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Abstncl. A complete solution of the excitation value which may occur at  the local minima 
of the XOR problem is obtained analytically lor two-layered networks in the two most 
commonly quoted configuralions, using the gradient backpropagation algorithm. The role of 
dirm connections which bypass the two-layered sysLCm is discussed in connation to the 
XOR problem and other related training tasks. 

1. Introduction 

Although the XOR problem is widely quoted as a test for a variety of neural networks 
(Rumelhart er af 1986a), and its historical pedigree for illustrating difficulties in the 
learning abilities of neural networks is well established (Minsky and Papert 1969). a 
complete solution of the local minima for even the most common multilayered 
topologies trained by gradient backpropagation (GBP) (Rumelhart et ~~11986% b) appears 
not,to have been published. 

In this paper we show that this problem can be solved analytically. The solution is 
interesting, because it illustrates that local minima of the cost function for some training 
tasks in multilayered networks can be revealed by analysis. It is also instructive, not least 
because it sheds light on the effect of different topologies and particularly of the use of 
direct connections which bypass the multilayered perceptron. Taking into account the 
general features of our analytical solution we investigate ways of initializing the weights 
of the networks of minimal architecture in order to train them to solve the XOR problem 
more effectively. We also comment on the usefulness of the direct connections for 
accomplishing other training tasks, notably higher-order parity problems as well as 
autoassociation problems. 

2. Derivation 

In order to facilitate the analytical treatment of networks trained by GBP, the following 
variant of the usual quadratic cost function will be used (Wallace 1987): 
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The indices a and k label the nominated patterns and output nodes, respectively. 0; are 
the excitations of the top layer of nodes and $ are their corresponding target values. 

The cost function in equation (1) has the advantage over the more frequently quoted 
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that it exhibits no stationary points at values of the network outputs equal to zero or one, 
where weights to the top layer of nodes assume infinite values. It also has the effect of 
increasing the size of the error which is propagated back through the network during 
training. Apart from these points, the rest of the analysis in this section does not depend 
on which of the two cost functions is used. 

Using the cost function Land keeping to networks with a single output node and an 
arbitrary number N of hidden nodes arranged in one layer, we can study the effect that 
changes in the network topology have on the occurrences of local minima of the cost 
function for the XOR problem. The target outputs of the four input patterns I' = (1, I), 
I2 = (l,O), I3 = (0,l) and f4 = (0.0) are f' = 6, t 2  = I - 6, 1' = 1 - d and t* = 6 
respectively. We shall use a sigmoid response function f ( x )  = l/[l + exp(-x)] for the 
formal neurons. 

Consider first networks without direct bottom-to-top synaptic connections (the 
minimal network of this architecture which can be used to solve the XOR problem is 
shown in figure I@). With the notation suggested in figure l (a) ,  the stationary point 
equations are given by: 

aL/a+ = O = . E R Q  = 0 (3) 

where RE = f' - 0" and J? are the intermediate layer outputs. Equations (4)-(6), for each 
value of j ( j  = l,2, ..., N ) ,  form a set of simultaneous equations for the R". These 
equations have non-zero solutions, which represent stationary points, only when their 
determinants are equal to zero: 

l a 1  (b)  

Figure 1. Minimal-size feedforward networks used 10 solve the XOR problem. (a) Minimal- 
size network with only consecutive layer interactions. (bl Minimal-size network with direct 
bolfom-to-top connections. 
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For each hidden node j = 1.2, .  . . , N let 

qoj = exdej) 
vi, = exdulj) 
qzj = e w h j ) .  

Equations (7) then become 
4 

( v ~ ) ~  n yg(l -y7)qoj(l -ql , ) ( l  - q 2 j ) = 0  j =  1,2, .... N. (11) 

From these equations we may readily read off values of the weights and thresholds for 
= = I  

which undesirable local minima of L may occur. These are: 

0) uj  = 0 
or (ii) corresponding to qij  = I, i = 1 or 2 
or (iii) 

We next combine these values of the weights for each value of j  and substitute them 
back into equations (3)-(6). Considering the cases where one, two, three or all four 
outputs differ from their targets separately, we can identify the output values for which 
stationary points can occur. 

For example, suppose that only two outputs, say 0’ and O’, differ from their target 
values, so that R’ # 0, R’ # 0 and R 3  = R4 = 0. From equations (5 )  and (6) we then 
obtain for a certain jeither that v j  = 0 or that y j  and y: are equal to 0 or I .  In the second 
case, however, yj and y j  must both be equal to 0 or both equal to 1, otherwise equation 
(4) gives R‘ = 0 or R’ = 0, contrary to our assumption that only two network outputs 
differ from their targets. Hence for all values ofj we have u, = 0 or y j  = y j .  Taking into 
account this result for all values of j we conclude that 0’ = 0’. Since R’ + R’ = 0 (by 
equation (3)), it follows that 0’ = O2 = +. The other cases are treated similarly and the 
output values for which stationary points can occur are the following: 

(b) 0’ = O2 = 3,04 = 6, O3 = 1 - 6 and similar solutions with 0’ ++ O4 and 0’ t) 0’; 
(c) 0’ = 0’ = O3 = (2 - 6)/3, O4 = 6 and the corresponding solution with 0’ and O4 

interchanged; 
(d) 0’ = 0’ = O4 = ( I  + 6)/3,0’ = 1 - 6 and the corresponding solution with 0’ and 

O3 interchanged. 

