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L69 3BX, UK + Department of Applied Mathematics and Theoretical Physics, University of Liverpool, 
Liverpool L69 3BX, UK 

Received 23 October 1989 

Abstract. We describe two types of associative memory which are obtained by iterating a 
multilayered perceptron recursively after training it to auto-associate. The convergence of 
the associative memories with real-valued output and additional weights connecting the 
input and output layers directly is demonstrated analytically. Computational results are 
presented to illustrate the key concepts used in the proof, and also to characterise the 
capacity of these networks, comparing them with the Hopfield model and an alternative 
formulation of the multilayered auto-associative memory with thresholding to binary 
outputs. The capacity of the real-valued memory exceeds that of the alternative formulations 
when training with noise is used. 

1. Introduction 

Auto-association is one of the simplest ways of storing a bit pattern and it has been 
used extensively to illustrate the regenerative capacity of distributed memories using 
neural networks. At the same time, the multilayered perceptron has emerged as a 
network of potentially unlimited capacity. It is therefore natural to consider using it 
to form an auto-associative content addressable memory. 

The network can be trained to autoassociate through the gradient back propagation 
algorithm (Le Cun 1985, Rumelhart et al 1986, Rumelhart and McLelland 1986). 
Recollection of the stored patterns can be achieved by the following process (algorithm 
A): A pattern is presented as input and recursively iterated through the network, until 
(hopefully) convergence upon one of the nominated patterns occurs (Fogelman Soulie 
et al 1987, Wieland and Leighton 1987) (figure 1). Avariant ofthis algorithm (algorithm 
B) involves thresholding of the output after each iteration to make it binary (Gallinari, 
Fogelman Soulie and Thiria 1987). The network is then expected to stabilise after just 
a few iterations. Algorithm A has the advantage that small changes in the output can 
accumulate gradually to eventually flip the corrupted bits and may thus be expected 
to perform better than algorithm B. However, although the nominated patterns are 
fixed points of algorithm A by construction, it is not obvious that they are attractors 
of the recursive iteration. 

In this paper we prove that the nominated patterns are attractors of algorithm A 
with non-zero basins of attraction for a multilayered neural network with top-to-bottom 
connections. We present numerical results which illustrate key steps of the proof and 
suggest that a similar result is also true even when the top-to-bottom synaptic connec- 
tions are absent. Finally, we present further numerical results to estimate the capacity 
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Figure 1. Direct feedback of the output of a multilayer network to its input 

of the recursive associative memory for the two algorithms, and to compare it with 
the capacity of the Hopfield model (Hopfield 1982). The effect of training with noise 
on the activity of the hidden units in multilayered networks is also discussed. 

2. The associative memory 

The multilayered perceptron is commonly used to perform classification of a set of 
input patterns into classes which are selected by exciting nodes in the output layer 
(Lippman 1987). Clearly, if the number of nodes in the input and output layers is the 
same, the network can be required to produce an exact copy of the input patterns at 
the output nodes. In this paper we shall use input patterns represented by vectors of 
real numbers (I:, i = 1, . . . , N, a = 1,2, . . . , P). The subscripts i and a label the input 
nodes and the nominated patterns, respectively. The network nodes are arranged in 
layers, with no interlayer connections, as described in figure 2. The input into each 
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Figure 2. Architecture of a three-layer network with direct connections from the input to 
the output nodes. 
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node is a weighted sum of the outputs from all the nodes in the previous layers, to 
which a bias term is added to set the threshold level for that particular node. The 
output from this node is of the form 

)3' 0, = 1 + exp -1 w,,,O, - 6,  [ ( n  

where 0, are the outputs from the nodes in the previous layers, w,, are the synaptic 
weights and 6,  is the bias term. The network is trained by adjusting the values of the 
weights and bias terms in response to the desired classification of the nominated 
patterns, with the aim of reducing the value of the cost function 

E = f  ( t g  - 0:)'. 
ia 

In the case of auto-association, the target values are set equal to the inpiit patterns 
themselves It, with the effect that when the network outputs 0," reach their target 
values then the nominated patterns are self-reproducing. The network parameters w,, 
and 6, are adjusted by a gradient descent method, using the back-propagation 
algorithm. 

We are mainly interested in the storage and recollection of patterns for which the 
I :  are close to the saturation values of the sigmoid function f ( x )  = 1/[ 1 + exp(-x)], 
i.e. I: = 6 or I :  = 1 - 6, where 6 is small. If the network is taught in this way and then 
connected back-to-back so that each node in the output layer excites the corresponding 
input node directly (figure 1) then the stored patterns are expected to be slable when 
repeated forward passes are applied, as we propose to show. This is the motivation 
for using the network as an associative memory. 

