) is 
such that 

lY(X)l <L b-'12 < L < T. ( 9 )  

The surface of minimum area y ,  = V(x, T )  can actually be determined by minimising the 
expression for the area 

A = r d x  d t  [ 1 + (2) + ($) '3 ''2, 

To establish contact with our previous discrete harmonic approximation, we note that 

where the approximation in (10) is justified by the condition (9) on the curve y(x). The 
requirement that A ,  as given by (1 l), be minimum means that V has to be (approximately) 
harmonic in x and t. 

Introducing the Fourier expansion 
m 

~ ( x ,  t )  = (2 /~ ) ' / '  1 qn sin(nnx/L) exp(- nnt/L) 
n= 1 

where 

q n  = (2/L)'12 !: d x  y(x) sin(nnx/L) 

and taking into account (1 1) and the boundary conditions 

V(0, t )  = V(L, t )  = V(x, T )  = 0 

V(x, 0) =Ax)  
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( e )  

Figure 5. Various bounding loops in space-time. The surfaces are in the hypersurface yz = 
0. (a) is the coordinate system used. Each loop contains straight sections (x=O, y ,  =0, t )  and 
(x= 0, y ,  =L, t )  between the initial and the final time. Loops (d) and (e)  also contain the 
straight section {(x=xb,y, =Yb, t)), t ) O ) .  The boundaries for the initial and final time and 
0 < x < L  are respectively: 

(b) (x, v(x), 0); (x, 0, T )  
(c) (x, u(xX -T/2); (x, Ax), T/2) 
(6) (x> O, 
(e) ( & - h  sin(nx/L),-T);(x,YbX/Xbe(Xb-xX)+ IVb(l-x)/(L-xb)le(x-xb)r TI). 

(x, Ybx/Xbe(xb - x) b b ( 1 -  x)/(L - xb)le(x - xbh TI ) 

we readily find 

A = L T + ' ,  2 (rn/L)q;. 
n 

Now the loop expectation value may, for T-+ CO, be written as 

where EO is the ground state energy of the gauge theory in the presence of a source and 
sink a distance L apart and @o is the ground state wavefunctional. In the flux tube model 
the vacuum is just the strong-coupled vacuum and &({y(x))) is just the wavefunction of 
the flux tube in its ground state. Noticing that the loop expectation value for the loop 
defined by the perimeter of an L x T rectangle is, for T-, CO, given by 
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we conclude that 

Comparing equations (12) and (16) with equations (2) and (3) we notice that the 
dependence of q0 on the long-wavelength Fourier components of y(x) is exactly that of our 
discrete harmonic approximation. We note the correspondence 

Hence the quantity mla of the discrete harmonic approximation is replaced by the 
renormalised string tension b, and thus b-'l2 -0.4 fm correctly sets the scale of the 
transverse excursions of the flux tube, as we have assumed. Arguments based on the area 
law are subject to quantum correction [6], but we see no reason why these should affect 
the above conclusion. It is to be noted, however, that the harmonic approximation cannot 
be correct for transverse distances large compared with the QQ separation, since the RHS 
of (1 1) is then no longer approximately equal to the area of the surface which spans our 
space-time loop. 

A similar argument based on the area law can be applied to the excited states of the 
system. Consider the loop in figure 5(c)  for large (but finite) T. Using the solution V(x ,  t )  of 
Laplace's equation which obeys the appropriate boundary conditions 

V(0, f) = V(L, t )  = 0 

V ( X ,  T/2) = V(X ,  - T/2) =Y(x) 
namely 

V(x ,  t )  = (2/L)'/* n qn sech (T:) - sin( 7) cosh( 7) 
we can calculate the area A by means of equation (1 1). We find 

A = L T + $  x q i - s i n h  n L  " ("2') - sechi( g). 
For large T we find 

nn 
. , L  

A-LT+ 1 4 , "  - [ l - 2  exp(-nnT/L)] 

so that for the Wilson loop expectation value we have 

(W)-exp[-b(LT+ n qjnn/L [1+2bq?(n/L)exp(-nT/L)]. (19) 

where H is the Hamiltonian of the system, and *O and denote the wavefunctionals 
corresponding to the flux tube ground state and to the lowest state of odd symmetry about 
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the QQ axis and EO, El  are the corresponding values of the energy. Comparing equations 
(1 9) and (20) we conclude that 

exactly as in the discrete harmonic approximation (cf equation (3b)), where n/L is the 
energy of one quantum of the lowest transverse vibration (cf equation (1 7)). 

