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The potentials between static fundamental colour sources corresponding to the ground state
and a number of excited states of the gluon field are studied through a Monte Carlo simulation of
SU(2) lattice gauge theory with a techmque mvolving “blocked” paths of spatial inks The results
are for B-values of 24 and 2 § and for source separations of up to 1 1 fm We obtain values for the
potentials corresponding to the lowest mode for seven irreducible representations of the symmetry
group of the gluon field and also to the first excited mode for two of the representations The
lowest excited potential corresponds to the E, symmetry of the gluon field The ground state
potential exhibits non-perturbative scaling at the B-values studied, but the value of the ratio of
lattice spacings 1s 1n disagreement with the perturbation theory prediction The excited potentials
scale according to the ground state scaling within the errors String model predictions for the
potentials are compared with our results, stmilarities and discrepancies are discussed

1 Introduction

The potential between heavy fundamental colour sources 1s an important non-
perturbative feature of QCD The evaluation of this potential in the ground and
possible excited states of the gluon field 1s of relevance to hadron phenomenology
In particular, the potentials corresponding to the lowest gluon field excitations are
believed to determine the spectrum of the low-lying heavy quark hybrid mesons,
some of which are predicted to have exotic quantum numbers

The ground state potential has been accurately determined from lattice gauge
theory studies, at least in the theory without dynamcal fermions Excited potentials
on the lattice have been studied in the past [1-3] through various techniques and
qualitative conclusions have been drawn However, the relatively large statistical
and systematic errors 1n these calculations do not allow for an accurate description
of the potentials For example, 1t 1s not clear which 1s the lowest lying of the excited
potentials

Recently, the techmque of constructing “fuzzy” or “blocked” operators [4] has
proved useful for glueball calculations and for string tension measurements from
Polyakov loop correlations [4,5] In this paper we combine this method with a
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variational technique and the use of multihit links [6] in the time direction 1n order
to calculate the potentials of the ground state and of a number of excited states for
the heavy source-antisource system 1n the context of SU(2) gauge theory without
dynamical fermions Although a sumilar study of SU(3) 1s feasible, results from the
two gauge theories for static fundamental source potentials are believed to be
stmular and SU(2) 1s easter to treat computationally

We determine the potentials by the usual method of evaluating correlations
between linear combinations of paths which are constructed from spatial links and
displaced 1n the temporal lattice direction The “blocking” techmique enables us to
extract reliable results from small temporal separations, where the Monte Carlo
signal-to-noise ratio 1s big and the statistical errors are small We evaluate the
potentials corresponding to the lowest lying eigenmodes in most of the wirreducible
representations of the symmetry group D, of the gluon field between the sources
The small statistical errors of our results compared with previous work [3] allow us
to demonstrate that the lowest lying excitation corresponds to the E | representation
of Dy, for spatial separations of the sources between 01 and 11 fm Non-perturba-
trve scaling 1s confirmed for 8 =24 and 8= 25 for the ground state potential and a
number of excited potentials

It 1s expected that the heavy quark potentials should be adequately described by a
relativistic string model for relatively large separations of the sources It 1s thus
mteresting to see how our results compare with string model predictions In
particular, for the excited potentials we shall consider a Nambu string with fixed
ends representing the positions of the static sources and compare its spectrum with
our results

This paper 1s organized as follows In sect 2 we describe the method and give
details about the statistics of our Monte Carlo calculation In sect 3 we present our
results, which we compare to string model results 1n sect 4 We draw our conclu-
sions 1 sect 5

2. Monte Carlo simulations

We use the Wilson action on L* lattices with periodic boundary conditions The
potential corresponding to the ground state of a given irreducible representation 92
of Dy, 1s given by the relation

V,= —a‘lln}\0=—a‘lllingoln[W,j(t+1)/W,j(t)], (21)

*
where W, (¢) denotes the correlation between operators O, and O, transforming as
the representation 9% and separated by ¢ lattice units 1n the temporal direction, and
Ao 1s the largest eigenvalue of the transfer matrix 7 i this representation To
calculate these correlations we use multihit time-hke links [6], 1€ we replace the
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TaBLE 1
The irreducible representations of Dy, the corresponding continuum quantum
numbers K¢ for the mimmum value of the angular momentum K along the
quark-antiquark axis and the J7¢ quantum numbers of the quark-antiquark
state with mimimum angular momentum