The analysis leading to the identification of stationary points of types (a)-(d) is 
independent of the number N of hidden nodes in the intermediate layer. This is basically 
a consequence of the fact that equations (1 1) have a similar structure for all values of N .  
Consequently, the stationary points of the XOR problem for all networks of a 2-N-1 
architecture with N arbitrary can be classified into the categories (a)-(d). What changes 
as N varies is the relative incidence of the stationary points in the weight space. 

Stationary points of types (b), (c) and (d) occur only if at least one of the weights takes 
on a value equal to k CO (case (iii) above), whereas a stationary point of type (a) can 
involve finite values of the weights (cases (i) and (ii) above). 

Equations (7) are only necessary and not sufficient conditions for local minima to 
exist. They serve to characterize the stationary points of the network in general. 

U,. V = 0 
utj = f w or e, = i CO corresponding to yy = 0 or I .  

(a) 01 = 0 2  = 0 3  = 0 4  = I .  2. 
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Numerical simulations presented in the next section show that case (a) occurs frequently 
as a saddle point. However, examination of the second derivatives of L with respect to 
the weights shows that for certain values of the weights all types (a)-(d) of stationary 
points can be true local minima. Our numerical simulations have verified their stability. 
A sample ofcharactenstic weights for points in the vicinity of local minima, the stability 
of which was also verified numerically, is shown in table 1. Some of these points were 
reached through GBP starting from random weights, while others were constructed by 
solving equations (a)-(d) and taking into account the second derivatives of L. 

We next consider adding direct bottom-to-top connections to the three-layer 
network of a 2-N-1 architecture with N arbitrary (the minimai configuration o i  this 
architecture used to solve the XOR problem is shown in figure I@). The effect of adding 
direct connections is to impose additional constraints, namely 
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with the coefficients of the RE independent of the intermediate node outputs. From 
equations (3) and (13) we obtain 

R' = - R 2  = - R 3  = R'. (14) 

Substituting this result into the equations for the stationary points we conclude that 
there remain only local minima of type (a), where all outputs are equal. Again, this result 
holds true irrespectively of the number of intermediate nodes for networks with direct 
connections. 

3. Training efficiency and bigher-order parity problems 

I n  the light of the results of the previous section, it is interesting to study the frequency of 
occurrence of the stationary points when the minimai networks oiiigures iiaj [network 
A) and l(b) (network B) are trained through GBP, whereby the weights and biases, here 
generically called Q, are updated according to the relation 

aL 
ZQ 

AQ(t + 1) = - t~ - + eAQ(t). (15) 

Table I. A sample of weights at typical local minima ofthc cost function for 
the XOR problem. The value 6 = 0.1 has b a n  uxd 

0' 0.5 0. I 0.633 0.366 0.5 
0' 0.9 0.9 0.633 0.366 0.5 
0' 0.5 0.5 0.633 0.9 a5 
0 4  0.1 0.5 0.1 0.366 0.5 
u t ,  -5.52058 -11.52144 -13,70896 -10.42464 0.0 
U,, -4.50867 -11.89991 6.01491 -12.714 14 -0.57221 
u2 ,  - 13.690 16 -1.10568 -13.70896 8.55786 0.483 49 
ttZ1 12.27468 4.01044 6.01491 11.47785 0.0 
ut -2.78335 4.592 62 -3,421 22 0.663 31 0.0 
U, -5,05670 -6.141 46 0.437 58 4.23784 0.0 
la - !.500?! "L 1.419 I ?  : 2.508 55 !,??e 27 ~ !0.?8005 
e, 4.73579 I 1.707 33 121702 --10.97265 -0.89611 9 5.05670 1.548 84 0.10897 -0.54656 0.0 
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With network A, a stationary point of type (a) can occur if at least two of the weights 
are equal to zero. Thus the algorithm is often trapped in the vicinity of a saddle point of 
type (a) for a number of iterations if the initial values of the weights are small. On the 
other hand, if the algorithm is initialized using relatively large weights, the danger 
increases that the network be trapped in the vicinity of a stationary point of type (b), (c) 
or (d), for which at least one of the bottom-to-hidden layer weights assume infinite values. 
In table 2 we show the results for the relative occurrence of the various types of 
stationary points for different ranges of random initializing weights and biases. Although 
mr,.~tr F,.. +hp .,oi.,o. .. - n ?< .-A - n < ehn r.rPn..aorrr ,.T -;-;...,, ,.f t.r-c 

(b), (c) and (d) is largely independent of these values. Evidently, there is an intermediate 
region (random weights between - Q  and II with a = 0.3-0.5) for which learning is fast 
and the probability of occurrence of local minima is small (3-473. 