Similar arguments can be used to yield information about the string breaking 
amplitudes y&. Consider, for example, the amplitude y:o. The amplitude ( wb) for ‘the 
string breaking process depicted in figure 5 ( d )  is equal to 

( wb ) = ( {OL 1, {OR 1 I exp(-HL T1) exp(-HR TI) I 1) (1 I exp (-HT)I (01 ) (23) 
I 

where the Hamiltonians appearing in the time evolution operators are the ones for the 
appropriate strings (initial, right or left) and the complete set of intermediate states is 
subject to the condition that the breaking occurs at the specific point (x=xb, y=yb). ( wb) 

can be expressed in terms of the overlap integral $0 

( 2 4 4  ( wb ) = @$ L({oL 1) ~ L ?  R({OR 1) @O({o } )  exp [-EO T-  (EO, L -k EO, RlTI 1 y:O* 

The energies appearing in the exponent are the ground state energies for the three strings. 
On the other hand, the area law permits us to write (for large T, T , )  

( wb) exp(-bA) (24b) 

where A is the area of the minimum area surface which spans the curve in figure 5(4. 
Considering free propagation of the three strings, we find 

Ic/oTL({oL })IC/OTR({OR 1) @ O ( { o } )  exP[- EO T -  (EO, L -k EO, dT1 1 ccexp[- b(A  R -t A L i- A 011 (24c) 
where A R ,  AL, A.  are the areas of the rectangles corresponding to the free propagation of 
the three strings (the initial string is allowed to propagate for time T and the two final 
strings for TI). Equations (24) give 

In order to establish contact with our discrete harmonic approximation, we may use 
the approximation of equation (1 1) (which is a good approximation for (ybl4 L and for 
breaking points which are not close to the ends of the initial string). Using this 
approximation, we can calculate the quantity on the RHS of equation (25). The result is 

where 

and we have put p=xb/L. The details of this calculation are given in appendix 1. 
It is evident that the quantity fc represents the value of the coefficient function f of the 

harmonic approximation in the continuum limit N+ CO, Nb + CO,  p = Nb/N fixed. A plot of 
fc against p is given in figure 3 along with plots of f ( N ,  Nb) for finite values of N. 
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Finally, we can use the area law to obtain information about ydo. Consider the ratio R 
of the amplitude for the two string breaking processes depicted in figures 5 ( d )  and 5(e) 

(28) R =  

where q1 =-(~!,/2)‘/~h and the complete set of intermediate states 11) at the time of the 
breaking is understood to be subject to the condition that the breaking occurs at  the 
specific point (x=xb,  y=yb) .  

By means of equation (28) we can express R in terms of the overlap integrals y& and 

cI({oL}, {OR}lexp(- HLT1) exp(-HRTi)II)(Ilexp(--T)I{-h sin nXlL}) 
XI(  {OL} {OR} I~xP(- HL Ti) ~ x P ( -  HRTI)II) (11 exP(- HT)I {OI) 

Y& 
&({-h sin nx/L} )  @l({- h sin nx/L} )  Y& 

*O({Ol) *O( { 01) YO0 
R =  + exp[- ( E ,  -Eo)T] + . . , 

or, by virtue of equation (1 6), (2 1) and (22), 

R =exp(- dbn h2) [ 1 - h(nb)1/2 exp(-nT/L)(y&/y&) + . . .I (29) 

R = exp[-b(A, - A o ) ]  (30) 

On the other hand, the area law gives 

where A, ,  A. are the areas of the minimum area surfaces spanning the curves in figures 
5(d)  and 5(e) for large T and Ti. In appendix 2 we calculate A ,  in the harmonic 
approximation. We thus obtain the continuum limit for the ratio y&/y& and hence for the 
quantity K(N,  Nb)  defined by equation (7). The result is 

continuum 
K - K c ( p )  = (2.)-1’2p-p( 1 - p ) p - l  

where, as usual p = xb /L .  A plot of K, against p is given in figure 4 along with plots of K for 
finite values of N .  

We find it interesting that the coefficient functions f and K have finite continuum 
limits, although in the spirit of the flux tube model we would expect a finite value of N -  10 
to be more relevant to the physics. On the other hand, we have no independent argument 
on the limiting behaviour of the quantity AEo. Our numerical results are consistent with A& 
decreasing slowly to zero as N-+ CO. 