In contrast with an alternative approach (Gallinari et a1 1987) we retain the outputs 
from the network in real valued form when they are fed back into the input layer 
instead of rounding them off to the nearest integer (0 or 1). The pattern is iterated 
during recall until convergence is achieved and only then is a threshold filter applied 
to compare the final output with the stored patterns. In this way the output from the 
network is allowed to change gradually at each iteration, accumulating changes until 
stability is reached. 

3. Proof of convergence 

Under the gradient back-propagation algorithm, each parameter of the network, generi- 
cally called Q, changes after each iteration by 

where E is the cost function in equation ( 2 ) .  We shall use throughout the notation in 
figure 2,  and note that in our formulation we have included a set of weights which 
connect the nodes in the input and output layers directly, in parallel with the usual 
multilayered perceptron (Rumelhart and McLelland 1986, Ackley et a1 1985). We shall 
use the indices i, j and k to label the input, hidden and output nodes respectively. 

Consider 

It;:- O;:I= E;: (4) 
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and assume that the back-propagation algorithm is converging toward the global 
minimum of equation ( 2 )  where the errors corresponding to all nominated patterns 
are equal to zero. The target values are taken to be precisely 0 to 1 ,  although the 
conclusions apply also to target values of S and 1 - S with 6 sufficiently small, provided 
that E is replaced by E'  = E + 6. 

Let 

E = max ( E ; ) .  ( 5 )  
k. c( 

Once the parameters of the network are fixed through using the back-propagation 
algorithm to achieve a small value of E ,  the input states are mapped onto the output 
states through a vector function G(x). For a network with one layer of intermediate 
nodes, and putting f ( x )  = 1/( 1 + exp( -x)), we have 

( 6 )  

Let us consider the successive iterations of an input pattern x through the network 

G :  Dc RN + RN 

G :  x ( r ) - , x ( r + l ) =  G ( x ( r ) )  r=O,  1 , 2 , .  . . (7) 

where D denotes the unit hypercube in RN. A theorem due to Ostrowski states that if 
G has a fixed point 

x* E D :  x* = G(x*) (8) 

such that the spectral radius (maximum eigenvalue) p of the Jacobian matrix G' with 
elements aGk/axj obeys the relation 

IP[G'(X*)ll< 1 ( 9 )  

then x* is a point of attraction for the iterative process defined by equation (7) with 
a finite basin of attraction in RN. G'(x*) is easily constructed using the chain rule, to 
yield 

a G k / d X ;  = oz( 1 - 0;) [ 1 wjko? ( 1 - 07) Wij -t W;k . 
.i 1 (10) 

The nominated patterns I" represent fixed points of G by construction. Therefore, 
their coordinates obey the following set of coupled equations: 

These equations are, in general, underdetermined, the more so if their solution is to 
yield a genuinely distributed representation of the data i.e., one where the corruption 
of a small number of connections will not significantly alter the fixed points of the 
system. 
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The heuristic basis of the proof is that as I :  = E + 0 or I :  = 1 - E + 1,  the size of 
the weights and bias terms is regulated by the logarithms in equations ( 1 1 )  and 
consequently 

The spectral radius of G‘ will then satisfy inequality (9) ,  and hence the nominated 
patterns, in their realisation as self-replicating states with excitations near the saturation 
values of the sigmoid function will be stable in R”, with non-vanishing basins of 
attraction. Therefore, it is the flatness of the sigmoid function near its saturation values 
which ensures that the fixed points in RN are stable under multiple iterations of the 
network without any need for thresholding after each separate iteration. This result is 
illustrated in figure 3 for a network with one input and one output node. 

Figure 3. Plot of the output 0 against the input I for a network with a single input and 
a single output node acting as an associative memory. The two fixed points A, A’, where 
the slope of the response function is less than 1, are attractors, while the fixed point B, 
where the slope of the response function is greater than 1, is a repellor. Two starting inputs, 
I ,  and I&, are shown. 

It is nevertheless easy to show that if equations ( 1  1 )  are underdetermined, one can 
construct unstable solutions for which inequality (9) is not obeyed. It remains to prove 
that such unstable solutions cannot be reached through the gradient back-propagation 
algorithm for a multilayered network with direct top-to-bottom connections when the 
nominated patterns have components near enough to 0 or 1.  