JPC
Dy, rep K" §=0 §=1
A, 0t 0 17
2 0~ 0t 1+
A, 0 0+ 17
A, 07~ 07~ 1
B, 2% 27t 1-- 27 37~
Bzg {2—— 2+- 1++ 24+ 3+
Bli 27+ 2+ 1%~ 2% 3+
B,, {2** 27" 17 2 37+
E, 1+ 1+ 0t 1+- 2"
{r* 17 0 1~ 2
E, {ltt 1: Ott 1*+* 2+
1 1 0 1 27~

Underhned values represent non-quark model quantum numbers

links 1n the temporal direction by their thermal average in the fixed environment of
the six surrounding U-bends The irreducible representations of D, are listed 1n
table 1 The notation 1s that A, E and B correspond to mimimum angular momen-
tum about the source—antisource axis of 0, 1 and 2 respectively 1n the continuum
himit, 1 (2) refers to symmetry (antisymmetry) under interchange of ends by a
rotation by 7 about a lattice axis and g (u) refers to symmetry (antisymmetry) under
interchange of ends by mversion in the midpoint

For finite 7 the ratios A(¢ +1,¢) = W, (¢ + 1)/W, (¢) teceve contributions from
excited states However, 1f the operators O, and O, have a hugh enough overlap with
the ground state, A and ¥V}, can be rehably determined from relatively low values of
t, where the Monte Carlo noise 1s small To create such operators from our mitial
paths, we use a “blocking” algorithm We construct hnear combinations of the
paths shown 1 fig 1, suitably chosen to transform like each of the wrreducible
representations of D, From each of the spatial paths we form new paths by
replacing each spatial link by a multiple of itself plus a sum of the four neighbour-
ng spatial U-bends

U,L(n)—)Uil(n)=An{cUﬂ(n)+ Y Gn)G(n+2)UHn+a)) (22)

Here ¢ 1s a free parameter and 4, 1s a normalisation factor chosen to project U}
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(a)

(b)

Fig 1 Paths used to form linear combinations transforming like the irreducible representations of Dy,

(a) U-bend paths The first hnk of the path can be in the direction of any spatial lattice vector

perpendicular to the source—antisource axis (b) These paths can have any number of square “staples”

with their first ink parallel to any of the spatial lattice vectors perpendicular to the source—antisource
axis and the electric flux runming clockwise or anticlockwise

into SU(2) This “blocking” procedure can be iterated to higher levels At each level
the newly formed paths transform according to the same D, representation as the
oniginal paths The blocking process, iterated to a sufficiently high level, 1s an
efficient method for creating linear combinations of paths with spatial extension
which are likely to have a high overlap with the lowest lying state within a given D,
representation The constant ¢ 1n eq (22) and the total number M of iterations of
the blocking algorithm (blocking level) are free parameters which can be adjusted to
optimize the path overlap with the lowest state in a given D, representation For
each representation, the ratio i 5; = A(1,0)/A(2,1) 1s a measure of the overlap with
the lowest state (the larger r,, 5, the higher the overlap, if an operator overlaps only
with the lowest state, the corresponding r, 5, 1s equal to 1) Hence ry, 5, can be used
to determune the optimal values for ¢ and M The optimal values depend on the
value of B8, on the lattice separation R/a of the sources and on the D, representa-
tion Since we want to allow for simultaneous measurement for many group
representations at a given 8 value, we cannot use the exact optimal values of ¢ and
M for each representation and R/a separately A preliminary low statistics study of
the representations A,,, E, and A, at $=24 and 2 5 showed that with c =25 we
can find two values M; and M, of M corresponding to values of r,, ,, very close to
the optimal value for all three representations and all studied values of R/a We
thus create two independent paths P,, and P,, transformung according to the same
group representation and we measure the four correlations

C, (1) =(Py| TPy, 1,7=1,2, t=0,1,2, (23)