Our string breaking amplitude is in the continuum limit very similar to that of the dual 
string, differing only in the boundary conditions at the ends of the string. In our case we 
have Dirichlet boundary conditions, whereas for the dual string the boundary conditions 
are Neumann. We note that it has been shown [8] that the string breaking amplitude of the 
dual string cannot be defined consistent with the conformal invariance of the string action 
in other than twenty-six dimensions. Perhaps this is an indication that the continuum limit 
of A& should be zero. Happily, the continuum limit is not required in the flux tube model, 
which is not conformally invariant because of the physical scale a. A quantity which 
clearly has no continuum limit is the flux density function po, since, as already remarked, 
the flux tube ‘diameter’ has a logarithmic dependence on N and becomes infinite in the 
continuum limit. 

4. Final comments 

Figure 2 graphically illustrates the fact that, because of quantum zero-point energy, the 
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flux tube has a transverse radius of the order of b-'I2 -0.4 fm. One deficiency of the 
harmonic approximation is that it does not allow backward excursions of the line of flux 
from the ends of the flux tube. A more realistic calculation [ 9 ]  would allow these, thus 
rounding out the extremities of the flux tube. Taking into account this correction, one finds 
that for quark-antiquark separations 6 b-'/2, the flux 'tube' is approximately spherical. 
This is reminiscent of the bag model [ 101 although our flux tube does not have a sharp 
boundary, nor are its properties as a medium necessarily those of the perturbative vacuum, 
as assumed in the bag model. On the other hand, the vacuum of the flux tube model is just 
(on scales 3 a N 0.1-0.2 fm) the strong coupled vacuum which has ( E  = 0 and hence 
( B 2 ) u  # 0 since the components of E and B are conjugate variables. Thus the long- 
wavelength contributions to (F2) , , ,  are magnetic, agreeing with the sign of the condensate 
obtained from sum rules [ 111. 
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Appendix 1 

In this appendix we calculate the continuum limit fc of the quantity f ( N ,  Nb)  as given 
by equation (26). In the region shown in figure 6(a) we introduce the complex variable 
w = x + it. In order to solve our Dirichlet problem 

a 2 v  a 2 v  
-+--0 
a x 2  a t 2  - 
v(x=O, t ) = v ( x = L ,  t)=O 

v(x=xb, t)'Yb for t>O 

we consider the complex transformation which maps the complex upper half-plane 
(described by the complex variable z = X + i Y )  to the region in figure 6(a). It is the 
following Schwartz-Christoffel transformation 

w =i[( 1 - p )  In (1 -p)/p +In 2p-p h ( z -  1)-(1 - p )  ln(z + l)] (A l . l )  

where p = xb /L  and we have taken L = 71 for convenience. Equation (Al .  1) maps the real 
axis (Y=O) onto the boundary of the region in figure 6(a). Figures 6(a) and 6(b) illustrate 
the detailed form of this transformation. 

The solution of our Dirichlet problem is then given by the imaginary part of the 
complex function 

(A 1.2) 

Let us first concentrate on the case p = $(xi, = 1L). The transformation (A 1.1) takes the 

(A1.3) 

We shall be using the complex variable wo =xo + ito for the case p= 4 and reserve the 
notation w = x + it for the general case, where p can take arbitrary values. 

Yb 

II 
F=-[ln(z- 1)-ln(z + l)]. 

simple form 

wo = -fi[ln(z - 1) + In(z + I)]. 
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Figure 6. The w = (x, t )  and z = ( X ,  Y )  complex planes as used throughout appendix 1. 

According to equations (24), (25) we have 

(A 1.4) 

In the last expression the first term comes from the area of the surface described by the 
equation U = u(x0, to), where the area is calculated by means of the harmonic 
approximation (equation (1 1)). The second term comes from the areas of the rectangles 
covered by the two final state strings, if these strings are allowed to propagate freely for a 
very long time. Note that these areas too are to be calculated by the same method of 
approximation. 