We first estimate the change in the weights after just one iteration of the back- 
propagation algorithm, with gain 7: 

where P represents the total number of nominated patterns. 
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Similarly for the bias terms: 

lh&l TpE2 

Next we must estimate a lower bound for the rate of change of the cost function in 
equation (2). In the limit of small gain, the discrete steps can be replaced by a continuous 
evolution in time, + dT. We obtain 

d E  a E d w  a E d 0  -- 
d g - z w d w  G+z82 dr] 

Considering the weights connecting each input node to the corresponding output 
node and the output layer biases, we obtain 

where the sums run over the states a, with unit excitation at the relevant output and 
the states a- with zero excitation respectively. Assuming that all outputs converge to 
their target values we can find for a given A (0 < A < 1) a certain iteration of the gradient 
back-propagation algorithm such that for all subsequent iterations we have 

Using the inequalities 

x2 + (x  - y )' 2 $ (x + y )' and ( E x i ) * <  N E  (xi)' (21) 
i = l  I 

we obtain a lower bound for the rate of change of the cost function 

4A where K = -. 
5 N  

d E  (-1 z KE2 
dT 

From relations (14) and ( 2 2 )  we conclude that 

dwjk - I d w j k / d d s  PE2 ~ 2 P  . 
IdEl- (dE/dTl KE2  KE 

It follows that 

and similarly for Wjk and &. 
The relationship described by relation (24) therefore allows an estimate to be 

obtained for the maximum change in the value of the weights to the output layer, in 
terms of reference Values for the weights and cost function, namely wyk and Eo. 
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These values must be frozen after the onset of the perturbative regime leading to 
final convergence to the global minimum of the cost function. We conclude that 

2 P  1 e k l  ln(R3/E) 

for some constants R I ,  I = 1 , 2 , 3 .  

(10) we need also to analyse the weights to the intermediate layer. 
In order to complete our analysis of the terms in the Jacobian given in equation 

From relations ( 1 5 ) ,  ( 2 ) ,  (4) and ( 2 5 )  we obtain 

Therefore, by relation ( 2 2 )  

whence 

P 2  N 
2 K 2  

IwijIs-[ln2(R2/E)+A] 

where A is a fourth reference constant. 
All of the terms in equation (10) can now be estimated, giving 

The second term is the effect of the hidden layer, therefore it is scaled by the number 
of nodes there, M. 

We readily conclude that 

Hence all elements in the Jacobian tend to zero and inequality (9) is eventually satisfied 
after sufficient steps of the algorithm. This completes our proof. 

In practice, this result means that the nominated patterns are stable under multiple 
iterations of a multilayered perceptron with feedback provided that the real valued 
components of the output are taught close enough to the saturation levels of the 
sigmoid, 0 and 1. In our simulations we have used target values of 1.0 and 0.0 and 
taught to an accuracy per component per input pattern of 0.05. 

The proof requires that the cost function converges to zero at a rate given by relation 
( 2 2 ) .  In practice, the worst case condition applies-i.e. the equality-asymptotically 
as E + O .  This was verified numerically for a variety of different auto- or hetero- 
associative tasks, with or without top-down connections, and trained initially with or 
without noisy inputs. 
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Figure 4. The quantity v = - A E / q E 2  plotted against the number of iterations N,, of the 
gradient back-propagation algorithm for auto-associative tasks with different numbers P 
of nominated patterns. The network has N = 3 2  input and output nodes, M = 16 intermedi- 
ate nodes and direct top-to-bottom connections. In all cases v approaches a non-zero value 
as N, ,  + a. As P increases, this value approaches 4/5 N = 0.025 (equation (22)). 
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Figure 5. As in figure 4, but the network has no direct connections and is trained with 
noisy inputs for an initial period of 2000 iterations (not shown in the graph). A similar 
behaviour to that of figure 4 is observed as N , ,  + w. 
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Figure 6. The quantity c r = - A E / v E 2  plotted against the number of iterations of the 
gradient back-propagation algorithm for a network with two input, two intermediate and 
one output node which solves the exclusive OR problem. Similar behaviour to that of 
figures 4 and 5 is observed as N,,+m. 

The numerical results are presented in figures 4-6 respectively, for auto-associativity 
with the external connections, and using the ordinary two-layered perceptron, and for 
the exclusive OR problem. These results demonstrate some of the insight into the 
nature of the convergence of the multilayered perceptron using the back-propagation 
algorithm which arose during the construction of our earlier argument. 

Finally, note that the proof given here applies also to fully connected single-layer 
networks, and it is easily extended to an arbitrary number of layers and nodes per 
layer provided a set of external weights exists in parallel with the multilayered percep- 
tron. The numerical results indicate that the convergence result applies also in the 
absence of the external connections, and all that is required to complete the: proof in 
this case is to show analytically the validity of relation (22). 