548 S Perantonis et al / Static potentials

between these paths separated by 7 steps in the temporal direction We analyse these
correlations by a matrix vanational technique to obtamn, for each symmetry of the
gluonic configuration, estimates for the two lughest eigenvalues A, and A, of the
transfer matrix and for the corresponding values of the potentials The vanational
technique amounts to finding a path combination which maximizes the overlap with
the ground state To avoid the possibility of statistical errors influencing this
selection of an optimal linear combmation of the paths, we use the optimal
combination obtained for comparing path correlations with temporal separations 0
and 1, where the statistical errors are smallest We then obtain our estimates for the
potentials from larger 7-separations using this fixed linear combination

Having obtained variational estimates A, (¢+1,¢) for the eigenvalues of the
transfer matnix from analysing ratios of the form C, (¢ +1)/C, () at successive
values of ¢ (¢+=0,1,2, ), we then choose as our final estimate the value corre-
sponding to the lowest value ¢, for which the difference A = |A (¢, +1,2,) —
A ar(f0, 1o — 1)| 15 less than the statistical error for A, (¢, + 1,¢,) If the range of
values of ¢ studied 1s not broad enough for this to happen, A represents an upper
systematic error 1n our estimate Typical values of 1, are 7, = 2-4 Other methods of
extracting a final estimate for the eigenvalues (e g two exponential fits) have lead to
very sumilar results for the eigenvalues and the errors attributed to them

We present results at two 8 values (8=24 and $=25) The lattice sizes and
details of the statistics and measured Wilson loops are presented in table 2 For
B =24 we have three sets of results each for different linear combinations of the
paths of fig 1 The third set of lattices 1s the only one for which we have attempted
measuring the potentials for all D, representations For the first, second and fourth
set we only used paths overlapping with representations A, A, and E, We divide
the results from each set of lattices into blocks, average the results of each block and
do error analysis on the set of averages The blocks are chosen large enough, so that
the block averages show no autocorrelation We find that the results from the three
sets of lattices at 8 =24 are compatible In sect 3 we present the results with the
smallest statistical errors

TABLE 2
Details of our Monte Carlo simulations and measurements for the potentials

Size of Number of Lattices Blocking Range Range
B lattice updates measured 4 levels of R/a of ¢
24 164 24000 1200 25 12 2<R/ax<7 0<r<4
24 164 10000 1000 25 12,16 2<R/a<8 0O0<r<5
24 16* 12000 400 25 10,14 2<R/a<$ 0<t<5
25 204 12000 600 25 29, 34 R/a=2m, 0<r<5

lam=<6
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3. Results

We first present the results for the ground state of the gluon field between static
sources This 1s the lowest state with A;, symmetry At a single # value, we can fit
the results for the potential aV’(R/a) using the relation

aV(R/a)=kR/a—eG(R/a)+ C (31)

with k = Ka? where K represents the string tension Here we have substituted the
usual Coulomb term —ea/R by a multiple of the scalar lattice propagator G(R/a)
on a (2L)* latice This substitution has been suggested mn ref [3] as a natural way
of taking mto account lattice artefacts which lead to asymmetries between on-axis
and off-axis potentials We find excellent fits to eq (3 1) for both 8 values studied
To test for scaling we fit at the two 8 values simultaneously using the same value of
e and assuming that the coefficients of the linear term obey the scaling relation

kys/azs=kys/ays=K (32)
We find an excellent combined fit (x2 = 0 3) with the values
Ka?,=00728(6), a,s/a,s=1435(7), e=0240(4),
C, ,=0524(3), C, s =10526(3) (33)

The good quality of the fit confirms non-perturbative scaling for the values =24
and B=25 This 1s in agreement with the results of Sommer [7] but contrasts to
what has been found for the scaling behaviour of perturbatively improved Creutz
ratios by Gutbrod [8] However, the value for the ratio of the lattice spacings 1s not
consistent with asymptotic scaling From the ratio of the lattice spacings at two
neighbouring values 8, and B, of B an estimate for the beta function can be
obtained

32_181
In[a(B,)/a(B;)]

3
b= (34)

This formula gives 8§ g*%g = —0 277(4) which does not agree with the value — 0403
obtained from the two loop perturbation theory expression