The quantity 

where Ro is an arbitrary region in the WO plane, is equal to 

i‘J; dReF dImF 

where r is the image of Ro in the (ReF, I m F )  complex plane. It thus represents the area of 
the flat surface r. In order to evaluate the limit appearing in equation (A1.4) we need to 
know the asymptotic behaviour of F for to = TI  + CO and to = T+ 00. Using equations 
(A 1.2) and (A 1.3) we readily find 

for 0 < xo < 71/2 T1 + co 
ReF- I (A 1 S) 

yb for 71/2 < xo < 71 T1 + co 
71 

with I m F  varying linearly with xo as TI  --t CO. We also find that I;-0 for T+ 03. 
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We conclude that the part of the oo plane which is bounded by the lines xo = 0, xo = 71, 

xo = 7r/2 (for to  > O), to  = TI and to  = T maps asymptotically (for T+ CO and T1 + CO) 

onto a rectangle in the (ReF, I m F )  complex plane. The area of this rectangle is 
Yb2K4Td71) + (4 In 2/41? so 

J’ JT1 [(E)’+ (:)’I dtodxo+yt? (-+F). 4T1 41n2 (A1.6) 
xo=O Io=-T 

Equation (A 1.4) now yields 

f , (p  = 1) = 4 In 2/71. (A1.7) 

We can use this partial result to calculate fc for arbitrary values of p. 
Using the transformations (Al.1) and (A1.3) we can establish a mapping of the 

physically interesting region (0 < x < 71) of the (x, t) plane (for arbitrary p) onto the region 
0 < xo < 71 of the (xo, to) plane ( p =  4). We can also use these transformations to find the 
asymptotic behavour of the variable w=(x, t) corresponding to the segments defined by 
the equation to = Tl (+ + CO). We readily find 

(A1.8) o = iC(p) + 00 + ingF/yb 

where we have put g= -p + 1 and 

(A1.9) 

Equations (A1.5) and (A1.9) now yield 

(A1.lO) 

for to = T1 + +CO. It follows that for large to the mapping W O +  o causes independent 
parallel shifts of the two segments (to the left and to the right of the breaking axis) of the 
line of constant xo. Using this fact we can now write the difference 

2(1 -p)to + 2g In 2 + C(p) o<x<p71  
p77<x<71 t+ { 2pt0 - 2g In 2 + C(p) 

Yb2 f,( P) -Yb” fc( P = 0)  
as follows 

( A l . l l )  

where the t integration in the first three integrals extends up to the image under the 
transformation coo --t o of the segments defined by to = T I .  

Notice that the two integrals containing derivatives of the function U are equal, since 
they can both be written in the form fJRo  d R e F  dImF, where Ro is a certain region in the 
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3 

0 

(ReF, I m F )  plane. On performing the remaining trivial integrations and using equation 
(A 1.10) we obtain the advertised result 

(A 1.1 2) &(p)=(l/z) In [(I --p)-'/Pp-'/('-P) I .  

C E  

Appendix 2 

In this appendix we calculate the continuum limit IC, of the quantity K ( N ,  Nb). 
In the region M depicted in figure 7(a), we introduce the complex variable o = x + it. It 

will be useful to consider a complex (Schwartz-Christoffel) transformation which maps 
the complex upper half-plane (z = X  + i Y, Y > 0) onto the region M, namely 

1 
z - 1 

dz + B. (A2.1) Z - P  w = A  1 
(z - a) q z  + a) 

The exact way in which the real axis Y= 0 is mapped onto the boundary of the region 

The parameters A ,  p,  a, can be easily determined from the geometrical figures of M. 
M is illustrated in figure 7. 

We may integrate equation (A2.1) to obtain 

Im o = t =  
A 2(a2- 1) ' /2(a2-z2) ' /~-22+2,~ 

((1-p)ln 1 z -1  (a2 - 1)1/2 

I)+. 2(a2 - 1 ) q a  2 - z2)1/2 + 22 + 2a * 
+ ( 1  +p) ln  

for z real and --a < z <a .  

we can determine A and p. We find 

z + l  

Considering the jumps in the imaginary parts of the logarithms at z = + 1 and z = - 1, 

A = (L/z)(a - 1)1'2 p= 1 -2p. 

a is determined by considering the difference t(z = 1 - 2p) - t(z =a). Since the point 
z = 1 - 2p corresponds to the endpoint of the breaking axis, this difference is equal to T. 