For network B, no stationary points appear at infinite values of the weights. 
Relatively large initializing weights can now be used to avoid a saddle point or minimum 
of type (a) thus speeding up training without fear of encountering minima at infinite 
values of the weights, as illustrated in table 2. 

Although it is not possible to classify the stationary points of the cost function for 
higher-order panty problems in a closed form, numerical results show that our 
conclusions about the treatment of the XOR problem are useful for training multilayered 
networks to solve some higher-order panty problems as well. In particular, an 
investigation of the 4-parity problem using a 4-4-1 architecture without direct 
connections, showed that aii iocai minima reached had a number oioutputs equai to the 
targets and all wrong outputs equal to each other, a situation very similar to the solution 
for the local minima of the XOR problem. Many of these minima involve infinite bottom- 
to-middle layer weights and most of them (although not all) can be eliminated by using 
bottom-to-top synaptic connections. For both architectures (with or without direct 
bottom-to-top connections) training with small initial random weights (maximum 
-agxi!ade czG.5) enco?lE!es B statinsary poi-t where a!! on!pu!s tze eq:a! !o 0.5 a d  !he 
task cannot be solved in almost all trials. With relatively large weights (maximum 
magnitude 1.5) the system without direct connections has a relatively low success rate 

i.,.,".,., '.,r a1I""ll 1"s LA.., .*111l11 I ,  - ".*> .a.." r - ".d, ..a* .'*yY*'.-, V. .I....l.l.Y U. .JP' 

Table 2. Relative wcurrence or stationary points or the cost function for the XOR problem cor .I,- "_t ... ̂I L" ^P C" .,__I ,,"> ""A ,I&\ in t M  *."A<"" .___i^"o .."ill f inn TI._ .."I .._C 

o = 0.25 and e = 0.5 have been used for the gain and acceleration resmectivelv. 
.... l..."l.*l ". ..e".W .*", ".." .!", .- ..P.....ls ...>A"..o "*...e -".. .,,* 

Network A Network B 

~ a n g e  or 
weights loo0 its I O M O  its IMO its IOOOO ils 

[ -0.2 0.23 95 0 0 8 1 0  89 14 
[ -0.3. 0.33 56 0 0 3 I O  69 5 
[ -0.4, 0.41 32 I 0 I 2 0  45 3 
[-0.5, 0.51 16 3 0 0 3 0  36 3 
[ - 06.0.61 12 6 0 0 6 0  31 I 
[-0.8.0.8! 5 I O  0 0 I O  0 16 I 
r - i . i i  2 I 2  I 0 12 I 6 0 
C-2,2j 0 21 4 0 20 I 
[-3. 31 0 32 8 0 29 4 

0 
0 

0 
0 
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(32%) after 30000 iterations of the GBP algorithm, because it  often encounters minima 
where at least one of the bottom-to-middle layer weights is infinite. By contrast, a success 
rate of 97% is reached when direct connections are included with a mean-square error of 
less than in less than 2000 iterations for a 4-3-1 configuration. In the 6-parity 
problem, the structure of the local minima appears to be more complex. Nevertheless, 
using a network with direct connections and large initial weights still facilitates learning 
and a success rate of 88% in less than 30000 iterations can be reached for a 6-5-1 
configuration with initial weights of maximum magnitude equal to 3. 

Adding direct connections probably does not help solve higher-order parity pro- 
blems, where the total number ofweights is significantly larger than the number ofdirect 
weights (we found the 8-parity problem extremely difficult to solve for the minimal 
networks either with or without direct connections). It is nevertheless clear that the use of 
direct connections can facilitate learning in a number of tasks. Apart from the XOR and 
parity problems discussed here, there is evidence that adding a set ofdirect weights to the 
multilayered perceptron can increase substantially its rate of convergence in auto- 
association problems, without significant detriment to its performance (Lisboa and 
Perantonis 1990). In  these tasks. the use of the direct connections helps the system learn 
without forfeiting the benefits arising from its multilayered architecture. 

P J G Lishoa and S J Perantonis 

3. Conclusion 

The possible excitation values at local minima of the XOR problem have been identified 
and the associated weights and bias terms characterized. 

The use of external synaptic connections which bypass the ordinary multilayered 
perceptron has the consequence of reducing the number of local minima available to the 
network, thus facilitating learning. This is not just due to the additional number of 
equations that must be satisfied at the extrema, but also to the nature of the new 
equations. Therefore the effect of this network configuration is different from that of 
simply adding new nodes, say, to the intermediate layer. 

Finally, using direct connections has been found helpful in eliminating local minima 
and speeding up learning for a number of training tasks, including some higher-order 
parity and autoassociation problems. 
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