. 11 17g>
8 b= 32\ T e (33)

The departure from asymptotic scaling has been observed in Monte Carlo renormal-
1sation group studies [9] and Monte Carlo spectrum and potential evaluations
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Fig 2 The lowest Aj, (ground state), E, and A, representation potentials for a static source-anti-

source pair of separation R Results for =24 (0) and B =25 (O) are plotted using the lattice spacing

ratio and lattice self-energy values from a combined fit to the A;, potential Also shown are the energy of

the 07" glueball excitation of the ground state potential and the mass of the lowest Ty, gluelump

(corrected for the difference of the self-energies as discussed in the text) The dashed curves represent
Nambu string model potentials

[3,7,8,10,11] The departure found here agrees with the results in ref [7] for 8 =24
and 25 and 1s somewhat more pronounced than that found in refs [3,9], where,
however, the resolution 1s coarser

Our results for the potentials corresponding to the ground state and a number of
excited states of the gluon field are shown n figs 2, 3 and 4 (the physical distance
scale 1n these figures 1s set by the value K'/2 =440 MeV determined from the p,
/s Regge trajectory) More specifically, we present results for the lowest lying
states with symmetries A, Ay, Ay, By, B, E and E, and for the first excited
states with symmetries A, and E, We note that the effect of using blocked paths 1s
to increase substantially the overlap of the paths with the ground state of each
representation Indeed, with unblocked paths ry 5 1s typically 050-0 60 for A,
and less than 01 for the rest of the representations at 8 =24 In contrast, typical
values of thus ratio with blocked paths are 099 for A, 081-084 for A,
080-083 for A,,, 078-081 for B,,, 071-074 for B,,, 086-090 for E, and
077-082 for E, For the rest of the representations this ratio 1s typically less than
050 and the convergence of the estimate from successive t-values for the highest
eigenvalue of the transfer matrix corresponding to these symmetries 1s relatively
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Fig 3 The potentials corresponding to the lowest mode of the gluon field in the B,, (O), E, (X) and

A,, (O) representations and to the first excited mode 1n the A, representation (@) The By, E; and A,y

results are for 8 =2 4 while the A, results are for $=24 and 25 All potentials shown here correspond
to the N =2 Nambu string model potential

a, V(R) : r — '
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Fig 4 The potentials corresponding to the lowest mode of the gluon field in the Ay, (©) and B,, ()

representations and to the first excited mode 1n the E, representation (@) Results for the B, potential

are for B =24 and for the A, and E, potentials for 8 =24 and 25 The potentials plotted here
correspond to the N = 3 Nambu string model potential
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poor, so that large systematic errors must be attnbuted to any estimate of the
corresponding potentials

The gluonic configuration transforming as the E, representation 1s seen from the
data to be the lowest of the gluonic excitations for all the values of the source
separation studied It was noted 1n earlier work of the Liverpool group [3], where the
statistical errors were substantially larger, that this state appeared to be approxi-
mately degenerate with the state of symmetry A,;, In our present work, the
potentials are statistically very well determined, as a result of employing the
blocking techmique and using higher statistics and this apparent degeneracy is
resolved We find that the potentials corresponding to the two symmetries are close
at low R/a and tend to diverge for larger R/a Given the improved status of
glueball mass calculations [5] we can compare the E, potential with the 0°*
glueball excitation of the ground state potential Fig 2 shows that the values of the
latter lie well above the values of the former We conclude that the E potential hes
lower than both the potentials of all D, representations for which we have results
and than the masses of the continuum of states lying above the ground state
potential plus one 0** glueball mass This conclusion confirms the relevance of the
E, potential to the low-lying meson hybrid spectrum

Using the value for the ratio of the lattice spacings at the two B-values =24
and B =25 we can check for scaling 1n the values of the potentials We have results
for both B-values for the lowest lying states with symmetry E, and A, and for the
first excited states with symmetry A,, and E, The potentials corresponding to these
states are seen to scale according to the ground state scaling within the errors This
gives confidence that we are seeing continuum physics