4. Performance of the associative memory 

We begin our investigation by studying the properties of the single-layer perceptron 
under recursive associative memory recall. Figure 7 shows the ratio of correctly recalled 
patterns over the total number of recall trials as a function of CY, which is the ratio of 
the number of nominated patterns to the number of input nodes. The figures shown 
involve recalling the nominated patterns with 20% of their pixels reversed at random. 
Each point represents an average over 50 presentations of each nominated pattern 
corrupted with noise, averaged also over five separate training runs each with a fresh 
set of nominated random patterns. 

The performance of the single layer perceptron compares favourably with the results 
from a study by Forrest (1988) of the Hopfield model with symmetric synapse weights. 
Forrest uses a training algorithm which ensures very strong alignment of the spin 
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Figure 7. The success rate of recall against a (the ratio of the number of patterns over the 
number of output nodes N )  for a network without hidden nodes, for: N = 1 5  (0); 30 (A); 
45 (*); 100 (+). The nominated patterns are presented with 20% of the pixels flipped at 
random. 

variables to their local fields and in that sense is similar to our training algorithm of 
the single layer perceptron. For example, for 20% of the pixels reversed (corresponding 
to an overlap of 0.6 in Forrest 1988), the biggest network considered (100 nodes) shows 
a 60% success rate during recall for cy = 0.5 compared with 1% for a 256 node net with 
the strongest spin-local field alignment attempted by Forrest. The non-symmetrical 
synapse connections in our model may account for this advantage. 

Next, we characterise the performance of two-layered networks, now for a range 
of (Y between 0 and 2 .  We considered a network with 50 input and output nodes and 
investigated the effect of adding hidden nodes and external connections, and training 
with noise. The results are presented in figure 8. This time, the success rate during 
recall concerns nominated patterns presented with 10% and 20% of the pixels corrupted. 
The statistics are the same as before. Note that the network with hidden nodes and 
direct top-to-bottom connections performs only marginally better than the single layer 
network. This is not surprising. Indeed, we have found that deleting the connections 
to the hidden nodes results in a network which is still capable of reproducing a 
recognisable version of the taught patterns, in the sense that the original high and low 
bits are recalled correspondingly above and below 0.5. It is clear that the external 
connections are short circuiting the hidden nodes when the network is trained simply 
to auto-associate. 

The performance improves when the network is trained with the external connec- 
tions deleted, but most of all when it is trained with noise (Le Cun 1985, Wallace 
1987). This conclusion is in accordance with published results (Fogelman Soulie et al 
1987; Gallinari, Fogelman Soulie and Thiria 1987). Our training schedule involved a 
small number of iterations without noise which were used to 'anchor' the fixed attractors 
of the system to the nominated patterns following a long period of training with noise. 
In  general, we find that the rate of success is an increasing function of the number of 
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Figure 8. The success rate of recall for networks with 50 input and 50 output nodes as a 
function of a. Recall takes place from noisy versions of the nominated patterns with 5 ( X )  

and 10 (0) pixels flipped. Broken lines: hidden 50-node layer with direct top-to-bottom 
connections, training without noise. Dotted lines: hidden 50-node layer with no direct 
connections, training without noise. Full lines: hidden 50-node layer with direct connec- 
tions, fully connected, training with 2000 iterations of noisy inputs. 

intermediate nodes and of the period of training with noise, as illustrated in figures 9 
and 10. We also find that networks with top-to-bottom connections generally learn in 
a smaller number of iterations than networks without them. Moreover, networks without 
direct connections often encounter local minima of the cost function during training, 
especially in the region a 2 1.2. The performance of networks without direct connec- 
tions for relatively small values of a (a S 1.0) has been studied by Fogelman Soulie 
et al (1987). Here we concentrate on networks with an equal number of input, 

Figure 9. Success rate for recall as a function of the number M of hidden nodes for a 
network with a 50-M-50 architecture and direct top-to-bottom connections trained with 
noisy inputs (10 pixels flipped, 2000 iterations), for: a =0.8 (0); a = 1.0 ( x ) .  
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Figure 10. Success rate for recall as a function of the number N I ,  of training cycles with 
noisy inputs. The results are from networks with a 50-50-50 architecture and direct 
connections. The noise during training and recall corresponds to 10 flipped pixels, for: 
cy =0.8 (0); cy = 1.0 (x). 

intermediate and output nodes and direct top-to-bottom connections and train them 
with a relatively large number of noisy iterations (2000) in the simulations to follow. 
We show the performance in figure 8 as a function of a. Note that training with noise 
applied to a two-layered network with full external connections provides non-trivial 
basins of attraction even at CY = 2.0, which is the limit of the capacity of single layer 
networks (Gardner and Derrida 1987, Baldi and Venkatesh 1987). 