I- T 

I 

t '  

I 

Y 

C' B' A' X 
+ I  + a  

Figure 7. The w = (x, t )  and z = (X, Y )  complex planes as used throughout appendix 2. 
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We can thus determine a as a function of T. It is obvious that a grows with T. Since we 
are directly interested in results valid for large values of T, we calculate l/a to first order 
in exp(-nT/L). We find 

exp(-nT/L) 
l/a = 

p q  1 -p)l-p (A2.2) 

In order to calculate icC we need, according to the discussion in 8 3,  to introduce a 
harmonic function V(x, t )  which obeys the boundary conditions 

V(0, f) = V(L, t )  = 0 (A2.3) 

V(pL, t>’Yb f o r t > T  (A2.4) 

V(x, 0) = -h sin(nx/L). (A2.5) 

This Dirichlet problem can be solved in principle by using the transformation (A2.1) 
and then working with a Dirichlet problem in the upper half-plane. The boundary condition 
(A2.5), however, looks quite complicated in terms of the variable z. It is therefore more 
convenient to introduce a harmonic function which has a simple form in terms of z and, 
while obeying equations (A2.3) and (A2.4), satisfies equation (A2.5) only in the limit 
T+ CO, which is the appropriate limit we need in order to calculate ic,. This is done as 
follows. Consider as a first step the analytic complex function H(r)  = H(xo + ito) defined on 
the semi-infinite strip to 2 0, 0 < xo < L, the real part of which is bounded everywhere and 
satisfies the boundary conditions 

Re H(it0) = Re H(L + ita) = 0 

Re H(x0) = -h sin(nxo/L). 

This function is given by the formula 

(A2.6) 

(A2.7) 

Using the transformation which maps the semi-infinite strip onto the complex upper half- 
plane, namely 

1 1 
dz 

(z-a)’” (z+a)’/’ 
(A2.8) 

(where the corners of the strip correspond to the points z = a  and z=-U of the upper half- 
plane) and putting H(r) = G(z). We can then consider the function 

(A2.9) 

Regarding J(z) as a function of w =x + it (via the transformation (A2.1)) we note that 
the real part of J(z) is harmonic and it obeys the boundary conditions (A2.4) and (A2.5). 
Furthermore it is bounded everywhere in the region M and because of the way in which it 
was constructed, it satisfies equation (A2.5) asymptotically for T+ + CO. 

It is useful to have in mind the exact form of R e J  and I m J  as functions of z for real z 
(corresponding to points on the boundary of the region M in figure 7(a)). Using equations 
(A2.7), (A2.8) and (A2.9) we find: 

iYb 
n 

J(z)=G(z)-- [ln(z- 1)-ln(z+ l)]. 



The f lux tube and t h e j u x  tube breaking amplitude 

For z real and z 6 [-a, a ]  

ReJ=-h(l -a2/z2)i/2 

ImJ=  ha/z - yb/n[ln(z - 1) - ln(z + l)]. 
For z real, - a < z  < a  

Z Yb I m J = h  - - [ln(z - 1) - ln(r + l)] 
a+(a2-z2)1/2 71 

0 for z [-I, I ]  
yb for - 1  < z  < 1.  

ReJ=  

437 

(A2.10) 

(A2.11) 

We now calculate the area of the part of our surface which is enclosed by the boundary 
of the region M in figure 7(a) and two segments of constant and large t - T. For x = 0 and 
x= L large t -  T corresponds to z real and z = 1 + c i ,  z = - 1  - ~2 with E ,  and c 2  small. c1 
and e2 can be expressed as functions of t by means of equation (A2.2). Lines of constant 
t - T in the o plane map onto asymptotically straight segments of constant I m J  in the 
(ReJ, I m J )  plane. In this plane our surface maps onto the region shown in figure 8. This 
consists of a rectangle and a shape which tends to a semicircle of radius h for a+ CO. The 
area A,  (equation (30)) of our surface 

A ,  = L t  + ‘J’J dReJ dImJ 

can be calculated by taking into account the equations which give R e J  and I m J  as a 
function of J on the boundary of figure 8. For our purpose we need only retain terms of 
first order in l/accexp(- nT/L). We find that 

Yb’ Yb’ h2n hyb 
271 n 4 a  

A ,  =Lt-- (In E ,  + In E ~ )  +- In 2 +- +- + . . . (A2.12) 

The first three terms in the RHS of the last equation correspond to the area A .  of 
equation (30). Hence we have 

hYbb 
exp[- b(A, - -Ao)]  =exp(- bh2n/4) 1 - ( pP( 1 -/I)- 

t R e J  

@ 

i m  J 

(A2.13) 

Figure 8. The image of the surface y ,  =ReJ in the (ReJ, ImJ) complex plane (see 
appendix 2). 
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Comparing with equation (30) we find 

that is 

(A2.14) 

Comparing with equation (7) of 8 2 and taking into account that IC in equation (7) is the 
coefficient of yb’ =yl, b i y2, b ,  we find the result 

K, = [(27c)”2pP(l - p ) l - P ] - l .  
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