4. Comparison with string model predictions

In a bosonic string model picture of the gluon field configuration between a static
quark and antiquark, the ground state potential consists of a term hnear in the
separation R of the sources and of corrections to this term originating from the zero
point motion of the quantised string The leading correction 1s proportional to 1/R
and the constant of proportionality has the universal value —x /12 [12] for a general
class of bosonic string theories A string theory 1s expected to be applicable to the
static quark—-antiquark system for relatively large R, where the width of the flux
tube 1s smaller than its length On the other hand, at small R an effective Coulomb
term dominated by one-gluon exchange also contributes to the potential Note that
1n our combined fit for the ground state potential the coefficient of the lattice 1 /R
term —e = —0240(7) 1s not compatible with the unmiversal value —7 /12 = —0 262,
although the two values are close If we try to force a fit with e = # /12 upon our
data, we obtain an unacceptable x?>=26 If, however, we exclude enough points
corresponding to the smaller R values, we can obtain a fit to eq (3 1) with e =7 /12
of similar quality to the fit (3 3) It turns out that this can be achieved by excluding
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TABLE 3
Classification of the vibrational excitations of a bosonic string with N < 3 and the
correspondence with D, 1irreducible representations

N (Moo =} [A [t Dy, reps
n=1 1-*,1%~ E,
2 ny, =1 1741~ E,
0y = 27+ 2T B,, B,
+ g P2
n,=1,n_=1 0**, 07" A, Ay,
3 Hy, = 177,177 E;
n,= 1°%, 1+ E/
n =2, mz=1 37,37 E/
nl+=1’ n21=1 27+‘2+7 Blu BZU
=1 nyz=1 0~ ",0" Ay, Ay,

The primes indicate excited modes (of a particular symmetry)

Just two points, the ones corresponding to R/a, ;=2 and R/a,, =2 We thus find
that the formula (3 1) with e = 7/12 works well for relatively small separations of
the sources (RKY%2 > 075) A similar result has been obtained by Sommer [7]

We now turn to the excited potentials and investigate to what extent they can be
adequately described by a relativistic string model The success of the Nambu string
in describing the lowest excited static potentials has been noted in the context of a
strong coupling SU(3) calculation 1n two dimensions [14] Here we consider a
Nambu string with fixed ends m four dimensions The corresponding potentials for
the different string states are given by the formula

Vy=(K*R*—7K/6+2aNK)">,  N=0,1,2,3, (41)

Here N=% m[n,  +n, ] where n,, (n,_) 1s the number of clockwise (anti-
clockwise) phonons 1 the mth mode The string states are classified [15] according
to the quantum numbers |A | where A=Y, (n,_—n,_) 1s the angular momen-
tum about the string axis and §p{-=I1,[(—1)"]"+*"»- Comparison with the
continuum quantum numbers K7¢ of the gluonic field configuration between
fundamental sources on a hypercubic lattice (table 1) gives the correspondence
between the string states and the D,, wrreducible representations as illustrated in
table 3 In particular, the first string excitation (N = 1) corresponds to the lowest
lying mode 1n the E, representation of Dy,

In figs 2, 3 and 4 the potentials for the relativistic Nambu string corresponding to
N =1, 2 and 3 are shown for R/a,, >4 The value of K (eq (41)) 1s taken from
the fit to the ground state potential We note that the differences V, — V, are
essentially independent of whether we include the string fluctuation term in eq (4 1)
and not very sensitive to small vanations 1n the value of K The E, potential
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determined by our Monte Carlo results closely follows the N =1 string potential for
R/a, , > 4, corresponding to physical distances greater than 05 fm There 1s also a
very good correspondence between the lowest B, and first excited A,, latuce
potentials and the N =2 Nambu string potential for a range of values of R
However, the lowest E, and A, lattice potentials do not show signs of converging
to the N = 2 string potential value and at the largest value of R studied they agree
better with the N = 3 than the N = 2 string model potential Finally, the values of
the lattice gauge theory potentials corresponding to N = 3 in the string model (fig
4) are reasonably high at large R and 1t 1s conceivable that they converge to the
string model values at lhigher values of R than those we have studied In particular,
the A, potential approaches the N = 3 string model potential at large R but falls
away at smaller R values approaching the lowest E, potential This behaviour
conforms with the prediction [16] that m the limit R — 0 these two gluonic
excitations are degenerate with the same energy as the lowest state of the gluelump
spectrum, which transforms like the Ty, representation of the group O, The latuce
energy of the T, gluelump has been determined as ETlga24 =156(3) This figure
contains the unphysical lattice self-energy term of the adjoint source On subtracting
that and adding the lattice self-energy of the fundamental sources included in the
values of our potentials (determined by the R-independent term of the fit to the
ground state potential) we obtain the value Er a;,,=13803) which 1s 1n good
agreement with the projection of the lowest E, and A;, potentials to R=0, as
Mustrated n fig 2