It is clear that teaching with noise puts the intermediate nodes to good use. In fact 
the excitations of the hidden nodes in response to the nominated patterns tend to 
approach the critical values of 0 and 1 more often than when training without the use 
of noise. Further numerical experiments using structured data suggest that the basins 
of attraction thus produced are not only larger, as evidenced by the results in figure 
8, but also more isotropic, the more so the larger the number of nodes in the intermediate 
layer. Further evidence of the increased role of the intermediate nodes is that it is no 
longer possible to delete the intermediate connections after training and still expect 
the system to be able to reproduce the stored patterns at all. 

It is instructive also to compare the performance of the recursive associative 
algorithm with real valued and with binary output. The results shown in figure 11 
indicate that the gradual changes in the network output after each iteration accumulat- 
ing over a large number of iterations plays a role in improving the performance of the 
real valued memory over that of the binary valued network, where spin flips must 
always take place in a single iteration. 

We conclude our performance evaluation with a brief discussion of the ability of 
networks to retrieve taught patterns from uncertain information about them (pattern 
completion task). If a fraction of the pixels is not known, we set the corresponding 
inputs to the intermediate value 0.5 and iterate through the network as before. A 
three-state variant of the Hopfield model designed to solve the pattern completion 
problem has been studied numerically (Meunier et a1 1988) and shown to achieve high 
success rates in the region of a < 0.15 for the pattern completion problem with a 
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Figure 11. Success rate for recall from noisy versions of the nominated patterns as a 
function of a for networks with 50 input and 50 output nodes. The network output is 
thresholded to integer values after each iteration of the recall algorithm. The notation is 
the same as in figure 8. 

fraction of uncertain pixels of up to 0.8. In figure 12(a) we show the recall success 
rate for the augmented multilayered perceptron, trained by back-propagation. Adding 
an intermediate layer of nodes and training with incomplete versions of the nominated 
patterns, again, greatly improves the performance. Note that a success rate larger than 
95% is achieved even when most of the pixels (70%) of a nominated pattern are lost 
for a d 0.6. When a small proportion (loo/) of the patterns is lost, high success rates 
are achieved even for a ~ 2 . 0 .  Training specifically for the recall task is obviously an 
expedient way of improving the performance of a neural network, although this does 
not necessarily indicate any amount of generalisation of the acquired memory to 
different, even if related, tasks. Hence, training with noise does not generally sig- 
nificantly improve the performance in the pattern completion problem, and vice-versa. 

With this proviso, the improvement in the pattern completion task is more pro- 
nounced for larger fractions of uncertain pixels. Figure 12( b )  also illustrates that if 
the output during recall is thresholded after each iteration, then information is irretriev- 
ably lost with a consequent deterioration of the capacity of the network. In this sense, 
there are tasks where the real valued nature of the network output, and its convergence 
after multiple iterations, play an important part. 

5. Conclusion 

The convergence of recursive associative memories consisting of a multilayered percep- 
tron augmented with an external set of weights was proved. The results of numerical 
simulations indicate that the quantitative behaviour of these networks during learning 
and their consequent stability under recursion are more general and apply to all 
multilayered perceptrons with arbitrary connectivity or topology. 
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Figure 12. ( a )  The success rate of recall from incomplete versions of the nominated patterns 
with a fraction r ,  of their pixels missing for networks with 50 input, 50 intermediate and 
50 output nodes. The full lines denote training with 2000 incomplete versions of the 
nominated patterns with a fraction r2 of their pixels missing, while the broken lines 
correspond to training with the nominated patterns themselves. ( X )  r ,  = 0.10, r2 = 0.30; (0) 
r,=0.30, r,=0.30; (A) r,=0.50, r2=0.50; (+) r ,=0.70, r,=0.50. ( b )  As in ( a )  but the 
output is thresholded after each iteration of the recall algorithm. 

The performance of these associative memories is improved when training with 
noise is used, which is in agreement with known results. This form of training was 
shown to enhance the role of the nodes in the intermediate layer and it renders the 
capacity of networks augmented with even a fully connected set of external weights 
completely non-trivial. 

The capacity of the single-layer network compares favourably with that of the 
iterative Hopfield model. The performance of the two-layered network, with external 
connections, was found to exceed the theoretical limit for the capacity of single-layer 
networks only when noise is applied during training, 
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Further work is in progress to determine whether there are any limitations to the 
capacity of multilayered recursive associative memories trained by the back-propaga- 
tion algorithm, when non-trivial basins of attraction are required. 
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