In summary, the Nambu string model leads to a reasonable description of a
number of excited static quark potentials for the quark separation R=1 fm,
although 1t appears to fail for some of the potentials, notably the ones correspond-
ing to representations E, and A,, In particular, the model offers an excellent
description of the E | potential (which 1s the most interesting from the phenomeno-
logical point of view) for a quark separation greater than 0 5 fm

We close this section with a word about the non-relativistic string model {15],
where the excited potentials are equally spaced above the ground state potential
with excitation energies Nw/R, N=1,2, We find that only for the largest
values of R we have studied (approximately equal to 1 fm) 1s the first string
excitation consistent with the E potential At these values of R the higher excited
potentials for the non-relativistic string model generally lie much higher than their
lattice gauge theory counterparts

5. Conclusions and discussion

In this paper we have studied the ground state and excited potentials between a
static quark-antiquark pair m the context of SU(2) lattice gauge theory without
dynamical fermions By using “blocked” links in the spatial directions we have been
able to construct operators with greatly improved overlaps with the ground state of
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each D, representation and hence to determune the potentials corresponding to
most of these representations The E_ potential, which has been determmed much
more accurately than in previously published work, 1s the lowest lying excited
potential The corresponding excitation energy 1s much less than the lightest glueball
mass Hence the E | potential 1s the most relevant to hybrid meson phenomenology
We have observed non-perturbative scaling in the region 8 =2 4-2 5 for the ground
state potentral and for a number of excited potentials within the errors Comparison
of our results to the predictions of a relativistic string model has shown that the
latter provides an accurate description of the E, potential for quark—antiquark
separations greater than 05 fm and a qualitatively reasonable description of a
number of higher lying potentials for separations of the order of 1 fm

In the adiabatic heavy quark approximation, the spectrum of the lowest hybrid
states 1s obtained by solving the Schrodinger equation for the motion of the quarks
in the lowest lying excited potential Given the greatly increased precision with
which the E, potential has been determined, 1t would be interesting to solve the
Schrodinger equation for the motion of the quarks in this potential. Note, however,
that the functional dependence on the source separation of the E, potential remains
essentially as previously inferred [1-3] The potential 1s essentially flat up to a
separation of 0 6 fm and eventually rises linearly with the slope of the ground state
potential We therefore expect that the main features of the spectrum will remain as
previously determined The lowest hybrid state will be close to the minimum of the
E, potential, the hybnds are expected to have broad widths, radial and orbital
excitations will be closely spaced 1n energy, wave functions will be spread out
spatially and the clearest experimental signature for the hybrids will remain the
exotic quantum numbers of many hybrid states Any details the solution of the
Schrodinger equation may add to the spectrum will probably be of limited interest
to the experimentalist, because of the assumptions implicit 1 this calculation the
colour SU(3) group of QCD 1s replaced by SU(2), and the contribution of internal
quark loops 1s 1gnored

An accurate determination of the lowest lying excited potentials in the context of
pure SU(3) gauge theory 1s probably feasible through the “blocking” technique
Although 1t 1s generally expected that SU(2) and SU(3) results for potentials are
stmilar, recent studies of the E, and A, potentials n lattice SU(3) gauge theory
[17] indicate that the latter 1s the lower lymng of the two However, the errors are
relatively large and the methods employed tend to underestimate the A, and to
overestimate the E, potential We intend to carry out the SU(3) calculation along
the lines of this work in the near future to investigate this apparent difference
between the SU(2) and SU(3) spectra
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